Coastal Upwelling Front Detection off Central Chile (36.5–37°S) and Spatio-Temporal Variability of Frontal Characteristics
"> Figure 1
<p>Daily SST (colors, in °C) observations and geostrophic currents (arrows) derived from SSH observations for: (<b>a</b>) 13 December 2010; (<b>c</b>) 24 March 2007; and (<b>e</b>) 14 November 2016. Black box indicates the studied area and the main (secondary) upwelling front is marked with plain (dotted, respectively) magenta line. Magenta dot indicates Point Lavapie. Mean daily SST (in °C, averaged over the studied latitude range) with respect to the distance from the coast (black line) for: (<b>b</b>) 13 December 2010; (<b>d</b>) 24 March 2007; and (<b>f</b>) 14 November 2016. Dotted blue line represents the smoothed mean SST and magenta (red) circles mark the extremity (center, respectively) of the main frontal zone. Green circles mark the secondary frontal zone extremities and center.</p> "> Figure 2
<p>Scheme of the general front detection method.</p> "> Figure 3
<p>SST histograms of the region within 50 km from the front detected by the algorithm for: (<b>a</b>) 13 December 2010; (<b>b</b>) 23 March 2007; and (<b>c</b>) 14 November 2016. Red line represents <math display="inline"><semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics></math>.</p> "> Figure 4
<p>Mean daily SST (in °C) between 37°S and 36.5°S with respect to the distance from the coast and time during the upwelling months (November–June) for years: (<b>a</b>) 2003–2004; and (<b>b</b>) 2015–2016. Black line marks the center of the stronger gradient zone (“upwelling front”) identified by the algorithm.</p> "> Figure 5
<p>(<b>a</b>) Seasonal cycle of the short-wave downward heat flux (blue line, in W m<sup>−2</sup>) and the alongshore coastal wind stress intensity (green line, in N m<sup>−2</sup>). (<b>b</b>) Seasonal cycle of the mean SST (in °C) at 1 km from the coast (blue line) and at 300 km from the coast (red line). (<b>c</b>) Yearly means of the alongshore coastal wind stress intensity (in N m<sup>−2</sup>). Black lines represent the averages (horizontal lines) and standard deviations (vertical lines) over the 2003–2006 and the 2007–2016 periods.</p> "> Figure 6
<p>(<b>a</b>,<b>b</b>) Distance from the coast Probability Density Functions (PDF) of pixels with alongshore surface currents above 0.1 m·s<sup>−1</sup> in the 300 km nearshore. PDFs are computed using the 2003–2016 geostrophic currents daily maps during upwelling months with: (<b>a</b>) only one jet in the 300 km nearshore; and (<b>b</b>) two jets in the 300 km nearshore. Black (red) line represents the PDF for pixels associated with the nearshore (offshore, respectively) jet. (<b>c</b>) Numbers of daily maps (in %) with no jet in the 300 km nearshore (black line), with only one jet in the 300 km nearshore, located within (red line) and offshore from (magenta line) the 125 km nearshore, and with two jets in the 300 km nearshore (cyan line). Numbers of maps where normalized by the number of analyzed maps during the selected month.</p> "> Figure 7
<p>Number of daily SST maps presenting an upwelling front compared to the total number of maps (in %): (<b>a</b>) seasonal cycle (climatology over the 2003–2016 period, error bars represent the standard deviations); and (<b>b</b>) yearly values (red line). Blue lines represent the averages (horizontal lines) and standard deviations (vertical lines) over the 2003–2006 and the 2007–2016 periods.</p> "> Figure 8
<p>Climatology of mean front characteristics using daily SST maps during the 2003–2016 upwelling months: (<b>a</b>) SST difference (in °C) across the front (<math display="inline"><semantics> <mrow> <mi>D</mi> <mi>T</mi> </mrow> </semantics></math>, plain blue line) and SST difference between the coast and 300 km offshore (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>T</mi> <mrow> <mi>n</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>s</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math>, dotted green line); (<b>b</b>) front width (<math display="inline"><semantics> <mrow> <mi>d</mi> <mi>l</mi> </mrow> </semantics></math>, in km); and (<b>c</b>) cross-front SST gradient (<math display="inline"><semantics> <mfrac> <mrow> <mi>D</mi> <mi>T</mi> </mrow> <mrow> <mi>d</mi> <mi>l</mi> </mrow> </mfrac> </semantics></math>, °C km<sup>−1</sup>). Error bars represent the standard deviations.</p> "> Figure 9
