Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China
"> Figure 1
<p>(<b>a</b>) Simplified tectonic index map showing the position of Beishan orogenic belt, modified after Jolivet [<a href="#B29-remotesensing-10-00638" class="html-bibr">29</a>]. BH, Bayan Har; HK, Hindu Kush; Kh, Kohistan; Ku, Kudi; NQi, North Qiangtang; P, Pamir; Qi, Qilian Shan; SG, Songpan–Garze; SQi, South Qiangtang. (<b>b</b>) simplified geological map of the western Beishan orogenic belt, modified after Davis et al. [<a href="#B30-remotesensing-10-00638" class="html-bibr">30</a>]; and (<b>c</b>) geological map of the Shibanjing ophiolite.</p> "> Figure 2
<p>Flowchart of the lithological classification process.</p> "> Figure 3
<p>Lithological classification of the S2A_DEM dataset using machine learning methods. (<b>a</b>) <span class="html-italic">k</span>-nearest neighbor (<span class="html-italic">k</span>-NN); (<b>b</b>) random forest classifier (RFC); (<b>c</b>) artificial neural network (ANN); (<b>d</b>) support vector machine (SVM); (<b>e</b>) maximum likelihood classification (MLC).</p> "> Figure 3 Cont.
<p>Lithological classification of the S2A_DEM dataset using machine learning methods. (<b>a</b>) <span class="html-italic">k</span>-nearest neighbor (<span class="html-italic">k</span>-NN); (<b>b</b>) random forest classifier (RFC); (<b>c</b>) artificial neural network (ANN); (<b>d</b>) support vector machine (SVM); (<b>e</b>) maximum likelihood classification (MLC).</p> "> Figure 4
<p>(<b>a</b>) The lithological classification accuracies of each class; (<b>b</b>) overall accuracies; and (<b>c</b>) Kappa coefficient of the S2A_DEM dataset using different machine learning methods.</p> "> Figure 4 Cont.
<p>(<b>a</b>) The lithological classification accuracies of each class; (<b>b</b>) overall accuracies; and (<b>c</b>) Kappa coefficient of the S2A_DEM dataset using different machine learning methods.</p> "> Figure 5
<p>Lithological classification of different datasets using the MLC method. (<b>a</b>) S2A, (<b>b</b>) partial magnification of (<b>a</b>), (<b>c</b>) S2A_DEM, and (<b>d</b>) partial magnification of (<b>c</b>).</p> "> Figure 5 Cont.
<p>Lithological classification of different datasets using the MLC method. (<b>a</b>) S2A, (<b>b</b>) partial magnification of (<b>a</b>), (<b>c</b>) S2A_DEM, and (<b>d</b>) partial magnification of (<b>c</b>).</p> "> Figure 6
<p>The lithological classification accuracies of the S2A and S2A_DEM datasets using the MLC method.</p> "> Figure 7
<p>The overall accuracies and Kappa coefficients of datasets using the MLC method.</p> "> Figure 8
<p>MLC-generated lithological classifications of two different datasets. (<b>a</b>) OLI_DEM; and (<b>b</b>) AST_DEM.</p> "> Figure 9
<p>The classification accuracies of datasets of OLI + DEM and AST + DEM using the MLC method.</p> "> Figure 10
<p>Lithological classification of three different datasets using MLC. (<b>a</b>) The classification of OLI_AST_DEM; (<b>b</b>) the classification of S2A_AST_DEM; (<b>c</b>) partial magnification of quartz diorite in (<b>a</b>); (<b>d</b>) partial magnification of quartz diorite in (<b>b</b>); (<b>e</b>) partial magnification of quartz diorite in geological map; (<b>f</b>) partial magnification of basalt in (<b>a</b>); (<b>g</b>) partial magnification of basalt in (<b>b</b>); (<b>h</b>) partial magnification of basalt in geological map.</p> "> Figure 11
<p>The classification accuracies of the OLI + AST + DEM and S2A + AST + DEM datasets using the MLC method.</p> "> Figure 12
<p>The topographic map of the Shibanjing ophiolite obtained from DEM.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Datasets and Data-Preprocessing
2.2.1. Data-Preprocessing
2.2.2. Lithological Mapping
2.2.3. Training and Testing Samples
2.3. Machine Learning Methods
2.3.1. Artificial Neural Network
2.3.2. k-Nearest Neighbors
2.3.3. Maximum Likelihood Classifier
2.3.4. Support Vector Machine
2.3.5. Random Forest Classifier
3. Results
3.1. Lithological Discrimination Using Machine Learning Methods
3.2. Lithological Discrimination Using S2A and S2A_DEM Datasets
3.3. Lithological Discrimination Using OLI_DEM, AST_DEM and S2A_DEM Datasets
3.4. Lithological Discrimination Using OLI_AST_DEM and S2A_AST_DEM Datasets
4. Discussion
5. Conclusions
- (1)
- The MLC and SVM machine learning methods are equally applicable for lithological classification in the Shibanjing ophiolite complex and better than the techniques of k-NN, ANN, and RFC using Sentinel-2A data.
