Response of Canopy Solar-Induced Chlorophyll Fluorescence to the Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll
"> Figure 1
<p>The distribution of the three experimental sites in China.</p> "> Figure 2
<p>The photographs of studied canopies at XTS Farm in November (left, winter wheat), Nanbin Farm (middle, cotton) and Sanya Station (right, gold coin grass).</p> "> Figure 3
<p>The ratio of <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>fPAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> to <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>fPAR</mi> </mrow> <mrow> <mi>g</mi> <mi>r</mi> <mi>e</mi> <mi>e</mi> <mi>n</mi> </mrow> </msub> </mrow> </semantics> </math> for canopies with different LAI and Cab based on the simulation carried out by the SCOPE model.</p> "> Figure 4
<p>The relationship between <math display="inline"> <semantics> <mrow> <mi>S</mi> <mi>I</mi> <msub> <mi>F</mi> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> and APAR<sub>chl</sub> at the O<sub>2</sub>-A (<b>a</b>) and O<sub>2</sub>-B (<b>b</b>) bands for different values of the Cab content. These results were obtained using the simulated dataset.</p> "> Figure 5
<p>The ratio of <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> to <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> for canopies with different Cab content at the O<sub>2</sub>-A (<b>a</b>) and O<sub>2</sub>-B (<b>b</b>) bands based on the simulated dataset.</p> "> Figure 6
<p>The relationship between <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> at the O<sub>2</sub>-A (<b>a</b>) and O<sub>2</sub>-B (<b>b</b>) bands for different LAI values, as obtained using the simulated dataset.</p> "> Figure 7
<p>The ratio of <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> to <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> for canopies with different values of the LAI at the O<sub>2</sub>-A (<b>a</b>) and O<sub>2</sub>-B (<b>b</b>) bands, as obtained using the simulated dataset.</p> "> Figure 8
<p>The relationship between <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> at the O<sub>2</sub>-A (<b>a</b>) and O<sub>2</sub>-B (<b>b</b>) bands for different plant types, as obtained using the simulated dataset (LAI = 3 m<sup>2</sup> m<sup>−2</sup>, Cab = 40 μg cm<sup>−2</sup>).</p> "> Figure 9
<p>The diurnal cycle of incoming PAR (<b>a</b>) and SIF (<b>b,</b><b>c</b>) at O<sub>2</sub>-A and O<sub>2</sub>-B bands for XTS<sub>Apr</sub> and Sanya Station measurements.</p> "> Figure 10
<p>The relationship between the <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> at the O<sub>2</sub>-A (<b>a</b>,<b>c</b>) and O<sub>2</sub>-B (<b>b</b>,<b>d</b>) bands for experiment data obtained under different fertilization treatments (<b>a</b>,<b>b</b>) and varieties (<b>c</b>,<b>d</b>) at XTS Farm in November.</p> "> Figure 11
<p>The relationship between <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> at the O<sub>2</sub>-A (upper) and O<sub>2</sub>-B (bottom) bands for different values of the Cab content obtained using the experimental dataset at Nanbin (<b>a</b>) XTS (<b>b</b>,<b>c</b>) Farm.</p> "> Figure 12
<p>The relationship between <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> at the O<sub>2</sub>-A (<b>a</b>,<b>c</b>) and O<sub>2</sub>-B (<b>b</b>,<b>d</b>) bands for different values of the <math display="inline"> <semantics> <mrow> <msub> <mi>f</mi> <mi>c</mi> </msub> </mrow> </semantics> </math> obtained using the experimental dataset at Nanbin (<b>a</b>,<b>b</b>) and XTS (<b>c</b>,<b>d</b>) Farm in November.</p> "> Figure 13
<p>The relationship between <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>APAR</mi> </mrow> <mrow> <mi>c</mi> <mi>h</mi> <mi>l</mi> </mrow> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>SIF</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> <mi>n</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi> </mrow> </msub> </mrow> </semantics> </math> at the O<sub>2</sub>-A (<b>a</b>) and O<sub>2</sub>-B (<b>b</b>) bands for different plant types based on the experimental data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Data
2.2. Field Experiments
2.3. Details of the Spectral Measurements and SIF Retrieval Method
2.4. Measurement of and
3. Results