<p>Mean front characteristics (yearly averages for the fronts detected on daily SST maps, blue line). Black lines represent the averages (horizontal lines) and standard deviations (vertical lines) over the 2003–2006 and the 2007–2016 periods: (<b>a</b>) SST difference (in °C) between the coast and 300 km offshore; (<b>b</b>) SST difference (in °C) across the front; (<b>c</b>) Front width (in km); and (<b>d</b>) cross-front SST gradient (in °C km<sup>−1</sup>).</p> "> Figure 10
<p>Seasonal cycle of the distance between the coast and the upwelling front (in km). Error bars represent the standard deviations.</p> "> Figure 11
<p>(<b>a</b>) Histograms of <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>X</mi> </mrow> </semantics></math> computed using all daily maps with the same jet configuration. <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>X</mi> </mrow> </semantics></math> is normalized by the total number of maps with the considered jet configuration. Black line corresponds to the maps with no jet in the 300 km nearshore. Red (magenta) line corresponds to the maps with only one jet in the 300 km nearshore, located within (offshore from, respectively) 125 km from the coast. Cyan line corresponds to the maps with two jets in the 300 km nearshore. (<b>b</b>) Seasonal cycle of the mean front position. Error bars represent the standard deviations.</p> "> Figure 12
<p>Same as <a href="#remotesensing-10-00690-f001" class="html-fig">Figure 1</a> for: 2 March 2005 (<b>a</b>,<b>b</b>); 10 March 2005 (<b>c</b>,<b>d</b>); 11 January 2005 (<b>e</b>,<b>f</b>); 10 March 2009 (<b>g</b>,<b>h</b>); and 10 January 2004 (<b>i</b>,<b>j</b>).</p> "> Figure 13
<p>(<b>a</b>,<b>b</b>) Same as <a href="#remotesensing-10-00690-f001" class="html-fig">Figure 1</a>a,b; and (<b>c</b>) same as <a href="#remotesensing-10-00690-f003" class="html-fig">Figure 3</a>, for 15 January 2007 and the 38°S–37.5°S zone as studied area.</p> "> Figure 14
<p>(<b>a</b>) Mean satellite SST (colors, in °C) during 4–6 February 2014. Black and magenta crosses mark the PHYTO-FRONT sampling stations positions. Magenta line represents the front detected on the mean SST map for the 36.875°S–36.375°S zone. (<b>b</b>) Mean satellite SST at 36.5°S during 5–6 February 2014 period (blue line). Black and magenta crosses indicate the 3.5 m depth in situ temperature along the 36.5°S transect. Red dot marks the value of <math display="inline"><semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics></math> computed using the 05–06 February 2014 SST included in the 0.5° latitude-large zone around 36.5°S. (<b>c</b>) Same as (<b>b</b>) but for latitude 36.75°S and 5–6 February2014 period. Magenta crosses in (<b>a</b>–<b>c</b>) indicate the stations delimiting the front according to Morales et al. [<a href="#B14-remotesensing-10-00690" class="html-bibr">14</a>].</p> "> Figure A1
<p>Scheme of the frontal zone identification from the smoothed SST profile.</p> "> Figure A2
