Feasibility of Estimating Cloudy-Sky Surface Longwave Net Radiation Using Satellite-Derived Surface Shortwave Net Radiation
"> Figure 1
<p>Spatial distribution of the 24 sites that were used in this study. Surface Radiation (SURFRAD); Baseline Surface Radiation Network (BSRN); Arid and Semi-Arid Region Collaborative Observation Project (ASRCOP).</p> "> Figure 2
<p>Determination of the optimum number of basis functions. Mean square error (MSE).</p> "> Figure 3
<p>Accuracy of the linear model (LM): (<b>a</b>) training results and (<b>b</b>) validation results. Longwave net radiation (LWNR); RMSE; BIAS; determination coefficient (R<sup>2</sup>); number of samples (N).</p> "> Figure 4
<p>Accuracy of the LM-normalized difference vegetation index (NDVI) model: (<b>a</b>) training results and (<b>b</b>) validation results.</p> "> Figure 5
<p>Accuracy of the multivariate adaptive regression spline (MARS) model: (<b>a</b>) training results and (<b>b</b>) validation results.</p> "> Figure 6
<p>Accuracy of MARS-NDVI model: (<b>a</b>) training results and (<b>b</b>) validation results.</p> "> Figure 7
<p>Validation results of the four developed models for spring, summer, autumn, and winter: (<b>a</b>) RMSE and (<b>b</b>) BIAS.</p> "> Figure 8
<p>Evaluation results of the four models for the different land cover types (<b>a</b>,<b>b</b>), climate types (<b>c</b>,<b>d</b>), and surface elevations (<b>e</b>,<b>f</b>).</p> "> Figure 9
<p>Accuracy of the MARS-NDVI-surface elevations (H) model: (<b>a</b>) training results and (<b>b</b>) validation results.</p> ">
Abstract
:1. Introduction
2. Data
2.1. Satellite Data
2.2. Ground Measurements
3. Methods
3.1. Linear Model
3.2. MARS Model
4. Results
4.1. Validation of the LM Model
4.2. Validation of the MARS Model
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, K.; Dickinson, R.E. Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalyses. Rev. Geophys. 2013, 62, 455–464. [Google Scholar] [CrossRef]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Ellingson, R.G. Surface longwave fluxes from satellite observations: A critical review. Remote Sens. Environ. 1995, 51, 89–97. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Crawford, T.M.; Duchon, C.E. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation. J. Appl. Meteorol. 1999, 38, 474–480. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S. An Improved Method for Estimating Global Evapotranspiration Based on Satellite Determination of Surface Net Radiation, Vegetation Index, Temperature, and Soil Moisture. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008), Boston, MA, USA, 7–11 July 2008; pp. III-875–III-878. [Google Scholar]
- Wang, W.; Liang, S. A method for estimating clear-sky instantaneous land-surface longwave radiation with GOES sounder and GOES-R ABI data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 708–712. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S. Global estimates for high-spatial-resolution clear-sky land surface upwelling longwave radiation from MODIS data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4115–4129. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Wang, W.; Guo, Y. An efficient hybrid method for estimating clear-sky surface downward longwave radiation from MODIS data. J. Geophys. Res. Atmos. 2017, 122, 2616–2630. [Google Scholar] [CrossRef]
- Wang, W. Estimating High Spatial Resolution Clear-Sky Land Surface Longwave Radiation Budget from MODIS and GOES Data. Ph.D. Thesis (Gradworks), University of Maryland, College Park, MD, USA, 2008. [Google Scholar]
