Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River Basin
"> Figure 1
<p>Topographic features of the study area. (<b>a</b>) The Meghna basin in the Asian continent (inset), showing major rivers and administrative details; (<b>b</b>) the Meghna basin with its detailed river network, including 20 rain-gauge stations (red bubbles) and two streamflow stations (green bubbles) in Bangladesh; (<b>c</b>) the HydroSHEDS (90 m resolution) digital elevation model of the Meghna basin; and (<b>d</b>) the land cover in the Meghna basin.</p> "> Figure 2
<p>Meghna basin showing the GHCN-D global gauge stations and CPC unified 0.5°-grid centres that—along with other observed datasets—were used to produce the GSRP rainfall estimates on (<b>a</b>) 25 July 2010, and (<b>b</b>) 17 May 2016. The local 20 Bangladesh Water Development Board’s (BWDB) rainfall stations are also presented (red dots).</p> "> Figure 3
<p>Flow chart of the research structure used in this study for comparing four GSRPs, creating a reference rainfall dataset, and investigating that dataset’s applicability when simulating streamflows in the Meghna basin for the purpose of water resource management.</p> "> Figure 4
<p>Cumulative rainfall of daily estimates calculated for the ground gauges and GSRPs throughout the wet season (March–October) of the study period (2009–2016), at 20 rain-gauge stations (<b>a</b>–<b>t</b>) located within the Bangladesh portion of the Meghna basin.</p> "> Figure 5
<p>Scatterplots of daily GSRP estimates against daily ground rainfall for the wet seasons during the entire study period (2009–2016) at 20 rain-gauge stations (<b>a</b>–<b>t</b>). Comparison indices are included inside the plot for each station.</p> "> Figure 6
<p>Scatterplots of mean monthly accumulated GSRP estimates against the ground rainfall for the wet seasons during the entire study period (2009–2016) at 20 rain-gauge stations (<b>a</b>–<b>t</b>). Statistical indices are included inside the plot for each station.</p> "> Figure 7
<p>Mean monthly accumulated rainfall of the ground gauges and CHIRPS, GSMaP-G, TMPA-G, and MSWEP for the months of the rainy season (March–October) during the study period (2009–2016) at 20 gauge stations (<b>a</b>–<b>t</b>).</p> "> Figure 8
<p>Taylor diagram illustrating statistical comparison between original, bias-corrected GSRP estimates and gauge rainfall (obs mark), as calculated for the wet seasons of 2009–2016 at five validation stations (<b>a</b>–<b>e</b>). The CCs are related to the azimuthal angle (grey lines), which denote a similarity in pattern between the satellite and gauge fields. NSDs (green contours) indicate the amount of variance between the satellites and the gauge time series, and is proportional to the radial distance from the origin. The NRMSD (blue contours) between the satellite products and the rain-gauge fields is proportional to the distance from the point on the <span class="html-italic">x</span>-axis identified as obs. For details, refer to Taylor [<a href="#B80-remotesensing-10-00828" class="html-bibr">80</a>].</p> "> Figure 9
<p>Taylor diagram illustrating a statistical comparison between satellite products (original and merged) and ground rainfall (obs mark) for the wet seasons of 2009–2016 at 20 rain-gauge stations (<b>a</b>–<b>t</b>). Instructions for reading a Taylor diagram are given in <a href="#remotesensing-10-00828-f008" class="html-fig">Figure 8</a>.</p> "> Figure 10
<p>Taylor diagram with the statistical comparison of the original GSRPs, the MLC-corrected GSRPs, and the IEVW-based merged product of the original GSRPs (both without and with the MLC bias correction) against ground rainfall for the wet seasons of 2009–2016 at the five validation stations (<b>a</b>–<b>e</b>). Instructions for reading a Taylor diagram are given in <a href="#remotesensing-10-00828-f008" class="html-fig">Figure 8</a>.</p> "> Figure 11
<p>Taylor diagrams plotted for the (<b>a</b>) daily, (<b>b</b>) monthly, and (<b>c</b>) annual time series of the original GSRPs and the IMLC product vs. the ground rainfall collectively calculated for the five validation stations for the period of 2009–2016. Instructions for reading a Taylor diagram are given in <a href="#remotesensing-10-00828-f008" class="html-fig">Figure 8</a>.</p> "> Figure 12