<p>(<b>a</b>,<b>b</b>,<b>d</b>,<b>e</b>) Same as <a href="#remotesensing-10-00690-f001" class="html-fig">Figure 1</a>a,b for: (<b>a</b>,<b>b</b>) 19 May 2004; and (<b>d</b>,<b>e</b>) 5 May 2005. (<b>c</b>–<b>f</b>) <math display="inline"><semantics> <mrow> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> </mrow> </semantics></math> (in °C km<sup>−1</sup>) with respect to the distance from the coast (blue line). Black (Magenta) points mark the frontal zone extremities <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math> before (after, respectively) verifying whether the frontal zone should be widened and assessing the minimum peak symmetry. (<b>c</b>) Cyan lines correspond to the averaged values of <math display="inline"><semantics> <mrow> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> </mrow> </semantics></math> over <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>−</mo> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mfenced> </semantics></math> and over <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mfenced> </semantics></math>. These values being lower than <math display="inline"><semantics> <mrow> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>g</mi> <mi>r</mi> <mi>a</mi> <msub> <mi>d</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math> (red line), the frontal zone is widened using the <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </semantics></math>-smoothed <math display="inline"><semantics> <mrow> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> </mrow> </semantics></math> (dotted black line). (<b>f</b>) Note that the <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math> is unchanged before and after the verification. Cyan lines correspond to the averaged values of <math display="inline"><semantics> <mrow> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> </mrow> </semantics></math> over <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </mfenced> </semantics></math> and over <math display="inline"><semantics> <mfenced separators="" open="[" close="]"> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mfenced> </semantics></math>. The difference between these two values being larger than <math display="inline"><semantics> <mrow> <mfrac> <mn>40</mn> <mn>100</mn> </mfrac> <mrow> <mo>(</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <msub> <mi>d</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>−</mo> <mfrac> <mrow> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </semantics></math>, the frontal zone is reduced (offshore) using the <math display="inline"><semantics> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mn>2</mn> </mfrac> </semantics></math>-smoothed <math display="inline"><semantics> <mrow> <mi>g</mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> </mrow> </semantics></math> (dotted black line).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observational Datasets
2.2. Upwelling Front Detection Method
2.2.1. General Methodology
2.2.2. Front Detection
2.2.3. Determination of the Front Characteristics
2.3. Statistical Validation of the Detected Fronts
3. Results
3.1. Atmospheric and Oceanic Forcing
3.1.1. Local Atmospheric Forcing and Its Impact on the SST
3.1.2. Coastal Jet Circulation
3.2. The Front Characteristics Variability
3.2.1. Probability of Detecting a Front
3.2.2. Front Intensity
3.2.3. Front Position
4. Discussion
4.1. Strength and Limitations of the Front Detection Method
4.1.1. Strength
4.1.2. Limitations
4.2. Comparison of the Front Detection Method with Previous Works
4.2.1. Consistency with the Front Definition by Cayula and Cornillon (1992)
4.2.2. Consistency with In Situ Measurement
4.3. Front Characteristics Variability off Central Chile
4.3.1. Errors and Uncertainties
4.3.2. Jet Configuration and Front Position
4.3.3. Reinforcement of the Upwelling Front in EBUS
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
EBUS | Eastern Boundary Upwelling System |
CTZ | Coastal Transition Zone |
SST | Sea Surface Temperature |
HCS | Humboldt Current System |
ENSO | El Niño Southern Oscillation |
SSH | Sea Surface Height |
Probability Density Function | |
MUR | Multi-scale Ultra-high Resolution |
NOCS | National Oceanography Center Southampton |
ONI | Oceanic Niño Index |
Appendix A. Strong Cross-Shore Gradient Zone “Frontal Zone”) Identification
References
- Lutjeharms, J.R.E.; Stockton, P.L. Kinematics of the upwelling front off southern Africa. S. Afr. J. Mar. Sci. 1987, 5, 35–49. [Google Scholar] [CrossRef]