- (2)
- Multispectral Sentinel-2A data have greater potential for lithological classification than ASTER and OLI in this research, and the DEM data also play a significant role in lithological mapping.
- (3)
- OLI could be substituted by Sentinel-2A, which when combined with ASTER, exhibits better performance in lithological classification in semi-arid and arid regions, such as the Shibanjing ophiolite complex.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, X.; Li, P. Lithological mapping from hyperspectral data by improved use of spectral angle mapper. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 95–109. [Google Scholar] [CrossRef]
- Masoumi, F.; Eslamkish, T.; Abkar, A.A.; Honarmand, M.; Harris, J.R. Integration of spectral, thermal, and textural features of ASTER data using random forests classification for lithological mapping. J. Afr. Earth Sci. 2017, 129, 445–457. [Google Scholar] [CrossRef]
- Gad, S.; Kusky, T. Lithological mapping in the eastern desert of egypt, the barramiya area, using Landsat Thematic Mapper (TM). J. Afr. Earth Sci. 2006, 44, 196–202. [Google Scholar] [CrossRef]
- Gad, S.; Kusky, T. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic wadi kid area, Sinai, Egypt. Gondwana Res. 2007, 11, 326–335. [Google Scholar] [CrossRef]
- Mars, J.L. Hydrothermal alteration maps of the central and southern basin and range province of the United States compiled from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Cancer Genet. 2013, 208, 364. [Google Scholar]
- Asl, R.A.; Afzal, P.; Adib, A.; Yasrebi, A.B. Application of multifractal modeling for the identification of alteration zones and major faults based on ETM+ multispectral data. Arabian J. Geosci. 2015, 8, 2997–3006. [Google Scholar] [CrossRef]
- Pournamdari, M.; Hashim, M.; Pour, A.B. Application of ASTER and Landsat TM data for geological mapping of Esfandagheh ophiolite complex, southern Iran. Resour. Geol. 2014, 64, 233–246. [Google Scholar] [CrossRef]
- Masoumi, F.; Eslamkish, T.; Honarmand, M.; Abkar, A.A. A comparative study of Landsat-7 and Landsat-8 data using image processing methods for hydrothermal alteration mapping. Resour. Geol. 2017, 67, 72–88. [Google Scholar] [CrossRef]
- Francis, P.; Rothery, D. Using the Landsat Thematic Mapper to detect and monitor active volcanoes: An example from lascar volcano, northern Chile. Geology 1987, 15, 614–617. [Google Scholar] [CrossRef]
- Ranjbar, H.; Honarmand, M.; Moezifar, Z. Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. J. Asian Earth Sci. 2004, 24, 237–243. [Google Scholar] [CrossRef]
- Demirkesen, A.C. Quantifying geological structures of the Nigde province in central Anatolia, Turkey using SRTM DEM data. Environ. Geol. 2009, 56, 865–875. [Google Scholar] [CrossRef]
- Crosta, A.; De Souza Filho, C.; Azevedo, F.; Brodie, C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C.; Simpson, C.J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sens. Environ. 2005, 99, 105–126. [Google Scholar] [CrossRef]
- Tangestani, M.H.; Jaffari, L.; Vincent, R.K.; Sridhar, B.M. Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: A case study from Neyriz ophiolite, SW Iran. Remote Sens. Environ. 2011, 115, 2243–2254. [Google Scholar] [CrossRef]