<p>Annual average rainfall distribution at 0.25° grid resolution for (<b>a</b>) CHIRPS, (<b>b</b>) GSMaP-G, (<b>c</b>) TMPA-G, (<b>d</b>) MSWEP, and (<b>e</b>) IMLC product during the study period (2009–2016).</p> "> Figure 13
<p>Taylor diagram with a comparison of the monthly accumulated district-average rainfall estimates (calculated from the original GSRPs) and IMLC product (the improved dataset created in this study) relative to the observed rainfall of nine districts (<b>a</b>–<b>i</b>) located inside the Indian portion of the Meghna basin for the period of 2012–2016. Instructions for reading a Taylor diagram are given in <a href="#remotesensing-10-00828-f008" class="html-fig">Figure 8</a>.</p> "> Figure 14
<p>Daily observed streamflows (black) and simulated streamflows (red) produced by the improved rainfall dataset (the IMLC product) for the periods of (<b>a</b>) calibration (2009–2012) and (<b>b</b>) validation (2013–2016) using the RRI model at the Bhairab Bazar stream gauge. See <a href="#remotesensing-10-00828-t004" class="html-table">Table 4</a> for the statistical metrics used to evaluate the simulated streamflows.</p> "> Figure 15
<p>Daily observed streamflows (black) and simulated streamflows (red) produced by the improved rainfall dataset for additional validation of the RRI model at the Amalshid stream gauge during the entire study period (2009–2016). See <a href="#remotesensing-10-00828-t004" class="html-table">Table 4</a> for the statistical metrics used to evaluate the simulated streamflows.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Topographic Data
3.2. Hydro-Meteorological Data
3.2.1. Rainfall
3.2.2. Water Level and Streamflow
4. Methods
4.1. Performance Evaluation of GSRPs
4.2. Bias Correction of GSRPs
4.2.1. Linear Correction Method
4.2.2. Modified Linear Correction (MLC) Method
4.2.3. Quantile Mapping (QM) Method
4.3. Merging of GSRPs
4.3.1. Simple Average (SA) Merging
4.3.2. Error Variance (EV) Merging
4.3.3. Inverse Error Variance Weighting (IEVW) Merging
4.4. Combination of Merging and Bias Correction
4.5. Performance Evaluation of the Bias-Corrected and Merged Products
4.6. Streamflow Simulations
5. Results and Discussion
5.1. Performance Evaluation of GSRPs on the Daily Scale
5.2. Performance Evaluation of GSRPs on the Monthly Scale
5.3. Evaluation of Bias-Corrected GSRPs
5.4. Evaluation of Merged Products
5.5. Combined Use of Merging and Bias Correction
5.6. Validation of the IMLC Product Outside of Bangladesh
5.7. Streamflow Simulations with the Improved Dataset (IMLC Product)
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). Irrigation in Southern and Eastern Asia in Figures, AQUASTAT Survey-2011, FAO Water Report #37; FAO Land and Water Division: Rome, Italy, 2012. [Google Scholar]
- Chowdhury, M.R. An Assessment of Flood Forecasting in Bangladesh: The Experience of the 1998 Flood. Nat. Hazards 2000, 22, 139–163. [Google Scholar] [CrossRef]
- Mirza, M.M.Q. Three Recent Extreme Floods in Bangladesh: A Hydro-Meteorological Analysis. Nat. Hazards 2003, 28, 35–64. [Google Scholar] [CrossRef]
- Shah, R.B. Ganges-Brahmaputra: The outlook for the twenty-first century. In Sustainable Development of the Ganges-Brahmaputra-Meghna Basins; Biswas, A.K., Uitto, J.I., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 17–45. [Google Scholar]
- Mirza, M.M.Q.; Warrick, R.A.; Ericksen, N.J. The Implications of Climate Change on Floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Clim. Chang. 2003, 57, 287–318. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Ward, N. Hydro-meteorological variability in the greater Ganges–Brahmaputra–Meghna basins. Int. J. Climatol. 2004, 24, 1495–1508. [Google Scholar] [CrossRef]
- Quddus, M.A. Crop production growth in different agro-ecological zones of Bangladesh. J. Bangladesh Agric. Univ. 2009, 7, 351–360. [Google Scholar] [CrossRef]
- Zappa, M.; Rotach, M.W.; Arpagaus, M.; Dorninger, M.; Hegg, C.; Montani, A.; Ranzi, R.; Ament, F.; Germann, U.; Grossi, G.; et al. MAP D-PHASE: Real-time demonstration of hydrological ensemble prediction systems. Atmos. Sci. Lett. 2008, 9, 80–87. [Google Scholar] [CrossRef]
