A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images
<p>Flow chart of the proposed procedure.</p> "> Figure 2
<p>Flow chart of the Row Deformation Map (RDM) estimation.</p> "> Figure 3
<p>Flowchart of the Deformation Activity Map (DAM) and the Active Deformation Areas (ADA) maps generation.</p> "> Figure 4
<p>Plot of autocorrelation coefficient vs. level of noise (%). The level of noise is defined by the standard deviation of the simulated normal distributed random values. The blue lines indicate the selected thresholds for the Temporal Noise Index (TNI) classification.</p> "> Figure 5
<p>Quality Index (QI) matrix representing the derivation of the QI from the combination of the Spatial Noise Index (SNI) and the Temporal Noise Index (TNI) is generated.</p> "> Figure 6
<p>The velocity map of the first iteration (V1): before the raw deformation map (<b>a</b>); and after the filtering (<b>b</b>). The latter one is the final Deformation Activity Map (DAM).</p> "> Figure 7
<p>Example of ADA extraction from the active PSs of the first iteration velocity map (V1). The area includes the Pico Viejo and Teide craters, the highest elevations on Tenerife Island. Only the active PSs are visualized. The red polygons are the extracted ADA and the black numbers are the associated Quality Indexes.</p> "> Figure 8
<p>(<b>a</b>) The ADA V1 map of Tenerife, the blue square highlights the area that is showed in detail in (<b>b</b>,<b>c</b>); (<b>b</b>) the DAM (velocity map) in correspondence of the blue frame in (<b>a</b>), which is an industrial landfill area affected by subsidence (red points) and uplift (blue points); (<b>c</b>) two of the extracted ADA (red polygons) of the landfill subsidence (the uplift ADA are not represented here); and (<b>d</b>) deformation time series of points PS-1, 2 and 3.</p> "> Figure 9
<p>ADA map of Tenerife (Iteration 1). Both the QI (colors) and the velocity classes (white numbers) are represented. This visualization allows a rapid identification of the most critical and reliable deformations.</p> "> Figure 10
<p>A representation of <a href="#remotesensing-09-01002-t007" class="html-table">Table 7</a>. The blue bars (Intersection) represent, for each QI class, the percentage of the ADA that have been detected in both the iteration. The red bars represent, for each QI class, the percentage of the ADA that have been detected in only one iteration. The purple line represents the QI percent of the total the detected ADA. The graphic shows that the majority (63%) of the ADA with a high Quality Index (1) are detected in both iterations, while the majority of the ADA with the lower Quality Index (4) are detected in only one iteration. This confirms the significance of the QI that permits to detect the noisier and not reliable ADA.</p> ">
Abstract
:1. Introduction
2. Methodology
- Raw Deformation Map (RDM) generation: This includes all the PSI processing steps to estimate the annual linear velocities and the time series of deformation (TS). The RDM is an intermediate product that is not delivered to the final users.
- Deformation Activity Map (DAM) generation and Active Deformation Areas (ADA) extraction: In this block, the two final products of the procedure are generated. It includes a filtering of the RDM and all the steps to generate the ADA map. These two products are easily readable and thus exploitable by the risk management decision makers.
2.1. Raw Deformation Map Generation
- Interferogram network generation: This step consists of the generation of the interferogram network. S-1 uses a sophisticated data acquisition procedure, the TOPS (Terrain Observation by Progressive Scan) imaging mode [34], which is key to achieve the wide area coverage. The drawback is that, compared to other sensors, the S-1 data require extra processing. The key step is the image co-registration, which needs to be very accurate [35].Since a fundamental aspect of the PSIG chain is the redundancy of the network of interferograms and images, all the possible interferogram pairs are generated. The selection of the interferogram network is done by statistically evaluating the coherence of the study area. This analysis provides key inputs for the network like the maximum temporal baseline to be used as well as the presence of periods characterized by low coherence (e.g., snow periods in mountain areas). As example, in the Canary Islands test site, the selected maximum temporal baseline was 156 days.
