Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S.
<p>CONUS-scale partitioning fraction of <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> into its constituent components of transpiration (<span class="html-italic">T</span>), soil evaporation (<span class="html-italic">E</span>) and canopy evaporation (<span class="html-italic">I</span>) from seven land surface models and the multi-model average in the NLDAS2 configuration for a time period of January 2002 to December 2012. The numbers in that circle indicate the percentage of the total <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> for each of the three components. The sizes of the circles are proportional to the total CONUS-wide average ET for each model (which are shown in blue color, at the bottom of each circle). A scale for the size of the radius is shown in the figure.</p> "> Figure 2
<p>Mean ((<b>a</b>); W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>) and standard deviation ((<b>b</b>); W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>) and coefficient of variation ((<b>c</b>); -) of total <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Mean (<b>a</b>,<b>d</b>,<b>g</b>), standard deviation (<b>b</b>,<b>e</b>,<b>h</b>) and coefficient of variation (<b>c</b>,<b>f</b>,<b>i</b>) of the <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> partition fraction of <span class="html-italic">T</span>, <span class="html-italic">E</span> and <span class="html-italic">I</span> (unitless) across the seven LSMs.</p> "> Figure 4
<p>Contribution of uncertainty in <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> partitioning (<math display="inline"><semantics> <msub> <mi>C</mi> <mi>P</mi> </msub> </semantics></math>; left column) and the contribution of uncertainty in total <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> (<math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </msub> </semantics></math>; right column) to the total domain partitioning (in units of W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>).</p> "> Figure 5
<p>Maps of (<math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>P</mi> </msub> <mo>−</mo> <msub> <mi>C</mi> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math>; Panels (<b>a</b>–<b>c</b>)) in units of W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> for <span class="html-italic">T</span>, <span class="html-italic">E</span> and <span class="html-italic">I</span> that denote the relative impact of the <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> partitioning and total <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> in the total domain partitioning. Panel (<b>d</b>) shows the domain averaged values of the <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> components, <math display="inline"><semantics> <msub> <mi>C</mi> <mi>P</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </msub> </semantics></math> terms and their respective standard deviations.</p> "> Figure 6
<p>Mean RMSD (W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>) in <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math> compared to the FLUXNET MTE data.</p> "> Figure 7
<p>Maps of (<math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>P</mi> </msub> <mo>−</mo> <msub> <mi>C</mi> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math>; in units of W/m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> for <span class="html-italic">T</span> (left column) and <span class="html-italic">E</span> (right column) stratified seasonally.</p> ">
Abstract
:1. Introduction
2. Models
3. Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
ET | evapotranspiration |
T | transpiration |
E | soil evaporation |
I | canopy evaporation of intercepted water |
LSM | land surface model |
NLDAS | North American land data assimilation system |
VIC | variable infiltration capacity |
CLSM | catchment land surface model |
Noah-MP | Noah multi physics model |
SAC | Sacramento soil moisture accounting |
P–M | Penman–Monteith |
PET | potential evapotranspiration |
LAI | leaf area index |
GVF | green vegetation fraction |
AVHRR | advanced very high resolution radiometer |
CONUS | continental united states |
MTE | multi tree ensemble |
DJF | December January February |
MAM | March April May |