- Viviroli, D.; Mittelbach, H.; Gurtz, J.; Weingartner, R. Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland—Part II: Parameter regionalisation and flood estimation results. J. Hydrol. 2009, 377, 208–225. [Google Scholar] [CrossRef]
- Ahmad, Q.K.; Ahmed, A.U. Regional Cooperation in Flood Management in the Ganges-Brahmaputra-Meghna Region: Bangladesh Perspective. Nat. Hazards 2003, 28, 191–198. [Google Scholar] [CrossRef]
- Bakker, M.H.N. Transboundary River Floods and Institutional Capacity1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 553–566. [Google Scholar] [CrossRef]
- Balthrop, C.; Hossain, F. Short note: A review of state of the art on treaties in relation to management of transboundary flooding in international river basins and the Global Precipitation Measurement mission. Water Policy 2010, 12, 635–640. [Google Scholar] [CrossRef]
- Hay, L.E.; Clark, M.P. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol. 2003, 282, 56–75. [Google Scholar] [CrossRef]
- Ines, A.V.M.; Hansen, J.W. Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol. 2006, 138, 44–53. [Google Scholar] [CrossRef]
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35, L20709. [Google Scholar] [CrossRef]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “Should we apply bias correction to global and regional climate model data?”. Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol. 2012, 456, 12–29. [Google Scholar] [CrossRef]
- Chen, J.; St-Denis, B.G.; Brissette, F.P.; Lucas-Picher, P. Using Natural Variability as a Baseline to Evaluate the Performance of Bias Correction Methods in Hydrological Climate Change Impact Studies. J. Hydrometeorol. 2016, 17, 2155–2174. [Google Scholar] [CrossRef]
- Islam, M.N.; Uyeda, H. Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh. Remote Sens. Environ. 2007, 108, 264–276. [Google Scholar] [CrossRef]
- Nishat, B.; Rahman, S.M.M. Water Resources Modeling of the Ganges-Brahmaputra-Meghna River Basins Using Satellite Remote Sensing Data1. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1313–1327. [Google Scholar] [CrossRef]
- Valeriano, O.C.S.; Koike, T.; Rahman, M. Towards global river discharge assessment using a distributed hydrological model and global data sets. Investig. Métodos J. Boliv. Priv. Univ. 2010, 9, 95–102. [Google Scholar]
- Islam, A.S.; Haque, A.; Bala, S.K. Hydrologic characteristics of floods in Ganges–Brahmaputra–Meghna (GBM) delta. Nat. Hazards 2010, 54, 797–811. [Google Scholar] [CrossRef]
- Prasanna, V.; Subere, J.; Das, D.K.; Govindarajan, S.; Yasunari, T. Development of daily gridded rainfall dataset over the Ganga, Brahmaputra and Meghna river basins. Meteorol. Appl. 2014, 21, 278–293. [Google Scholar] [CrossRef]
- Siddique-E-Akbor, A.H.M.; Hossain, F.; Sikder, S.; Shum, C.K.; Tseng, S.; Yi, Y.; Turk, F.J.; Limaye, A. Satellite Precipitation Data–Driven Hydrological Modeling for Water Resources Management in the Ganges, Brahmaputra, and Meghna Basins. Earth Interact. 2014, 18, 1–25. [Google Scholar] [CrossRef]
- Shepard, D. A Two-dimensional Interpolation Function for Irregularly-spaced Data. In Proceedings of the 23rd ACM National Conference, Las Vegas, NV, USA, 27–29 August 1968; Blue, R.B., Sr., Rosenberg, A.M., Eds.; ACM Press: New York, NY, USA, 1968; pp. 517–524. [Google Scholar]
- Dirks, K.N.; Hay, J.E.; Stow, C.D.; Harris, D. High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data. J. Hydrol. 1998, 208, 187–193. [Google Scholar] [CrossRef]
- Heistermann, M.; Kneis, D. Benchmarking quantitative precipitation estimation by conceptual rainfall-runoff modeling. Water Resour. Res. 2011, 47, W06514. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 2008, 89, 2. [Google Scholar] [CrossRef]
- Parry, L. Think the weather bad’s here? Spare a thought for these Indian villagers who live in the wettest place in the world with 40 FEET of rain a year, Daily Mail, UK. 2013. Available online: http://www.dailymail.co.uk/news/article-2471421/Indias-Mawsynram-villagers-live-wettest-place-world-40-FEET-rain-year.html (accessed on 24 May 2018).