- Austin, J.A.; Barth, J.A. Variation in the position of the upwelling front on the Oregon shelf. J. Geophys. Res. 2002, 107, 3180. [Google Scholar] [CrossRef]
- Peliz, A.; Rosa, T.L.; Santos, A.P.; Pissarra, J.L. Fronts, jets, and counter-flows in the Western Iberian upwelling system. J. Mar. Syst. 2002, 35, 61–77. [Google Scholar] [CrossRef]
- Durski, S.M.; Allen, J.S. Finite-amplitude evolution of instabilities associated with the coastal upwelling front. J. Phys. Oceanogr. 2005, 35, 1606–1628. [Google Scholar] [CrossRef]
- Strub, P.; James, C. Altimeter-derived variability of surface velocities in the California Current System: 2. Seasonal circulation and eddy statistics. Deep Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 831–870. [Google Scholar] [CrossRef]
- Morales, C.E.; Gonzalez, H.E.; Hormazabal, S.E.; Yuras, G.; Letelier, J.; Castro, L.R. The distribution of chlorophyll-a and dominant planktonic components in the coastal transition zone off Concepcion, central Chile, during different oceanographic conditions. Progr. Oceanogr. 2007, 75, 452–469. [Google Scholar] [CrossRef]
- Letelier, J.; Pizarro, O.; Nuñez, S. Seasonal variability of coastal upwelling and the upwelling front off central Chile. J. Geophys. Res. 2009, 114, C12009. [Google Scholar] [CrossRef]
- Brink, K. Upwelling fronts: Implications and unknowns. S. Afr. J. Mar. Sci. 1987, 5, 3–9. [Google Scholar] [CrossRef]
- Morales, C.E.; Hormazabal, S.E.; Correa-Ramirez, O.; Pizarro, O.; Silva, N.; Fernandez, C.; Anabalon, V.; Torreblanca, M. Mesoscale variability and nutrient-phytoplankton distributions off central-southern Chile during the upwelling season: The influence of mesoscale eddies. Progr. Oceanogr. 2012, 104, 17–29. [Google Scholar] [CrossRef]
- Menschel, E.; Gonzalez, H.E.; Giesecke, R. Coastal-oceanic distribution gradient of coccolithophores and their role in the carbonate flux of the upwelling system off Concepcion, Chile (36∘S). J. Plankton Res. 2016, 38, 798–817. [Google Scholar] [CrossRef]
- Tiedemann, M.; Brehmer, P. Larval fish assemblages across an upwelling front: Indication for active and passive retention. Estuar. Coast. Shelf Sci. 2017, 187, 118–133. [Google Scholar] [CrossRef]
- Demarcq, H.; Barlow, R.G.; Shillington, F.A. Climatology and variability of sea surface temperature and surface chlorophyll in the Benguela and Agulhas ecosystems as observed by satellite imagery. Afr. J. Mar. Sci. 2003, 25, 363–372. [Google Scholar] [CrossRef]
- Sobarzo, M.; Bravo, L.; Donoso, D.; Garcés-Vargas, J.; Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Progr. Oceanogr. 2007, 75, 363–382. [Google Scholar] [CrossRef]
- Morales, C.E.; Anabalon, V.; Bento, J.P.; Hormazabal, S.; Cornejo, M.; Correa-Ramirez, M.A.; Silva, N. Front-eddy influence on water column properties, phytoplankton community structure, and cross-shelf exchange of diatom taxa in the shelf-slope area off Concepcion (36–37∘S). J. Geophys. Res. Ocean. 2017, 122, 8944–8965. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Cayula, J.F.; Cornillon, P. Edge detection algorithm for SST images. J. Atmos. Ocean. Technol. 1992, 9, 67–80. [Google Scholar] [CrossRef]
- Pozo Vázquez, D.; Atae-Allah, C.; Luque Escamilla, P.L. Entropic approach to edge-detection for SST images. J. Atmos. Ocean. Technol. 1999, 16, 970–979. [Google Scholar] [CrossRef]
- Torres, J.A.; Guindos, F.; Peralta, M.; Cantón, M. Competitive neural-net-based system for the automatic detection of oceanic mesoscalar structures on AVHRR scenes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 845–852. [Google Scholar] [CrossRef]
- Castelao, R.M.; Mavor, T.P.; Barth, J.A.; Breaker, L.C. Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res. 2006, 111, C09026. [Google Scholar] [CrossRef]
- Belkin, I.; O’Reilly, J. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 2009, 78, 319–326. [Google Scholar] [CrossRef]