3.1. The Relationship between and
3.2. The Relationship between and Based on the Simulated Data
3.2.1. Effect of Chlorophyll Content on the Relationship between and
3.2.2. Effect of LAI on the Relationship between and
3.2.3. Effect of Plant Structure Type on the Relationship between and
3.3. The Relationship between and Based on the Experimental Data
3.3.1. The Diurnal Cycle of Incoming PAR and SIF Signal for XTSApr and Sanya Station
3.3.2. The Influence of Different Fertilization Treatments and Varieties on the Relationship between and
3.3.3. Effect of Cab and on the Relationship between and
3.3.4. Effect of Plant Structure Type on the Relationship between and
4. Discussion
4.1. Uncertainties in the SIF Retrieval and Measurements
4.2. The Link between and
4.3. The Consistency between Simulations and Experimental Measurements
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.R.; Zhu, X.J.; Fu, Y.L.; He, H.L.; Wang, Q.F.; Wen, X.F.; Li, X.R.; Zhang, L.M.; Zhang, L.; Su, W. Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob. Chang. Biol. 2013, 19, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere–the state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 2011, 116, 245–255. [Google Scholar] [CrossRef]
- Xiao, J.F.; Zhuang, Q.L.; Law, B.E.; Chen, J.; Baldocchi, D.D.; Cook, D.R.; Oren, R.; Richardson, A.D.; Wharton, S.; Ma, S. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 2009, 114, 576–591. [Google Scholar] [CrossRef]
- Xiao, J.; Ollinger, S.V.; Frolking, S.; Hurtt, G.C.; Hollinger, D.Y.; Davis, K.J.; Pan, Y.; Zhang, X.; Deng, F.; Chen, J. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agric. For. Meteorol. 2014, 197, 142–157. [Google Scholar] [CrossRef]
- Zeng, N.; Mariotti, A.; Wetzel, P. Terrestrial mechanisms of interannual CO2 variability. Glob. Biogeochem. Cycles 2005, 19, 159–171. [Google Scholar] [CrossRef]
- Collatz, G.J.; Ribascarbo, M.; Berry, J.A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 1992, 19, 519–538. [Google Scholar]
- Xia, J.; Chen, J.; Piao, S.; Ciais, P.; Luo, Y.; Wan, S. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 2014, 7, 173–180. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.S.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. BioScience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Yuan, W.P.; Liu, S.G.; Zhou, G.S.; Zhou, G.Y.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Iii, B.M. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Iii, B.M.; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Berry, J.A.; Frankenberg, C.; Wennberg, P.O. A new method for measurement of photosynthesis from space. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 9–13 December 2013. [Google Scholar]
- Damm, A.; Guanter, L.; Paul-Limoges, E.; van der Tol, C.; Hueni, A.; Buchmann, N.; Eugster, W.; Ammann, C.; Schaepman, M.E. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches. Remote Sens. Environ. 2015, 166, 91–105. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Hu, J. Effects of spectral resolution and SNR on the vegetation solar-induced fluorescence retrieval using FLD-based methods at canopy level. Eur. J. Remote Sens. 2015, 48, 743–762. [Google Scholar] [CrossRef]
- Rascher, U.; Alonso, L.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanus, J. Sun-induced fluorescence—A new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Chang. Biol. 2015, 21, 4673–4684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Corp, L.A.; Middleton, E.M. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosci. Discuss. 2011, 8, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38, 351–365. [Google Scholar] [CrossRef]
- Köhler, P.; Guanter, L.; Frankenberg, C. Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1446–1450. [Google Scholar] [CrossRef]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Frankenberg, C.; O′Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Pollock, R.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Middleton, E.M.; Campbell, P.K.E.; Yoshida, Y.; Kuze, A.; Corp, L.A. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: Simulations and space-based observations from SCIAMACHY and GOSAT. Atmos. Meas. Tech. 2012, 5, 163–210. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Guanter, L.; Middleton, E.M. New methods for retrieval of chlorophyll red fluorescence from hyper-spectral satellite instruments: Simulations and application to GOME-2 and SCIAMACHY. Atmos. Meas. Tech. 2016, 9, 3939–3967. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef]