- Tateishi, R.; Hoan, N.T.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Phong, D.X. Production of Global Land Cover Data—GLCNMO2008. J. Geogr. Geol. 2014, 6, 99. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Romilly, T.G.; Gebremichael, M. Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrol Earth Syst Sci 2011, 15, 1505–1514. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmospheric Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J.B.; Robertson, F.R.; Husak, G. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol. Earth Syst. Sci. 2014, 18, 4965–4978. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, sdata201566. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Okamoto, K.; Takahashi, N.; Iwanami, K.; Shige, S.; Kubota, T. High precision and high resolution global precipitation map from satellite data. In Proceedings of the 2008 Microwave Radiometry and Remote Sensing of the Environment, Firenze, Italy, 11–14 March 2008; pp. 1–4. [Google Scholar]
- Aonashi, K.; Awaka, J.; Hirose, M.; Kozu, T.; Kubota, T.; Liu, G.; Shige, S.; Kida, S.; Seto, S.; Takahashi, N.; et al. GSMaP Passive Microwave Precipitation Retrieval Algorithm: Algorithm Description and Validation. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 119–136. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; et al. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 137–151. [Google Scholar] [CrossRef]
- Seto, S.; Takahashi, N.; Iguchi, T. Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions. J. Appl. Meteorol. 2005, 44, 1243–1259. [Google Scholar] [CrossRef]
- Takahashi, N.; Awaka, J. Introduction of a melting layer model to a rain retrieval algorithm for microwave radiometers. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, South Korea, 29 July 2005; Volume 5, pp. 3404–3409. [Google Scholar]
- Ushio, T.; Tashima, T.; Kubota, T.; Kachi, M. Gauge adjusted Global Satellite Mapping of Precipitation (GSMaP_Gauge). In Proceedings of the 2014 XXXIth URSI on General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.T.C.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The Status of the Tropical Rainfall Measuring Mission (TRMM) after Two Years in Orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Rudolf, B. Management and analysis of precipitation data on a routine basis, in precipitation and evaporation. In Proceedings of the International WMO/IAHS/ETH Symposium on Precipitation and Evaporation; Slovak Hydrometeorological Institute: Bratislava, Slovakia, 1993; pp. 69–76. [Google Scholar]
- Xie, P.; Arkin, P.A. Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions. J. Clim. 1996, 9, 840–858. [Google Scholar] [CrossRef]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Ebert, E.E.; Janowiak, J.E.; Kidd, C. Comparison of Near-Real-Time Precipitation Estimates from Satellite Observations and Numerical Models. Bull. Am. Meteorol. Soc. 2007, 88, 47–64. [Google Scholar] [CrossRef]
- Wang, J.; Hong, Y.; Li, L.; Gourley, J.J.; Khan, S.I.; Yilmaz, K.K.; Adler, R.F.; Policelli, F.S.; Habib, S.; Irwn, D.; et al. The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol. Sci. J. 2011, 56, 84–98. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, L.; Hong, Y.; Yong, B.; Yang, X.; Yuan, F.; Ma, M. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method. J. Hydrol. 2012, 452–453, 213–225. [Google Scholar] [CrossRef]
- Yong, B.; Hong, Y.; Ren, L.-L.; Gourley, J.J.; Huffman, G.J.; Chen, X.; Wang, W.; Khan, S.I. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. J. Geophys. Res. Atmos. 2012, 117, D09108. [Google Scholar] [CrossRef]
- Haile, A.T.; Habib, E.; Rientjes, T.H.M. Evaluation of the climate prediction center CPC morphing technique CMORPH rainfall product on hourly time scales over the source of the Blue Nile river. Hydrol. Process. 2013, 27, 1829–1938. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef]