- Wang, W.; Liang, S. Estimation of high-spatial resolution clear-sky longwave downward and net radiation over land surfaces from MODIS data. Remote Sens. Environ. 2009, 113, 745–754. [Google Scholar] [CrossRef]
- Wang, W.; Liang, S.; Augustine, J.A. Estimating high spatial resolution clear-sky land surface upwelling longwave radiation from MODIS data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1559–1570. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Liang, S.; Yang, H.; Zhou, G. Estimation of clear-sky land surface longwave radiation from MODIS data products by merging multiple models. J. Geophys. Res. Atmos. 2012, 117, D22107. [Google Scholar] [CrossRef]
- Tang, B.; Li, Z.L. Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sens. Environ. 2008, 112, 3482–3492. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, H.; Liang, S.; Nie, A.; Liu, Q.; Guo, Y. A framework for estimating the 30 m thermal-infrared broadband emissivity from landsat surface reflectance data. J. Geophys. Res. Atmos. 2017, 122, 11405–11421. [Google Scholar] [CrossRef]
- Kato, S.; Sun-Mack, S.; Miller, W.F.; Rose, F.G.; Chen, Y.; Minnis, P.; Wielicki, B.A. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from calipso and cloudsat merged cloud vertical profiles. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Kato, S.; Rose, F.G.; Charlock, T.P. Computation of domain-averaged irradiance using satellite-derived cloud properties. J. Atmos. Ocean. Technol. 2005, 22, 146–164. [Google Scholar] [CrossRef]
- Potting, R. Radiation and Cloud Processes in the Atmosphere; Oxford University Press: New York, NY, USA, 1992; pp. 923–933. [Google Scholar]
- Carmona, F.; Rivas, R.; Caselles, V. Estimation of daytime downward longwave radiation under clear and cloudy skies conditions over a sub-humid region. Theor. Appl. Climatol. 2014, 115, 281–295. [Google Scholar] [CrossRef]
- Duarte, H.F.; Dias, N.L.; Maggiotto, S.R. Assessing daytime downward longwave radiation estimates for clear and cloudy skies in southern Brazil. Agric. For. Meteorol. 2006, 139, 171–181. [Google Scholar] [CrossRef]
- Kruk, N.S.; Vendrame, Í.F.; Rocha, H.R.D.; Chou, S.C.; Cabral, O. Downward longwave radiation estimates for clear and all-sky conditions in the sertãozinho region of São Paulo, Brazil. Theor. Appl. Climatol. 2010, 99, 115–123. [Google Scholar] [CrossRef]
- Zhou, Y.; Cess, R.D. Algorithm development strategies for retrieving the downwelling longwave flux at the Earth’s surface. J. Geophys. Res. 2001, 106, 12447–12488. [Google Scholar] [CrossRef]
- Zhou, Y.; Kratz, D.P.; Wilber, A.C.; Gupta, S.K.; Cess, R.D. An improved algorithm for retrieving surface downwelling longwave radiation from satellite measurements. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Wang, T.; Shi, J.; Yu, Y.; Husi, L.; Gao, B.; Zhou, W.; Ji, D.; Zhao, T.; Xiong, C.; Chen, L. Cloudy-sky land surface longwave downward radiation (LWDR) estimation by integrating MODIS and AIRS/AMSU measurements. Remote Sens. Environ. 2018, 205, 100–111. [Google Scholar] [CrossRef]
- Bisht, G.; Bras, R.L. Estimation of net radiation from the MODIS data under all sky conditions: Southern great plains case study. Remote Sens. Environ. 2010, 114, 1522–1534. [Google Scholar] [CrossRef]
- Li, Z.; Leighton, H.G.; Masuda, K.; Takashima, T. Estimation of SW flux absorbed at the surface from TOA reflected flux. J. Clim. 1993, 6, 317–330. [Google Scholar] [CrossRef]
- Pinker, R.T.; Frouin, R.; Li, Z. A review of satellite methods to derive surface shortwave irradiance. Remote Sens. Environ. 1995, 51, 108–124. [Google Scholar] [CrossRef]