- Point Selection: Even if a single S-1 frame contains millions of pixels, only a small portion of them is exploitable for deformation purposes. There are different statistical criteria used to discriminate the noisier pixels from those with low level of noise [11]. However, the use of very restrictive thresholds can result in a critical loss of spatial coverage. The general purpose of this step is to find a good compromise between the quality of the selected points (little affected by noise) and a good spatial coverage. Hence, for each case, different criteria are evaluated in order to find the best trade-off. For example, in the Canary Islands test site, the selection of points was based on the Dispersion of Amplitude (DA) [6]. Only points with a DA value lower than 0.5 have been selected.
- 2+1D phase unwrapping: This is a two-step spatial-temporal phase unwrapping [32]. The approach starts with a spatial phase unwrapping (2D) performed over the selected set of points and for each interferogram of the network. Then, in a second phase, a phase unwrapping consistency check (1D) is performed. This check is done point wise, exploiting the temporal component of the SAR images stack. It is based on an iterative least squares method (LS) and the analysis of the LS residuals at each iteration. For each pixel, the main outputs are: (i) the temporal evolution of the phases (TEP) with respect to a reference image; and (ii) some statistical parameters used to assess the quality of the LS inputs.
- APS (Atmospheric Phase Screen) estimation and removal: The APS is estimated using spatial-temporal filters [36]. The main input is the TEP estimated in the previous step. The estimated APS is removed from the TEP. The remaining phases are then transformed into deformations, obtaining the final deformation time series (TS).
- Deformation velocity estimation: This is the last step of the deformation map generation block. It consists of an estimation of the deformation velocity from the obtained time series. The used method is a robust regression line estimation.
2.2. Deformation Activity Map and Active Deformation Areas Extraction
- -
- Number of aggregated active points (APs).
- -
- Mean, maximum and minimum values of the APs velocities.
- -
- Mean value of the APs accumulated deformations. To avoid strong influence of atmospheric or digital elevation model error effects, we estimate the final accumulated deformation as the average of the accumulated values of the last four acquisition times of all the APs of the ADA.
- -
- Velocity class, which is a classification of the ADA as a function of its maximum velocity (vm). The class is 1 if |vm| > 1 cm/year or 0 if 2σmap < |vm| < 1 cm/year.
- -
- Quality Indexes, which are explained in the following lines.
3. Canary Island Results
3.1. Dataset Description
3.2. Deformation Activity Maps
3.3. Active Deformation Areas (ADA) Map
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Barra, A.; Monserrat, O.; Mazzanti, P.; Esposito, C.; Crosetto, M.; Scarascia Mugnozza, G. First insights on the potential of Sentinel-1 for landslides detection. Geomat. Nat. Hazards Risk 2016, 7, 1874–1883. [Google Scholar] [CrossRef]