- Son, Y.S.; Kang, M.K.; Yoon, W.J. Lithological and mineralogical survey of the Oyu Tolgoi region, southeastern Gobi, Mongolia using ASTER reflectance and emissivity data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 205–216. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B. Regional lithological mapping using ASTER-TIR data: Case study for the Tibetan Plateau and the surrounding area. Geosciences 2016, 6, 39. [Google Scholar] [CrossRef]
- Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.J.; Syrris, V.; Soille, P. Assessment of the added-value of Sentinel-2 for detecting built-up areas. Remote Sens. 2016, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.C.; Vázquez, Á.; Rui, C. Evaluation of forest fire on madeira island using Sentinel-2a MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Van der Meer, F.; van der Werff, H.; van Ruitenbeek, F. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Christian, M.; Kristine, B.N.; Christian, R.; Hermann, K.; Christoph, G.; Maarten, D.W. Spaceborne mine waste mineralogy monitoring in south Africa, applications for modern push-broom missions: Hyperion/OLI and EnMap/Sentinel-2. Remote Sens. 2014, 6, 6790–6816. [Google Scholar]
- Van der Werff, H.; van der Meer, F. Sentinel-2 for mapping iron absorption feature parameters. Remote Sens. 2015, 7, 12635–12653. [Google Scholar] [CrossRef]
- Yu, L.; Porwal, A.; Holden, E.J.; Dentith, M.C. Towards automatic lithological classification from remote sensing data using support vector machines. Comput. Geosci. 2012, 45, 229–239. [Google Scholar] [CrossRef]
- Li, N.; Frei, M.; Altermann, W. Textural and knowledge-based lithological classification of remote sensing data in southwestern Prieska sub-basin, Transvaal supergroup, south Africa. J. Afr. Earth Sci. 2011, 60, 237–246. [Google Scholar] [CrossRef]
- Metelka, V.; Baratoux, L.; Jessell, M.W.; Barth, A.; Jezek, J.; Naba, S. Automated regolith landform mapping using airborne geophysics and remote sensing data, Burkina Faso, west Africa. Remote Sens. Environ. 2018, 204, 964–978. [Google Scholar] [CrossRef]
- De Boissieu, F.; Sevin, B.; Cudahy, T.; Mangeas, M.; Chevrel, S.; Ong, C.; Rodger, A.; Maurizot, P.; Laukamp, C.; Lau, I. Regolith-geology mapping with support vector machine: A case study over weathered Ni-bearing peridotites, New Caledonia. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 377–385. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the central Asian orogenic belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Ao, S.; Xiao, W.; Han, C.; Li, X.; Qu, J.; Zhang, J.; Guo, Q.; Tian, Z. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: Implications for the architecture of the southern Altaids. Geol. Mag. 2012, 149, 606–625. [Google Scholar] [CrossRef]
- Zheng, R.; Wu, T.; Zhang, W.; Xu, C.; Meng, Q. Late Paleozoic subduction system in the southern central Asian orogenic belt: Evidences from geochronology and geochemistry of the Xiaohuangshan ophiolite in the Beishan orogenic belt. J. Asian Earth Sci. 2013, 62, 463–475. [Google Scholar] [CrossRef]
- Jolivet, M. Mesozoic tectonic and topographic evolution of central Asia and Tibet: A preliminary synthesis. Geol. Soc. Lond. Spec. Publ. 2017, 427, 19–55. [Google Scholar] [CrossRef]
- Davis, G.A.; Marc, S. Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia; Geological Society of America: Boulder, CO, USA, 2001. [Google Scholar]
- Xiao, W.; Windley, B.; Huang, B.; Han, C.; Yuan, C.; Chen, H.; Sun, M.; Sun, S.; Li, J. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of central Asia. Int. J. Earth Sci. 2009, 98, 1189–1217. [Google Scholar] [CrossRef]