- Nieto, K.; Demarcq, H.; McClatchie, S. Mesoscale frontal structures in the Canary Upwelling System: New front and filament detection algorithms applied to spatial and temporal patters. Remote Sens. Environ. 2012, 123, 339–346. [Google Scholar] [CrossRef]
- Cayula, J.F.; Cornillon, P. Multi-image edge detection for SST images. J. Atmos. Ocean. Technol. 1995, 12, 821–829. [Google Scholar] [CrossRef]
- Diehl, S.F.; Budd, J.W.; Ullman, D.; Cayula, J.F. Geographic window sizes applied to remote sensing sea surface temperature front detection. J. Atmos. Ocean. Technol. 2002, 19, 1105–1113. [Google Scholar] [CrossRef]
- Hormazabal, S.; Shaffer, G.; Letelier, J.; Ulloa, O. Local and remote forcing of Sea Surface Temperature in the coastal upwelling system off Chile. J. Geophys. Res. Ocean. 2001, 106, 16657–16671. [Google Scholar] [CrossRef]
- Sobarzo, M.; Bravo, L.; Donoso, D.; Garces-Vargas, J.; Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 2007, 75, 363–383. [Google Scholar] [CrossRef]
- Renault, L.; Dewitte, B.; Falvey, M.; Garreaud, R.; Echevin, V.; Bonjean, F. Impact of atmospheric coastal jet off central Chile on sea surface temperature from satellite observations (2000–2007). J. Geophys. Res. 2009, 114, C08006. [Google Scholar] [CrossRef]
- Aguirre, C.; Garreaud, R.D.; Rutllant, J.A. Surface ocean response to synoptic-scale variability in wind stress and heat fluxes off south-central Chile. Dyn. Atmos. Ocean. 2013, 65, 64–85. [Google Scholar] [CrossRef]
- Leth, O.; Middleton, J.F. A numerical study of the upwelling circulation off central Chile: Effects of remote oceanic forcing. J. Geophys. Res. 2006, 111, C12003. [Google Scholar] [CrossRef]
- Rutllant, J.A.; Masotti, I.; Calderón, J.; Vega, S.A. A comparison of spring coastal upwelling off central Chile at the extremes of the 1996–1997 ENSO cycle. Cont. Shelf Res. 2004, 24, 773–787. [Google Scholar] [CrossRef]
- Colas, F.; Capet, X.; McWilliams, J.; Shchepetkin, A. 1997–1998 El Niño off Peru: A numerical study. Prog. Oceanogr. 2008, 79, 138–155. [Google Scholar] [CrossRef]
- Aguirre, C.; Pizarro, O.; Strub, P.; Garreaud, R.; Barth, J. Seasonal dynamics of the near-surface alongshore flow off Central Chile. J. Geophys. Res. 2012, 117, C01006. [Google Scholar] [CrossRef]
- Leth, O.; Middleton, J.F. A mechanism for enhanced upwelling off central Chile: Eddy advection. J. Geophys. Res. 2004, 109, C1202. [Google Scholar] [CrossRef]
- Mesias, J.M.; Matano, R.P.; Strub, P.T. Dynamical analysis of the upwelling circulation off central Chile. J. Geophys. Res. 2003, 108, 3085. [Google Scholar] [CrossRef]
- Wang, Y.; Castelao, R.M.; Yuan, Y. Seasonal variability of alongshore winds and sea surface temperature fronts in Eastern Boundary Current Systems. J. Geophys. Res. Ocean. 2015, 120, 2385–2400. [Google Scholar] [CrossRef]
- SERNAPESCA. Anuario Estadístico de Pesca 2006; Ministerio de Economia, Fomento y Turismo: Santiago, Chile, 2006. [Google Scholar]
- Physical Oceanography Distributed Active Archive Center. JPL MUR MEaSUREs Project. 2015. GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1). Version 4.1.; Physical Oceanography Distributed Active Archive Center: Pasadena, CA, USA, 2015. [Google Scholar] [CrossRef]
- Pujol, M.I.; Faugère, Y.; Taburet, G.; Dupuy, S.; Pelloquin, C.; Ablain, M.; Picot, N. DUACS DT2014: The new multi-mission altimeter data set reprocessed over 20 years. Ocean Sci. 2016, 12, 1067–1090. [Google Scholar] [CrossRef]
- Bentamy, A.; Grodsky, S.; Carton, J.; Croizé-Fillon, D.; Chapron, B. Matching ASCAT and QuikSCAT winds. J. Geophys. Res. 2012, 117, C02011. [Google Scholar] [CrossRef]
- Desbiolles, F.; Bentamy, A.; Blanke, B.; Roy, C.; Mestas-Nunez, A.; Grodsky, S.; Herbette, S.; Cambon, G.; Maes, C. Two decades [1992–2012] of surface wind analyses based on satellite scatterometer observations. J. Mar. Syst. 2017, 168, 38–56. [Google Scholar] [CrossRef]
- National Oceanography Centre, Southampton, UK. NOCS Surface Flux Dataset v2.0. 2008. Available online: http://rda.ucar.edu/datasets/ds260.3/ (accessed on 24 January 2018).