- Biescas, E.; Crosetto, M.; Agudo, M.; Monserrat, O.; Crippa, B. Two radar interferometric approaches to monitor slow and fast land deformation. J. Surv. Eng. 2007, 133, 66–71. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE TGRS 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE TGRS 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE TGRS 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- López-Quiroz, P.; Doin, M.P.; Tupin, F.; Briole, P.; Nicolas, J.M. Time series analysis of Mexico City subsidenceconstrained by radar interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- De Luca, C.; Cuccu, R.; Elefante, S.; Zinno, I.; Manunta, M.; Casola, V.; Casu, F. An on-demand web tool for the unsupervised retrieval of earth’s surface deformation from SAR data: The P-SBAS service within the ESA G-POD environment. Remote Sens. 2015, 7, 15630–15650. [Google Scholar] [CrossRef]
- Cignetti, M.; Manconi, A.; Manunta, M.; Giordan, D.; De Luca, C.; Allasia, P.; Ardizzone, F. Taking advantage of the esa G-pod service to study ground deformation processes in high mountain areas: A valle d’aosta case study, Northern Italy. Remote Sens. 2016, 8, 852. [Google Scholar] [CrossRef]
- Pepe, A.; Sansosti, E.; Berardino, P.; Lanari, R. On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique. IEEE Geosci. Remote Sens. Lett. 2005, 2, 265–269. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Iglesias, R.; Crippa, B. Persistent Scatterer Interferometry: Potential, limits and initial C- and X-band comparison. Photogramm. Eng. Remote Sens. 2010, 76, 1061–1069. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M.; Cuevas, M.; Crippa, B. The thermal expansion component of Persistent Scatterer Interferometry observations. IEEE Geosci. Remote Sens. Lett. 2011, 8, 864–868. [Google Scholar] [CrossRef]
- Fornaro, G.; Reale, D.; Verde, S. Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geosci. Remote Sens. Lett. 2013, 10, 677–681. [Google Scholar] [CrossRef]
- Bovenga, F.; Wasowski, J.; Nitti, D.O.; Nutricato, R.; Chiaradia, M.T. Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens. Environ. 2012, 119, 272–285. [Google Scholar] [CrossRef]
- Bovenga, F.; Nitti, D.O.; Fornaro, G.; Radicioni, F.; Stoppini, A.; Brigante, R. Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis. Int. J. Remote Sens. 2013, 34, 4083–4104. [Google Scholar] [CrossRef]
- Motagh, M.; Wetzel, H.U.; Roessner, S.; Kaufmann, H. A TerraSAR-X InSAR study of landslides in southern Kyrgyzstan, Central Asia. Remote Sens. Lett. 2013, 4, 657–666. [Google Scholar] [CrossRef]
- Kiseleva, Е.; Mikhailov, V.; Smolyaninova, E.; Dmitriev, P.; Golubev, V.; Timoshkina, E.; Hanssen, R. PS-InSAR monitoring of landslide activity in the Black Sea coast of the Caucasus. Procedia Technol. 2014, 16, 404–413. [Google Scholar] [CrossRef]
- Calò, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Manunta, M. Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sens. Environ. 2014, 142, 69–82. [Google Scholar] [CrossRef]
- Del Ventisette, C.; Righini, G.; Moretti, S.; Casagli, N. Multitemporal landslides inventory map updating using spaceborne SAR analysis. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 238–246. [Google Scholar] [CrossRef]
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Rucci, A. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens. Environ. 2017, in press. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Remote sensing of landslide motion with emphasis on satellite multitemporal interferometry applications: An overview. In Landslide Hazards, Risks and Disasters; Academic Press: Boston, MA, USA, 2015; pp. 345–403. [Google Scholar]
- Rucci, A.; Ferretti, A.; Monti Guarnieri, A.; Rocca, F. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens. Environ. 2012, 120, 156–163. [Google Scholar] [CrossRef]