- Xiao, W.; Han, C.; Liu, W.; Wan, B.; Zhang, J.e.; Ao, S.; Zhang, Z.; Song, D.; Tian, Z.; Luo, J. How many sutures in the southern central Asian orogenic belt: Insights from east Xinjiang–west Gansu (NW China)? Geosci. Front. 2014, 5, 525–536. [Google Scholar] [CrossRef]
- Zuo, G.C.; Liu, Y.K.; Liu, C.Y. Framework and evolution of the tectonic structure in Beishan area across Gansu province, Xinjiang autonomous region and Inner Mongolia autonomous region. Acta Geol. Gansu 2003, 12, 1–15. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Fujisada, H.; Iwasaki, A.; Hara, S. In ASTER stereo system performance. Proc. SPIE 2001, 4540, 39–49. [Google Scholar]
- Barnett, P.J.; Singhroy, V.H.; Shirota, J.; Leney, S.J. Methods for remote engineering geology terrain analysis in boreal forest regions of Ontario, Canada. Environ. Eng. Geosci. 2004, 10, 229–241. [Google Scholar] [CrossRef]
- Haykin, S.; Network, N. A comprehensive foundation. Neural Netw. 2004, 2, 41. [Google Scholar]
- Hepner, G.; Logan, T.; Ritter, N.; Bryant, N. Artificial neural network classification using a minimal training set- comparison to conventional supervised classification. Photogramm. Eng. Remote Sens. 1990, 56, 469–473. [Google Scholar]
- Thanh, P.N.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens. 2014, 7, 153–168. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative study on KNN and SVM based weather classification models for day ahead short term solar pv power forecasting. Appl. Sci. 2017, 8, 28. [Google Scholar] [CrossRef]
- Chen, X.; Warner, T.A.; Campagna, D.J. Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada. Remote Sens. Environ. 2007, 110, 344–356. [Google Scholar] [CrossRef]
- Mondal, A.; Kundu, S.; Chandniha, S.K.; Shukla, R.; Mishra, P. Comparison of support vector machine and maximum likelihood classification technique using satellite imagery. Int. J. Remote Sens. GIS 2012, 1, 116–123. [Google Scholar]
- Zhang, X.; Pazner, M.; Duke, N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south chocolate mountains (California). ISPRS J. Photogramm. Remote Sens. 2007, 62, 271–282. [Google Scholar] [CrossRef]
- Scott, A.J.; Symons, M.J. Clustering methods based on likelihood ratio criteria. Biometrics 1971, 387–397. [Google Scholar] [CrossRef]
- Ougiaroglou, S.; Diamantaras, K.I.; Evangelidis, G. Exploring the effect of data reduction on neural network and support vector machine classification. Neurocomputing 2018, 280, 101–110. [Google Scholar] [CrossRef]
- Otukei, J.R.; Blaschke, T. Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S27–S31. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ramirez-Lopez, L.; Behrens, T.; Schmidt, K.; Stevens, A.; Demattê, J.A.M.; Scholten, T. The spectrum-based learner: A new local approach for modeling soil VIS-NIR spectra of complex datasets. Geoderma 2013, 195, 268–279. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Boruvka, L.; Saberioon, M.; Vašát, R. A memory-based learning approach as compared to other data mining algorithms for the prediction of soil texture using diffuse reflectance spectra. Remote Sens. 2016, 8, 341. [Google Scholar] [CrossRef]