- Berry, D.I.; Kent, E.C. Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol. 2011, 31, 987–1001. [Google Scholar] [CrossRef]
- NOAA. Cold and Warm Episodes by Season. 2018. Available online: http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 08 April 2018).
- Schneider, W.; Donoso, D.; Garcés-Vargas, J.; Escribano, R. Water-column cooling and sea surface salinity increase in the upwelling region off Central-South Chile driven by a poleward displacement of the South Pacific High. Prog. Oceanogr. 2017, 151, 38–48. [Google Scholar] [CrossRef]
- Morales, C.E.; Hormazabal, S.; Andrade, I.; Correa-Ramirez, M.A. Time-space variability of chlorophyll-a and associated physical variables within the region off central-southern Chile. Remote Sens. 2013, 5, 5550–5571. [Google Scholar] [CrossRef]
- Castelao, R.M.; Barth, J.A. The role of wind stress curl in jet separation at a cape. J. Phys. Oceanogr. 2007, 37, 2652–2671. [Google Scholar] [CrossRef]
- Kelly, K.A.; Caruso, M.J.; Austin, J.A. Wind-forced variations in sea surface height in the northeast Pacific ocean. J. Phys. Oceanogr. 1993, 23, 2392–2411. [Google Scholar] [CrossRef]
- Lorenzo, E.D. Seasonal dynamics of the surface circulation in the Southern California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 2003, 50, 2371–2388. [Google Scholar] [CrossRef]
- Barth, J.A.; Pierce, S.D.; Cowles, T.J. Mesoscale structure and its seasonal evolution in the northern California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 5–28. [Google Scholar] [CrossRef]
- Lynn, R.J.; Bograd, S.J.; Chereskin, T.K.; Huyer, A. Seasonal renewal of the California Current: The spring transition off California. J. Geophys. Res. Ocean. 2003, 108, 3279. [Google Scholar] [CrossRef]
- Belmadani, A.; Echevin, V.; Codron, F.; Takahashi, K.; Junquas, C. What dynamics drive future winds scenarios off Peru and Chile? Clim. Dyn. 2014, 43, 1893–1914. [Google Scholar] [CrossRef]
- Bakun, A.; Weeks, S.J. The marine ecosystem off Peru: What are the secrets of its fishery productivity and what might its future hold? Prog. Oceanogr. 2008, 79, 290–299. [Google Scholar] [CrossRef]
- Goubanova, K.; Echevin, V.; Dewitte, B.; Codron, F.; Takahashi, K.; Terray, P.; Vrac, M. Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: Diagnosing the impact of climate change from the IPSL-CM4 model. Clim. Dyn. 2011, 36, 1365–1378. [Google Scholar] [CrossRef]
- Sydeman, W.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Marchesiello, P.; McWilliams, J.C.; Shchepetkin, A. Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr. 2003, 33, 753–783. [Google Scholar] [CrossRef]
- Belmadani, A.; Echevin, V.; Dewitte, B.; Colas, F. Equatorially forced intraseasonal propagations along the Peru-Chile coast and their relation with the nearshore eddy activity in 1992–2000: A modeling study. J. Geophys. Res. 2012, 117, C04025. [Google Scholar] [CrossRef]
- Pelegrí, J.; Arístegui, J.; Cana, L.; González-Dávila, M.; Hernández-Guerra, A.; Hernández-León, S.; Marrero-Díaz, A.; Montero, M.; Sangrà, P.; Santana-Casiano, M. Coupling between the open ocean and the coastal upwelling region off northwest Africa: Water recirculation and offshore pumping of organic matter. J. Mar. Syst. 2005, 54, 3–37. [Google Scholar] [CrossRef]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A.F. Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr. 2008, 38, 44–64. [Google Scholar] [CrossRef]