- Tang, B.; Li, Z.L.; Zhang, R. A direct method for estimating net surface shortwave radiation from MODIS data. Remote Sens. Environ. 2006, 103, 115–126. [Google Scholar] [CrossRef]
- Zhou, X.-M.; Tang, B.-H.; Wu, H.; Li, Z.-L. Estimating net surface longwave radiation from net surface shortwave radiation for cloudy skies. Int. J. Remote Sens. 2013, 34, 8104–8117. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J. Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations. Remote Sens. 2016, 8, 225. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Global Land Surface Satellite (GLASS) Products; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating global land surface satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Q.; Liang, S.; Wang, L.; Liu, N.; Liu, S. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 2013, 52, 907–919. [Google Scholar] [CrossRef]
- Liu, N.F.; Liu, Q.; Wang, L.Z.; Liang, S.L.; Wen, J.G.; Qu, Y.; Liu, S.H. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol. Earth Syst. Sci. 2013, 17, 2121–2129. [Google Scholar] [CrossRef]
- He, L.; Qin, Q.; Liu, M.; Dong, H. Validation of GLASS albedo products using ground measurements and Landsat TM data. In Proceedings of the Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1116–1119. [Google Scholar]
- Huang, G.; Wang, W.; Zhang, X.; Liang, S.; Liu, S.; Zhao, T.; Feng, J.; Ma, Z. Preliminary validation of GLASS-DSSR products using surface measurements collected in arid and semi-arid regions of China. Int. J. Digit. Earth 2013, 6, 50–68. [Google Scholar] [CrossRef]
- Augustine, J.A.; Deluisi, J.J.; Long, C.N. Surfrad—A national surface radiation budget network for atmospheric research. Bull. Am. Meteorol. Soc. 2010, 81, 2341–2357. [Google Scholar] [CrossRef]
- Schmidt, A.; Hanson, C.; Chan, W.S.; Law, B.E. Empirical assessment of uncertainties of meteorological parameters and turbulent fluxes in the ameriflux network. J. Geophys. Res. Biogeosci. 2015, 117, G04014. [Google Scholar] [CrossRef]
- Ohmura, A.; Gilgen, H.; Hegner, H.; Müller, G.; Wild, M.; Dutton, E.G.; Forgan, B.; Fröhlich, C.; Philipona, R.; Heimo, A. Baseline surface radiation network (BSRN/WCRP): New precision radiometry for climate research. Bull. Am. Meteorol. Soc. 1998, 79, 215–2136. [Google Scholar] [CrossRef]
- Kaminsky, K.Z.; Dubayah, R. Estimation of surface net radiation in the boreal forest and northern prairie from shortwave flux measurements. J. Geophys. Res. Atmos. 1997, 102, 29707–29716. [Google Scholar] [CrossRef]
- Alados, I.; Foyomoreno, I.; Olmo, F.J.; Aladosarboledas, L. Relationship between net radiation and solar radiation for semi-arid shrub-land. Agric. For. Meteorol. 2003, 116, 221–227. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Ji, G.L.; Ma, X.Y.; Zou, J.L. Characteristics of the radiation budget over oases in arid region. Arid Meteorol. 2003, 21, 29–33. [Google Scholar]
- Diak, G.R.; Bland, W.L.; Mecikalski, J.R.; Anderson, M.C. Satellite-based estimates of longwave radiation for agricultural applications. Agric. For. Meteorol. 2000, 103, 349–355. [Google Scholar] [CrossRef]
Site Name | Latitude (°) | Longitude (°) | Elevation (m) | Land Cover | Time Period |
---|---|---|---|---|---|
Bondville 1 | 40.05 | −88.37 | 213 | Cropland | 2008–2010 |
Boulder 1 | 40.13 | −105.24 | 1689 | Grassland | 2008–2010 |
Fort Peck 1 | 48.31 | −105.10 | 634 | Grassland | 2008–2010 |
Desert Rock 1 | 36.63 | −116.02 | 1007 | Desert | 2008–2010 |
Penn State 1 | 40.72 | −77.93 | 376 | Cropland | 2008–2010 |