- Othman, A.; Gloaguen, R. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sens. 2014, 6, 6867–6896. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in mediterranean europe using multiple regression and random forest. Forest Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Heil, J.; Michaelis, X.; Marschner, B.; Stumpe, B. The power of random forest for the identification and quantification of technogenic substrates in urban soils on the basis of drift spectra. Environ. Pollut. 2017, 230, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Tang, Y.; Jing, L.; Li, H.; Liu, Q.; Yan, Q.; Li, X. Bamboo classification using Worldview-2 imagery of giant panda habitat in a large shaded area in Wolong, Sichuan province, China. Sensors 2016, 16, 1957. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yang, Z. Generalized mcnemar’s test for homogeneity of the marginal distributions. In Proceedings of the SAS Global Forum, San Antonio, TX, USA, 16–19 March 2008; pp. 1–10. [Google Scholar]
- Foody, G.M. Thematic map comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Abrams, M.J.; Rothery, D.A.; Pontual, A. Mapping in the Oman ophiolite using Enhanced Landsat Thematic Mapper images. Tectonophysics 1988, 151, 387–401. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the mountain pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Di Tommaso, I.; Rubinstein, N. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev. 2007, 32, 275–290. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Ayoobi, I.; Tangestani, M.H. The effect of minimum noise fraction data input on success of artificial neural network in lithological mapping of a magmatic terrain with ASTER data; a case study from SE Iran. Remote Sens. Appl. Soc. Environ. 2017, 7, 21–26. [Google Scholar] [CrossRef]
- Leverington, D.W.; Moon, W.M. Landsat-TM-based discrimination of lithological units associated with the Purtuniq ophiolite, Quebec, Canada. Remote Sens. 2012, 4, 1208–1231. [Google Scholar] [CrossRef]
- Grebby, S.; Field, E.; Tansey, K. Evaluating the use of an object-based approach to lithological mapping in vegetated terrain. Remote Sens. 2016, 8, 843. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Liu, J. Integrating textural and spectral features to classify silicate-bearing rocks using Landsat 8 data. Appl. Sci. 2016, 6, 283. [Google Scholar] [CrossRef]
- Iqbal, A.; Ullah, S.; Khalid, N.; Ahmad, W.; Ahmad, I.; Shafique, M.; Hulley, G.C.; Roberts, D.A.; Skidmore, A.K. Selection of HyspIRI optimal band positions for the earth compositional mapping using HyTes data. Remote Sens. Environ. 2018, 206, 350–362. [Google Scholar] [CrossRef]
Sentinel-2A | OLI | ASTER | ||||||
---|---|---|---|---|---|---|---|---|
Band | Central Wavelength (nm) | Spatial Resolution (m) | Band | Central Wavelength (nm) | Spatial Resolution (m) | Band | Central Wavelength (nm) | Spatial Resolution (m) |
1 | 0.4430 | 60 | 1 | 0.4430 | 30 | 1 | 0.5560 | 15 |
2 | 0.4900 | 10 | 2 | 0.4826 | 2 | 0.6610 | ||
3 | 0.5600 | 3 | 0.5613 | 3N | 0.8070 | |||
4 | 0.6650 | 4 | 0.6546 | 3B | 0.8070 | |||
5 | 0.7050 | 20 | 5 | 0.8646 | 4 | 1.6560 | 30 | |
6 | 0.7400 | 6 | 1.6090 | 5 | 2.1670 | |||
7 | 0.7830 | 7 | 2.2010 | 6 | 2.2090 | |||
8 | 0.8420 | 10 | 8 | 0.5917 | 15 | 7 | 2.2620 | |
8A | 0.8650 | 20 | 9 | 1.3730 | 30 | 8 | 2.3360 | |
9 | 0.9450 | 60 | 9 | 2.4000 | ||||
10 | 1.3750 | 10 | 10.9000 | 100 | 10 | 8.2910 | 90 | |
11 | 1.6100 | 20 | 11 | 8.6340 | ||||
12 | 2.1900 | 11 | 12.0000 | 12 | 9.0750 | |||
13 | 10.6570 | |||||||
14 | 11.3180 |
Data | Acquisition Date | Season | Cloud/Snow (%) | NDVI |
---|---|---|---|---|
OLI | 2017/12/05 | Winter | 5.2/0.0 | <0.01 |
ASTER | 2002/08/14 | Summer | 0.0/0.0 | <0.07 |
Sentinel-2A | 2017/05/09 | Spring | <1/0.0 | <0.07 |