- Hösen, E.; Möller, J.; Jochumsen, K.; Quadfasel, D. Scales and properties of cold filaments in the Benguela upwelling system off Lüderitz. J. Geophys. Res. Ocean. 2016, 121, 1896–1913. [Google Scholar] [CrossRef]
- Colas, F.; McWilliams, J.C.; Capet, X.; Kurian, J. Heat balance and eddies in the Peru-Chile current system. Clim. Dyn. 2012, 39, 509–529. [Google Scholar] [CrossRef]
- Castelao, R.M.; Wang, Y. Wind-driven variability in sea surface temperature front distribution in the California Current System. J. Geophys. Res. Ocean. 2014, 119, 1861–1875. [Google Scholar] [CrossRef]
- Vazquez-Cuervo, J.; Torres, H.S.; Menemenlis, D.; Chin, T.; Armstrong, E.M. Relationship between SST gradients and upwelling off Peru and Chile: Model/satellite data analysis. Int. J. Remote Sens. 2017, 38, 6599–6622. [Google Scholar] [CrossRef]
- Kahru, M.; Di Lorenzo, E.; Manzano-Sarabia, M.; Mitchell, B. Spatial and temporal statistics of Sea Surface Temperature and chlorophyll fronts in the California Current. J. Plankton Res. 2012, 34, 749–760. [Google Scholar] [CrossRef]
- Capet, X.; McWilliams, J.C.; Molemaker, M.J.; Shchepetkin, A.F. Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 2008, 38, 29–43. [Google Scholar] [CrossRef]
- Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Ann. Rev. Mar. Sci. 2016, 8, 161–184. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, J.C. Submesoscale currents in the ocean. Proc. R. Soc. A 2016, 472, 20160117. [Google Scholar] [CrossRef] [PubMed]
- D’Asaro, E.; Lee, C.; Rainville, L.; Harcourt, R.; Thomas, L. Enhanced turbulence and energy dissipation at ocean fronts. Science 2011, 15, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Johnston, T.; Rudnick, D.L.; Pallas-Sanz, E. Elevated mixing at a front. J. Geophys. Res. 2011, 116, C11033. [Google Scholar] [CrossRef]
- Merlivat, L.; Davila, M.G.; Caniaux, G.; Boutin, J.; Reverdin, G. Mesoscale and diel to monthly variability of CO2 and carbon fluxes at the ocean surface in the northeastern Atlantic. J. Geophys. Res. 2009, 114, C03010. [Google Scholar] [CrossRef]
- Ferrari, R. A frontal challenge for climate models. Science 2011, 332, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Köhn, E.E.; Thomsen, S.; Arévalo-Martínez, D.L.; Kanzow, T. Submesoscale CO2 variability across an upwelling front off Peru. Ocean Sci. 2017, 13, 1017–1033. [Google Scholar] [CrossRef]
- Lévy, M.; Franks, P.; Martin, A.P.; Rivière, P. Bringing physics to life at the submesoscale. J. Geophys. Res. 2012, 39, L14602. [Google Scholar] [CrossRef]
- Stukel, M.R.; Aluwihare, L.I.; Barbeau, K.A.; Chekalyuk, A.M.; Goericke, R.; Miller, A.J.; Ohman, M.D.; Ruacho, A.; Song, H.; Stephens, B.M.; et al. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. PNAS 2017, 114, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, S.; Kanzow, T.; Colas, F.; Echevin, V.; Krahmann, G.; Engel, A. Do submesoscale frontal processes ventilate the oxygen minimum zone off Peru? Geophys. Res. Lett. 2016, 43, 8133–8142. [Google Scholar] [CrossRef]