JJA | June July August |
SON | September October November |
CV | coefficient of variation |
RMSD | root mean square difference |
References
- Koster, R.D.; Sud, Y.C.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.; Davies, H.; et al. GLACE: The Global Land–Atmosphere Coupling Experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Gao, X.; Zhao, M.; Guo, Z.; Oki, T.; Hanasaki, N. GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface. Bull. Am. Meteorol. Soc. 2006, 87, 1381–1397. [Google Scholar] [CrossRef]
- Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.; Betts, A.K.; Dirmeyer, P.A.; et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. Atmos. 2011, 116, D02102. [Google Scholar] [CrossRef]
- Mueller, B.; Hirschi, M.; Jimenez, C.; Ciais, P.; Dirmeyer, P.A.; Dolman, A.J.; Fisher, J.B.; Jung, M.; Ludwig, F.; Maignan, F.; et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 3707–3720. [Google Scholar] [CrossRef]
- Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.; Mu, Q.; et al. The WACMOS-ET project—Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martens, B.; Dolman, A.J.; Fisher, J.B.; et al. The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Yu, B.; Zhang, Y.; Huang, Y.; Wang, G. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resour. Res. 2016, 52, 1160–1175. [Google Scholar] [CrossRef]
- Good, S.; Moore, G.; Miralles, D. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 2017, 1, 1883–1888. [Google Scholar] [CrossRef] [PubMed]
- Jasechko, S.; Sharp, Z.; Gibson, J.; Birks, S.; Yi, Y.; Fawcett, P. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189–190, 115–117. [Google Scholar] [CrossRef]
- Miralles, D.G.; Gash, J.H.; Holmes, T.R.H.; de Jeu, R.A.M.; Dolman, A.J. Global canopy interception from satellite observations. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction. J. Hydrometeorol. 2007, 8, 862–880. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiew, F.H.S.; Peña-Arancibia, J.; Sun, F.; Li, H.; Leuning, R. Global variation of transpiration and soil evaporation and the role of their major climate drivers. J. Geophys. Res. Atmos. 2017, 122, 6868–6881. [Google Scholar] [CrossRef]
- Wei, Z.; Yoshimura, K.; Wang, L.; Miralles, D.G.; Jasechko, S.; Lee, X. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 2017, 44, 2792–2801. [Google Scholar] [CrossRef]
- Zhang, Y.; Pena-Arancibia, J.; McVicar, T.; Chiew, F.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Teuling, A.J.; Loon, A.F.V.; Seneviratne, S.I.; Lehner, I.; Aubinet, M.; Heinesch, B.; Bernhofer, C.; Grünwald, T.; Prasse, H.; Spank, U. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 2013, 40, 2071–2075. [Google Scholar] [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System Project Phase 2 (NLDAS-2), Part 1: Comparison Analysis and Application of Model Products. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Ek, M.; Mitchell, K.; Yin, L.; Rogers, P.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Xia, Y.; Mitchell, K.; Ek, M.; Cosgrove, B.; Sheffield, J.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; Livneh, B.; et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System Project Phase-2 (NLDAS-2), Part 2: Validation of model-simulated streamflow. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Koster, R.; Suarez, M. Energy and Water Balance Calculations in the Mosaic LSM; Technical Report 104606; NASA: Washington, DC, USA, 1996.
- Koster, R.D.; Suarez, M.J. Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res. Atmos. 1992, 97, 2697–2715. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.; Wood, E.; Burges, S. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Burnash, R.; Ferral, R.; McGuire, R. A Generalized Streamflow Simulation System: Conceptual Models for Digital Computer; Technical Report; Joint Federal-State River Forecast Center: Sacramento, CA, USA, 1973. [Google Scholar]
- Kumar, S.V.; Wang, S.; Mocko, D.M.; Peters-Lidard, C.D.; Xia, Y. Similarity Assessment of Land Surface Model Outputs in the North American Land Data Assimilation System. Water Resour. Res. 2017, 53, 8941–8965. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, X.; Decker, M. Improving snow processes in the Noah land model. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Wei, H.; Xia, Y.; Mitchell, K.E.; Ek, M.B. Improvement of the Noah land surface model for warm season processes: Evaluation of water and energy flux simulation. Hydrol. Proc. 2013, 27, 297–303. [Google Scholar] [CrossRef]