Dataset | Abbreviation | Band Number | Spatial Resolution (m) |
---|---|---|---|
OLI + DEM | OLI_DEM | 8 | 30 |
ASTER + DEM | AST_DEM | 10 | 30 |
Sentinel-2A | S2A | 10 | 20 |
Sentinel-2A + DEM | S2A_DEM | 11 | 20 |
OLI + ASTER + DEM | OLI_AST_DEM | 18 | 30 |
Sentinel-2A + ASTER + DEM | S2A_AST_DEM | 20 | 20 |
Lithological Unit | Area (km2) | Training Sample (Pixels of ASTER) | Testing Sample (Pixels) |
---|---|---|---|
Alluvium deposits (Q) | 35.62 | 2580 | 306 |
Schist and metasandstone with marble (Oby) | 4.96 | 491 | 43 |
Carbonatite with sandstone (Ox.d) | 26.36 | 2504 | 227 |
Quartz sandstone and siltite (Ox.Q) | 19.25 | 1350 | 164 |
Basic andesite and tuff (Oh.B) | 15.3 | 960 | 131 |
Granodiorite (Dgb) | 6.41 | 565 | 52 |
Quartz diorite (Sqb) | 4.01 | 341 | 34 |
Basic and ultrabasic rocks (Ʃε) | 1.60 | 184 | 14 |
Argillaceous matrix (Omss) | 3.93 | 310 | 35 |
Basalt (βε) | 7.42 | 834 | 64 |
Ultramafic rock (οψε) | 4.70 | 572 | 40 |
Marble (mb) | 5.19 | 536 | 45 |
Dolomite (dol) | 0.32 | 87 | 10 |
Argillite (mss) | 1.18 | 245 | 10 |
Limestone (ls) | 2.89 | 441 | 25 |
MLC | SVM | RFC | ANN | k-NN | |
---|---|---|---|---|---|
MLC | \ | Not significant | Significant | Significant | Significant |
SVM | 3.814 | \ | Significant | Significant | Significant |
RFC | 31.696 | 20.280 | \ | Not significant | Significant |
ANN | 70.000 | 38.291 | 2.510 | \ | Significant |
k-NN | 63.751 | 52.267 | 22.112 | 16.005 | \ |
S2A | OLI_DEM | AST_DEM | S2A_DEM | OLI_AST_DEM | S2A_AST_DEM | |
---|---|---|---|---|---|---|
S2A | \ | S | S | S | S | S |
OLI_DEM | 22.563 | \ | S | S | S | S |
AST_DEM | 21.740 | 5.085 | \ | S | S | S |
S2A_DEM | 99.000 | 61.000 | 5.114 | \ | S | S |
OLI_AST_DEM | 117.000 | 79.000 | 14.222 | 8.100 | \ | S |
S2A_AST_DEM | 137.028 | 101.000 | 28.824 | 29.630 | 16.133 | \ |
Data | Ancillary Data | Sensor Type | Band Layers | Method | Class Number | Overall Accuracy | Original Image (Y/N) | Reference |
---|---|---|---|---|---|---|---|---|
TM | GLCM 1-based Textural feature | Multi 2 | 9 | MLC; KBS 3 | 16 | 83.2% | N | [23] |
TM | Multi | 4 | ANN | 7 | 87.7% | Y | [66] | |
ASTER | DEM | Multi | 33 | SVM | 7 | 92.34% | N | [22] |
ASTER | Geomorphic feature, texture | Multi | 21 | SVM | 9 | 79.3% | Y | [51] |
Hyperion | Hyper 4 | 158 | SAM | 9 | 76.12% | Y | [1] | |
LiDAR | ATM 5 | LiDAR/Multi | 5 | OBIA 6 | 4 | 73.5% | N | [67] |
OLI | Textural vectors/J-M 7 distance | Multi | 14 | SVM | 4 | 83.73% | N | [68] |
ASTER | Multi | 37 | RFC | 8 | 81.52% | N | [2] | |
ASTER | Multi | 9 | ANN | 10 | 79.8% | N | [65] | |
Hymap | Hyper | 126 | Spectral feature extraction; SVM | 6 | >70% | N | [25] | |
HyspIRI 8 | Hyper | 202 | GA-SAM 9 | 15 | >95% | Y | [69] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, W.; Cheng, Q.; Tang, Y.; Jing, L.; Gao, C. Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sens. 2018, 10, 638. https://doi.org/10.3390/rs10040638
Ge W, Cheng Q, Tang Y, Jing L, Gao C. Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sensing. 2018; 10(4):638. https://doi.org/10.3390/rs10040638
Chicago/Turabian StyleGe, Wenyan, Qiuming Cheng, Yunwei Tang, Linhai Jing, and Chunsheng Gao. 2018. "Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China" Remote Sensing 10, no. 4: 638. https://doi.org/10.3390/rs10040638
APA StyleGe, W., Cheng, Q., Tang, Y., Jing, L., & Gao, C. (2018). Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sensing, 10(4), 638. https://doi.org/10.3390/rs10040638