- Li, Q.P.; Franks, P.J.S.; Ohman, M.; Landry, M.R. Enhanced nitrate fluxes and biological processes at a frontal zone in the Southern California Current System. J. Plankton Res. 2012, 34, 790–801. [Google Scholar] [CrossRef]
- Taylor, A.G.; Goericke, R.; Landry, M.R.; Selph, K.E.; Wick, D.A.; Roadman, M.J. Sharp gradients in phytoplankton community structure across a frontal zone in the California Current Ecosystem. J. Plankton Res. 2012, 34, 778–789. [Google Scholar] [CrossRef]
- Ohman, M.D.; Powell, J.R.; Picheral, M.; Jensen, D. Mesozooplankton and particulate matter responses to a deep-water frontal system in the southern California Current System. J. Plankton Res. 2012, 34, 815–827. [Google Scholar] [CrossRef]
- Krause, J.W.; Brzezinski, M.A.; Goericke, R.; Landry, M.R.; Ohman, M.D.; Stukel, M.R.; Taylor, A.G. Variability in diatom contributions to biomass, organic matter production and export across a frontal gradient in the California Current Ecosystem. J. Geophys. Res. Ocean. 2015, 120, 1032–1047. [Google Scholar] [CrossRef]
- Böttjer, D.; Morales, C.E. Nanoplanktonic assemblages in the upwelling area off Concepción (∼36∘S), central Chile: Abundance, biomass, and grazing potential during the annual cycle. Progr. Oceanogr. 2007, 75, 415–434. [Google Scholar] [CrossRef]
- Castro, L.R.; Troncoso, V.A.; Figueroa, D.R. Fine-scale vertical distribution of coastal and offshore copepods in the Golfo de Arauco, central Chile, during the upwelling season. Prog. Oceanogr. 2007, 75, 486–500. [Google Scholar] [CrossRef]
10 January 2004 | 0.9 | 5.1 |
19 May 2004 | 0.8 | 4.4 |
02 March 2005 | 0.9 | 5.1 |
10 March 2005 | 0.9 | 5.1 |
05 April 2005 | 0.8 | 4.6 |
11 January 2005 | 0.8 | 4.8 |
15 January 2007 | 0.7 | 3.5 |
23 March 2007 | 0.8 | 4.0 |
10 March 2009 | 0.9 | 5.8 |
13 December 2010 | 0.9 | 5.0 |
14 November 2016 | 0.9 | 6.1 |
R(,) | R(,) | R(,) | |
---|---|---|---|
monthly mean | 0.86 | 0.78 | 0.77 |
yearly mean | 0.88 | 0.89 | 0.64 |
climatological seasonal cycle | 0.93 | 0.93 | 0.97 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oerder, V.; Bento, J.P.; Morales, C.E.; Hormazabal, S.; Pizarro, O. Coastal Upwelling Front Detection off Central Chile (36.5–37°S) and Spatio-Temporal Variability of Frontal Characteristics. Remote Sens. 2018, 10, 690. https://doi.org/10.3390/rs10050690
Oerder V, Bento JP, Morales CE, Hormazabal S, Pizarro O. Coastal Upwelling Front Detection off Central Chile (36.5–37°S) and Spatio-Temporal Variability of Frontal Characteristics. Remote Sensing. 2018; 10(5):690. https://doi.org/10.3390/rs10050690
Chicago/Turabian StyleOerder, Vera, Joaquim P. Bento, Carmen E. Morales, Samuel Hormazabal, and Oscar Pizarro. 2018. "Coastal Upwelling Front Detection off Central Chile (36.5–37°S) and Spatio-Temporal Variability of Frontal Characteristics" Remote Sensing 10, no. 5: 690. https://doi.org/10.3390/rs10050690
APA StyleOerder, V., Bento, J. P., Morales, C. E., Hormazabal, S., & Pizarro, O. (2018). Coastal Upwelling Front Detection off Central Chile (36.5–37°S) and Spatio-Temporal Variability of Frontal Characteristics. Remote Sensing, 10(5), 690. https://doi.org/10.3390/rs10050690