- Koster, R.D.; Suarez, M.J.; Ducharne, A.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res. Atmos. 2000, 105, 24809–24822. [Google Scholar] [CrossRef]
- Ducharne, A.; Koster, R.; Suarez, M.; Stieglitz, M.; Kumar, P. A catchment-based approach to modeling land surface processes in a general circulation model: 2. Parameter estimation and model demonstration. J. Geophys. Res. 2000, 105, 24823–24838. [Google Scholar] [CrossRef]
- Gao, H.; Tang, O.; Shi, X.; Zhu, C.; Bohn, T.; Su, F.; Sheffield, J.; Pan, M.; Lettenmaier, D.; Wood, E. Water Budget Record from Variable Infiltration Capacity (VIC) Model Algorithm Theoretical Basis Document; Technical Report; Department of Civil Engineering, University of Washington: Washington, DC, USA, 2010. [Google Scholar]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Yang, Z.L.; Niu, G.Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 2011, 116, D12110. [Google Scholar] [CrossRef]
- Betts, A.K.; Chen, F.; Mitchell, K.E.; Janjić, Z.I. Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data. Mon. Weather Rev. 1997, 125, 2896–2916. [Google Scholar] [CrossRef]
- Jarvis, P.G. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lon. B Biol. Sci. 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A. A Model Predicting Stomatal Conductance and its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In Progress in Photosynthesis Research: Proceedings of the VIIth International Congress on Photosynthesis Providence, RI, USA, 10–15 August 1986; Biggins, J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 221–224. [Google Scholar]
- Shuttleworth, W. Handbook of Hydrology; McGraw Hill: New York, NY, USA, 1993; pp. 4.2–4.18. [Google Scholar]
- Sellers, P.J.; Mintz, Y.; Sud, Y.C.; Dalcher, A. A Simple Biosphere Model (SIB) for Use within General Circulation Models. J. Atmos. Sci. 1986, 43, 505–531. [Google Scholar] [CrossRef]
- Miller, D.; White, R. A Conterminous United States Multi-Layer Soil Characteristics Data Set for Regional Climate and Hydrology Modeling. Earth Interact. 1998. [Google Scholar] [CrossRef]
- Vinukollu, R.K.; Meynadier, R.; Sheffield, J.; Wood, E.F. Multi-model, multi-sensor estimates of global evapotranspiration: Climatology, uncertainties and trends. Hydrol. Proc. 2011, 25, 3993–4010. [Google Scholar] [CrossRef]
- Koster, R.; Salvucci, G.; Rigden, A.; Jung, M.; Collatz, G.; Schubert, S. The pattern across the continental United States of evapotranspiration variability associated with water availability. Front. Earth Sci. 2015, 3, 35. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Bondeau, A. Towards a global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences 2009, 6, 2001–2003. [Google Scholar]
- Cuntz, M.; Mai, J.; Samaniego, L.; Clark, M.; Wulfmeyer, V.; Branch, O.; Attinger, S.; Thober, S. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos. 2016, 121, 10676–10700. [Google Scholar] [CrossRef]
Model domain | Continental U.S. |
(25N to 53N and 125W to 67W) | |
Spatial resolution | 0.125 |
Forcing input | NLDAS-2 data |
Timestep (Noah (2.8, 3.6, MP), Mosaic, CLSM) | 15 min |
VIC (4.0.3, 4.1.2.l) | 1 h |
Landcover | AVHRR-based UMD land cover classification |
Soils | STATSGO soil texture |
LAI/GVF (except Noah-MP) | AVHRR-based climatology |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Holmes, T.; Mocko, D.M.; Wang, S.; Peters-Lidard, C. Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S. Remote Sens. 2018, 10, 751. https://doi.org/10.3390/rs10050751
Kumar S, Holmes T, Mocko DM, Wang S, Peters-Lidard C. Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S. Remote Sensing. 2018; 10(5):751. https://doi.org/10.3390/rs10050751
Chicago/Turabian StyleKumar, Sujay, Thomas Holmes, David M. Mocko, Shugong Wang, and Christa Peters-Lidard. 2018. "Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S." Remote Sensing 10, no. 5: 751. https://doi.org/10.3390/rs10050751
APA StyleKumar, S., Holmes, T., Mocko, D. M., Wang, S., & Peters-Lidard, C. (2018). Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S. Remote Sensing, 10(5), 751. https://doi.org/10.3390/rs10050751