- Salio, P.; Hobouchian, M.P.; García Skabar, Y.; Vila, D. Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos. Res. 2015, 163, 146–161. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, C.; Fu, G.; Sweetapple, C.; Zhou, H. Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations. Hydrol. Earth Syst. Sci. 2016, 20, 903–920. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A Comparison of Delta Change and Downscaled Gcm Scenarios for Three Mountainous Basins in the United States1. JAWRA J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Lenderink, G.; Buishand, A.; van Deursen, W. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach. Hydrol. Earth Syst. Sci. 2007, 11, 1145–1159. [Google Scholar] [CrossRef]
- Lafon, T.; Dadson, S.; Buys, G.; Prudhomme, C. Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. Int. J. Climatol. 2013, 33, 1367–1381. [Google Scholar] [CrossRef] [Green Version]
- Arias-Hidalgo, M.; Bhattacharya, B.; Mynett, A.E.; van Griensven, A. Experiences in using the TMPA-3B42R satellite data to complement rain gauge measurements in the Ecuadorian coastal foothills. Hydrol. Earth Syst. Sci. 2013, 17, 2905–2915. [Google Scholar] [CrossRef]
- Fang, G.H.; Yang, J.; Chen, Y.N.; Zammit, C. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci. 2015, 19, 2547–2559. [Google Scholar] [CrossRef] [Green Version]
- Habib, E.; Haile, A.T.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef]
- Bhatti, H.A.; Rientjes, T.; Haile, A.T.; Habib, E.; Verhoef, W. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data. Sensors 2016, 16, 884. [Google Scholar] [CrossRef] [PubMed]
- Vila, D.A.; de Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimates over Continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Leuprecht, A. Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Sun, F.; Roderick, M.L.; Lim, W.H.; Farquhar, G.D. Hydroclimatic projections for the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models. Water Resour. Res. 2011, 47, W00G02. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Wilcke, R.A.I.; Mendlik, T.; Gobiet, A. Multi-variable error correction of regional climate models. Clim. Chang. 2013, 120, 871–887. [Google Scholar] [CrossRef]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Hasan, M.M.; Sharma, A.; Johnson, F.; Mariethoz, G.; Seed, A. Merging radar and in situ rainfall measurements: An assessment of different combination algorithms. Water Resour. Res. 2016, 52, 8384–8398. [Google Scholar] [CrossRef]
- Stock, J.; Watson, M. A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series. In Cointegration, Causality and Forecasting: A Festschrift for Clive, W.J. Granger; Engle, R., White, H., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 1–44. [Google Scholar]
- Stock, J.H.; Watson, M.W. How Did Leading Indicator Forecasts Perform during the 2001 Recession? Econ. Q. Fed. Res. Bank Richmond 2003, 89, 71–90. [Google Scholar]
- Stock, J.H.; Watson, M.W. Combination forecasts of output growth in a seven-country data set. J. Forecast. 2004, 23, 405–430. [Google Scholar] [CrossRef]
- Woldemeskel, F.M.; Sivakumar, B.; Sharma, A. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia. J. Hydrol. 2013, 499, 167–176. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Hong, Y.; Yu, J.; Pan, Y.; Chen, Z.; Saharia, M. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 6843–6858. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Sayama, T.; Ozawa, G.; Kawakami, T.; Nabesaka, S.; Fukami, K. Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrol. Sci. J. 2012, 57, 298–312. [Google Scholar] [CrossRef]
- Sayama, T.; Tatebe, Y.; Tanaka, S. An emergency response-type rainfall-runoff-inundation simulation for 2011 Thailand floods. J. Flood Risk Manag. 2015, 10, 65–78. [Google Scholar] [CrossRef]
- Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin. Nat. Hazards Earth Syst. Sci. 2015, 15, 1617–1630. [Google Scholar] [CrossRef] [Green Version]
Sl. | Rain-Gauge Station Name | North Latitude (°) | East Longitude (°) | Elevation (m a.s.l.) (90 m SRTM) | Available Daily Records | Missing Daily Data (%) | Mean Annual Rainfall (mm) |
---|---|---|---|---|---|---|---|
1 | Lourergarh | 25.1941 | 91.2941 | 16 | 2892 | 1.03 | 5130 |
2 | Sunamganj | 25.0760 | 91.4147 | 14 | 2875 | 1.61 | 5015 |
3 | Sylhet | 24.8764 | 91.8571 | 20 | 2922 | 0.00 | 4156 |
4 | Kanaighat | 25.0011 | 92.2708 | 23 | 2844 | 2.67 | 3926 |
5 | Sheola | 24.8922 | 92.1910 | 20 | 2447 | 16.26 | 3536 |
6 | Durgapur | 25.1227 | 90.6645 | 20 | 2152 | 26.35 | 2926 |
7 | Netrokona | 24.8832 | 90.7356 | 14 | 2842 | 2.74 | 2333 |
8 | Habiganj | 24.4036 | 91.4151 | 11 | 2692 | 7.87 | 2320 |
9 | Comilla | 23.4705 | 91.2000 | 17 | 2922 | 0.00 | 2312 |
10 | Nakuagaon | 25.1900 | 90.2180 | 31 | 2228 | 23.75 | 2211 |
11 | Manu RlyBr | 24.4324 | 91.9462 | 19 | 1762 | 39.70 | 2137 |
12 | Sherpur-Sylhet | 24.6277 | 91.6848 | 18 | 1645 | 43.70 | 2134 |
13 | Jariajanjail | 25.0092 | 90.6557 | 9 | 2669 | 8.66 | 2070 |
14 | Moulvi Bazar | 24.4849 | 91.8570 | 19 | 2712 | 7.19 | 1882 |
15 | Narsingdi | 23.9159 | 90.7456 | 9 | 2890 | 1.10 | 1815 |
16 | Mymensingh | 24.6940 | 90.4594 | 10 | 2410 | 17.52 | 1807 |
17 | Chandpur | 23.2254 | 90.6440 | 10 | 2780 | 4.86 | 1802 |
18 | Brahmanbaria | 23.9555 | 91.1177 | 17 | 2922 | 0.00 | 1752 |
19 | Dhaka | 23.7840 | 90.5278 | 10 | 2725 | 6.74 | 1609 |
20 | Bhairab Bazar | 24.0559 | 90.9950 | 8 | 2922 | 0.00 | 1390 |
GSRP Name | Resolution | Coverage | Latency | Main Reference | Data Links | ||
---|---|---|---|---|---|---|---|
Spatial | Temporal | Spatial | Temporal | ||||
CHIRPS | 0.25° | daily | Global 50°N–S | 1981–present | 1–3 weeks | [36] | ftp://ftp.chg.ucsb.edu/pub/org/chg/ |
GSMaP-G | 0.1° | daily | Global 60°N–S | 2000–present | 2–3 days | [44] | http://sharaku.eorc.jaxa.jp/GSMaP/ |
TMPA-G | 0.25° | daily | Global 50°N–S | 1998–present | 10–15 days | [45] | ftp://trmmopen.nascom.nasa.gov/pub/ |
MSWEP | 0.1° | daily | Global 60°N–S | 1979–2016 | - | [49] | http://www.gloh2o.org/ |
Categorical Statistic | Scores | Perfect Score | |||
---|---|---|---|---|---|
CHIRPS | GSMaP-G | TMPA-G | MSWEP | ||
Probability of Detection (POD) | 0.69 | 0.98 | 0.79 | 0.98 | 1 |
Strike Ratio (SR) | 0.71 | 0.62 | 0.75 | 0.65 | 1 |
False alarm ratio (FAR) | 0.35 | 0.47 | 0.33 | 0.45 | 0 |
Threat score (TS) | 0.50 | 0.52 | 0.57 | 0.54 | 1 |
Rainfall Product | Errors (Units) | Bhairab Bazar Station | Amalshid Station | |
---|---|---|---|---|
Calibration (2009–2012) | Validation (2013–2016) | Additional Validation (2009–2016) | ||
Improved rainfall dataset (IMLC product) | Nash-Sutcliffe Efficiency (NSE) (-) | 0.93 | 0.93 | 0.75 |
CC (-) | 0.98 | 0.97 | 0.86 | |
RMSE (m3 s−1) | 994 | 939 | 537 | |
Volume Bias (VB) (%) | −10 | −8 | 8 | |
NMSE (-) | 0.04 | 0.04 | 0.22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khairul, I.M.; Mastrantonas, N.; Rasmy, M.; Koike, T.; Takeuchi, K. Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River Basin. Remote Sens. 2018, 10, 828. https://doi.org/10.3390/rs10060828
Khairul IM, Mastrantonas N, Rasmy M, Koike T, Takeuchi K. Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River Basin. Remote Sensing. 2018; 10(6):828. https://doi.org/10.3390/rs10060828
Chicago/Turabian StyleKhairul, Islam M., Nikolaos Mastrantonas, Mohamed Rasmy, Toshio Koike, and Kuniyoshi Takeuchi. 2018. "Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River Basin" Remote Sensing 10, no. 6: 828. https://doi.org/10.3390/rs10060828
APA StyleKhairul, I. M., Mastrantonas, N., Rasmy, M., Koike, T., & Takeuchi, K. (2018). Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River Basin. Remote Sensing, 10(6), 828. https://doi.org/10.3390/rs10060828