- Huang, Q.; Crosetto, M.; Monserrat, O.; Crippa, B. Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data. ISPRS J. Photogramm. Remote Sens. 2017, 128, 204–211. [Google Scholar] [CrossRef]
- Tang, P.; Chen, F.; Guo, H.; Tian, B.; Wang, X.; Ishwaran, N. Large-area landslides monitoring using advanced multi-temporal InSAR technique over the giant panda habitat, Sichuan, China. Remote Sens. 2015, 7, 8925–8949. [Google Scholar] [CrossRef]
- Bouali, E.H.; Oommen, T.; Escobar-Wolf, R. Interferometric stacking toward geohazard identification and geotechnical asset monitoring. J. Infrastruct. Syst. 2016, 22, 05016001. [Google Scholar] [CrossRef]
- Barboux, C.; Delaloye, R.; Lambiel, C. Inventorying slope movements in an Alpine environment using DInSAR. Earth Surf. Process. Landf. 2014, 39, 2087–2099. [Google Scholar] [CrossRef]
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. An approach to Persistent Scatterer Interferometry. Remote Sens. 2014, 6, 6662–6679. [Google Scholar] [CrossRef]
- Solari, L.; Barra, A.; Herrera, G.; Bianchini, S.; Monserrat, O.; Bejar, M.; Crosetto, M.; Sarro, R.; Salviati, P.; Moretti, S. Vulnerable Elements Activity Maps based on Sentinel-1 InSAR. Nat. Hazard Earth Sci. 2017–2018. submit. [Google Scholar]
- Yague-Martinez, N.; Prats-Iraola, P.; Rodriguez Gonzalez, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef]
- Prats-Iraola, P.; Scheiber, R.; Marotti, L.; Wollstadt, S.; Reigber, A. TOPS interferometry with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3179–3188. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, R. Radar Interferometry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Meisina, C.; Zucca, F.; Notti, D.; Colombo, A.; Cucchi, A.; Savio, G.; Giannico, C.; Bianchi, M. Geological Interpretation of PSInSAR Data at Regional Scale. Sensors 2008, 8, 7469–7492. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, S.; Cigna, F.; Righini, G.; Proietti, C.; Casagli, N. Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry. Environ. Earth Sci. 2012, 67, 1155–1172. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Seal, D. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
Med(ρ) | Noise-Velocity Ratio (%) | Class |
---|---|---|
<0.53 | >35 | 4 |
0.53–0.70 | 35–25 | 3 |
0.70–0.84 | 25–15 | 2 |
>0.84 | <15 | 1 |
Med(ρ) | Cumulative Frequency (%) | Class |
---|---|---|
<0.53 | <2 | 4 |
0.53–0.7 | 2–25 (1st quantile) | 3 |
0.7–0.84 | 25–75 (2nd and 3rd quantiles) | 2 |
>0.84 | >75 (4th quantile) | 1 |
Satellite | Sentinel-1A |
---|---|
Acquisition mode | Wide Swath |
Period | November 2014–March 2017 |
Minimum revisit period (days) | 12 |
Wavelength (λ) (cm) | 5.55 |
Polarization | VV |
Full resolution (azimuth/range) (m) | 14/4 |
Multi-look 1 × 5 resolution (azimuth/range) (m) | 14/20 |
Multi-look 2 × 10 resolution (azimuth/range) (m) | 28/40 |
Orbit | Descending |
Incidence angle of the area of interest | 36.47°–41.85° |
Image | Date | Image | Date | Image | Date | Image | Date |
---|---|---|---|---|---|---|---|
1 | 5 November 2014 | 18 | 8 August 2015 | 35 | 28 February 2016 | 52 | 13 October 2016 |
2 | 17 November 2014 | 19 | 20 August 2015 | 36 | 11 March 2016 | 53 | 25 October 2016 |
3 | 29 November 2014 | 20 | 1 September 2015 | 37 | 23 March 2016 | 54 | 6 November 2016 |
4 | 11 December 2014 | 21 | 13 September 2015 | 38 | 4 April 2016 | 55 | 18 November 2016 |
5 | 23 December 2014 | 22 | 25 September 2015 | 39 | 16 April 2016 | 56 | 30 November 2016 |
6 | 4 January 2015 | 23 | 7 October 2015 | 40 | 28 April 2016 | 57 | 12 December 2016 |