Sioux Falls 1 | 43.73 | −96.62 | 473 | Cropland | 2008–2010 |
Brookings 2 | 44.35 | −96.84 | 510 | Grassland | 2008–2010 |
Canaan Valley 2 | 39.06 | −79.42 | 994 | Grassland | 2008–2010 |
Fort Peck 2 | 48.31 | −105.10 | 634 | Grassland | 2008 |
Morgan Monroe 2 | 39.32 | −86.41 | 275 | Forest | 2008–2010 |
Wind River 2 | 45.82 | −121.95 | 371 | Forest | 2008–2010 |
MissouriOzark 2 | 38.74 | −92.20 | 220 | Forest | 2008–2010 |
PAY 3 | 46.82 | 6.94 | 491 | Cultivated | 2008–2010 |
TAT 3 | 36.05 | 140.13 | 25 | Grassland | 2008–2010 |
TOR 3 | 58.25 | 26.46 | 70 | Grassland | 2008–2010 |
Arou 4 | 38.04 | 100.46 | 3033 | Grassland | 2008–2009 |
Dongsu 4 | 44.09 | 113.57 | 970 | Grassland | 2008–2009 |
Jinzhou 4 | 41.15 | 121.20 | 22 | Cropland | 2008–2009 |
Miyun 4 | 40.63 | 117.32 | 350 | Cropland | 2008–2009 |
Naiman 4 | 42.93 | 120.70 | 361 | Desert | 2008 |
Tongyu grass 4 | 44.57 | 122.88 | 184 | Grassland | 2008–2009 |
Tongyu crop 4 | 44.57 | 122.88 | 184 | Cropland | 2008–2009 |
Yingke 4 | 38.85 | 100.40 | 1519 | Cropland | 2008–2009 |
Yuzhong 4 | 35.95 | 104.13 | 1965 | Desert | 2008–2009 |
Seasons | No. of Samples | LM | LM-NDVI | MARS | MARS-NDVI | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | BIAS | RMSE | BIAS | RMSE | BIAS | RMSE | BIAS | ||
Spring | 9275 | 28.05 | 0.16 | 28.04 | 0.17 | 27.25 | 0.20 | 26.30 | 0.28 |
Sumer | 9287 | 32.37 | −0.29 | 28.24 | −0.14 | 31.84 | −0.25 | 26.48 | −0.22 |
Autumn | 7194 | 30.31 | 0.45 | 28.94 | 0.33 | 29.62 | 0.49 | 26.86 | 0.43 |
Winter | 4111 | 28.35 | 0.07 | 28.36 | 0.07 | 27.44 | −0.05 | 26.45 | −0.12 |
Class | No. of Samples | LM | LM-NDVI | MARS | MARS-NDVI | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | BIAS | RMSE | BIAS | RMSE | BIAS | RMSE | BIAS | ||
Desert | 1752 | 39.84 | −0.01 | 39.84 | −0.02 | 38.17 | −0.13 | 36.92 | 0.17 |
Cropland | 13,693 | 22.32 | −0.11 | 22.15 | −0.14 | 22.15 | −0.09 | 21.55 | −0.07 |
Grassland | 14,421 | 29.73 | 0.05 | 29.36 | 0.07 | 29.37 | 0.11 | 27.99 | 0.12 |
Forest | 873 | 20.62 | 0.01 | 20.56 | 0.00 | 19.60 | 0.02 | 19.27 | −0.24 |
BS | 6101 | 35.72 | 0.23 | 35.72 | 0.22 | 35.02 | 0.30 | 34.31 | 0.24 |
BW | 1601 | 39.99 | 0.15 | 38.87 | 0.06 | 38.40 | 0.05 | 35.92 | −0.32 |
Cf | 4543 | 24.69 | 0.17 | 24.24 | 0.19 | 24.47 | 0.15 | 23.09 | 0.20 |
Df | 17,710 | 21.06 | −0.12 | 20.82 | −0.13 | 20.93 | −0.09 | 20.38 | −0.07 |
Dw | 459 | 45.15 | 0.69 | 33.17 | 0.83 | 43.60 | 0.62 | 30.07 | −0.32 |
H < 500m | 22,649 | 23.85 | −0.04 | 23.85 | −0.04 | 23.70 | −0.01 | 23.03 | 0.01 |
500 < H < 1000 | 2990 | 32.77 | 0.28 | 32.71 | 0.26 | 31.93 | 0.36 | 30.33 | 0.33 |
H > 1000 | 5100 | 37.85 | 0.19 | 36.66 | 0.30 | 37.14 | 0.21 | 34.41 | 0.17 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Cheng, J. Feasibility of Estimating Cloudy-Sky Surface Longwave Net Radiation Using Satellite-Derived Surface Shortwave Net Radiation. Remote Sens. 2018, 10, 596. https://doi.org/10.3390/rs10040596
Guo Y, Cheng J. Feasibility of Estimating Cloudy-Sky Surface Longwave Net Radiation Using Satellite-Derived Surface Shortwave Net Radiation. Remote Sensing. 2018; 10(4):596. https://doi.org/10.3390/rs10040596
Chicago/Turabian StyleGuo, Yamin, and Jie Cheng. 2018. "Feasibility of Estimating Cloudy-Sky Surface Longwave Net Radiation Using Satellite-Derived Surface Shortwave Net Radiation" Remote Sensing 10, no. 4: 596. https://doi.org/10.3390/rs10040596
APA StyleGuo, Y., & Cheng, J. (2018). Feasibility of Estimating Cloudy-Sky Surface Longwave Net Radiation Using Satellite-Derived Surface Shortwave Net Radiation. Remote Sensing, 10(4), 596. https://doi.org/10.3390/rs10040596