7 | 16 January 2015 | 24 | 19 October 2015 | 41 | 10 May 2016 | 58 | 24 December 2016 |
8 | 28 January 2015 | 25 | 31 October 2015 | 42 | 22 May 2016 | 59 | 5 January 2017 |
9 | 9 February 2015 | 26 | 12 November 2015 | 43 | 3 June 2016 | 60 | 17 January 2017 |
10 | 21 February 2015 | 27 | 24 November 2015 | 44 | 15 June 2016 | 61 | 29 January 2017 |
11 | 5 March 2015 | 28 | 6 December 2015 | 45 | 9 July 2016 | 62 | 22 February 2017 |
12 | 17 March 2015 | 29 | 18 December 2015 | 46 | 21 July 2016 | 63 | 6 March 2017 |
13 | 29 March 2015 | 30 | 30 December 2015 | 47 | 2 August 2016 | 64 | 18 March 2017 |
14 | 9 June 2015 | 31 | 11 January 2016 | 48 | 14 August 2016 | ||
15 | 3 July 2015 | 32 | 23 January 2016 | 49 | 7 September 2016 | ||
16 | 15 July 2015 | 33 | 4 February 2016 | 50 | 19 September 2016 | ||
17 | 27 July 2015 | 34 | 16 February 2016 | 51 | 1 October 2016 |
Field | Description | Units |
---|---|---|
Join Count | Number of unstable points grouped in the hotspot | - |
Fi | WGS84 Geographic Latitude (average of the grouped PSs) | ° |
Lambda | WGS84 Geographic Longitude (average of the grouped PSs) | ° |
E | WGS84 UTM zone 32N—East (average of the grouped PSs) | m |
N | WGS84 UTM zone 32N—North (average of the grouped PSs) | m |
H | SRTM Height (average of the grouped PSs) | m |
Acc. Defo. | Accumulated deformation (average of the grouped PSs) | mm |
Velocity mean | Mean velocity of the hotspot (average of the grouped PSs) | mm/year |
Velo max | Maximum velocity of the PSs grouped in the hotspot | mm/year |
Velo min | Minimum velocity of the PSs grouped in the hotspot | mm/year |
QI | Quality index of the ADA | - |
Class | Classification of the hotspots based on the Velo max. | - |
V1 | V2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Intersect | No Intersect | Total | Intersect | No Intersect | ||||||||
QI | n° | % | n° | % | n° | % | QI | n° | % | n° | % | n° | % |
1 | 36 | 50% | 24 | 33% | 12 | 17% | 1 | 32 | 27% | 19 | 16% | 13 | 11% |
2 | 13 | 18% | 3 | 4% | 10 | 14% | 2 | 19 | 16% | 7 | 6% | 12 | 10% |
3 | 6 | 8% | 1 | 1% | 5 | 7% | 3 | 17 | 14% | 5 | 4% | 12 | 10% |
4 | 17 | 24% | 2 | 3% | 15 | 21% | 4 | 52 | 43% | 5 | 4% | 47 | 39% |
Total | 72 | 100% | 30 | 42% | 42 | 58% | Total | 120 | 100% | 37 | 31% | 84 | 70% |
V1 and V2 ADA Summary | |||
---|---|---|---|
QI Class | Tot | Intersection | No Intersection |
1 | 68 | 43 | 25 |
2 | 32 | 10 | 22 |
3 | 23 | 6 | 17 |
4 | 69 | 7 | 62 |
Total | 192 | 66 | 126 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.M.; et al. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sens. 2017, 9, 1002. https://doi.org/10.3390/rs9101002
Barra A, Solari L, Béjar-Pizarro M, Monserrat O, Bianchini S, Herrera G, Crosetto M, Sarro R, González-Alonso E, Mateos RM, et al. A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sensing. 2017; 9(10):1002. https://doi.org/10.3390/rs9101002
Chicago/Turabian StyleBarra, Anna, Lorenzo Solari, Marta Béjar-Pizarro, Oriol Monserrat, Silvia Bianchini, Gerardo Herrera, Michele Crosetto, Roberto Sarro, Elena González-Alonso, Rosa María Mateos, and et al. 2017. "A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images" Remote Sensing 9, no. 10: 1002. https://doi.org/10.3390/rs9101002
APA StyleBarra, A., Solari, L., Béjar-Pizarro, M., Monserrat, O., Bianchini, S., Herrera, G., Crosetto, M., Sarro, R., González-Alonso, E., Mateos, R. M., Ligüerzana, S., López, C., & Moretti, S. (2017). A Methodology to Detect and Update Active Deformation Areas Based on Sentinel-1 SAR Images. Remote Sensing, 9(10), 1002. https://doi.org/10.3390/rs9101002