- Köhler, P.; Guanter, L.; Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 2015, 8, 2589–2608. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.; Heinsch, F.A.; Nemani, R. MODIS-derived terrestrial primary production. In Land Remote Sensing and Global Environmental Change; Springer: New York, NY, USA, 2010; pp. 635–660. [Google Scholar]
- Huete, A.; Ponce-Campos, G.; Zhang, Y.; Restrepo-Coupe, N.; Ma, X.; Moran, M.S. Monitoring Photosynthesis from Space. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; CRC Press: Boca Raton, FL, USA, 2015; pp. 3–22. [Google Scholar]
- Liu, L.; Liu, X.; Wang, Z. Measurement and analysis of bidirectional SIF emissions in wheat canopies. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2640–2651. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065. [Google Scholar] [CrossRef] [PubMed]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.E. Reply to Magnani et al.: Linking large-scale chlorophyll fluorescence, observations with cropland gross primary production. Proc. Natl. Acad. Sci. USA 2014, 111, E2511. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Sunlit Leaf Photosynthesis Rate Correlates Best with Chlorophyll Fluorescence of Terrestrial Ecosystems. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2014. [Google Scholar]
- Zhang, Y.; Guanter, L.; Berry, J.A.; Tol, C.V.D.; Yang, X.; Tang, J.; Zhang, F. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 2016, 187, 145–155. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.; Liu, X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agric. For. Meteorol. 2017, 232, 1–9. [Google Scholar] [CrossRef]
- Schlau-Cohen, G.S.; Berry, J. Photosynthetic fluorescence, from molecule to planet. Phys. Today 2015, 68, 66–67. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.-E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [Google Scholar] [CrossRef]
- Lee, J.E.; Berry, J.A.; Christiaan, V.D.T.; Yang, X.; Guanter, L.; Damm, A.; Baker, I.; Frankenberg, C. Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4. Glob. Chang. Biol. 2015, 21, 3469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Tol, C.; Verhoef, W.; Rosema, A. A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agric. For. Meteorol. 2009, 149, 96–105. [Google Scholar] [CrossRef]
- Plascyk, J.A.; Ribas-Carbo, M.; Berry, J. The MK II Fraunhofer Line Discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence. Opt. Eng. 1975, 14, 339–346. [Google Scholar] [CrossRef]
- Maier, S.W.; Günther, K.P.; Stellmes, M. Sun-induced fluorescence: A new tool for precision farming. In Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology; ASA Special Publication: Madison, WI, USA, 2003; pp. 209–222. [Google Scholar]
- Alonso, L.; Gómezchova, L.; Vilafrancés, J.; Amoros-Lopez, J.; Guanter, L.; Calpe, J.; Moreno, J. Improved Fraunhofer line discrimination method for vegetation fluorescence quantification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 620–624. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Hu, J.; Guan, L. Assessing the wavelength-dependent ability of solar-induced chlorophyll fluorescence to estimate the GPP of winter wheat at the canopy level. Int. J. Remote Sens. 2017, 38, 4396–4417. [Google Scholar] [CrossRef]
- Liu, L.; Peng, D.; Hu, Y.; Jiao, Q. A novel in situ FPAR measurement method for low canopy vegetation based on a digital camera and reference panel. Remote Sens. 2013, 5, 274–281. [Google Scholar] [CrossRef]
- Fournier, A.; Goulas, Y.; Daumard, F.; Ounis, A.; Champagne, S.; Moya, I. Effects of vegetation directional reflectance on sun-induced fluorescence retrieval in the oxygen absorption bands. In Proceedings of the IEEE 5th International Workshop Remote Sensing of Vegetation Fluorescence, Paris, France, 22–24 April 2014; pp. 1–5. [Google Scholar]
- Damm, A.; Guanter, L.; Verhoef, W.; Schläpfer, D.; Garbari, S.; Schaepman, M.E. Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sens. Environ. 2015, 156, 202–215. [Google Scholar] [CrossRef]
- Verrelst, J.; Tol, C.V.D.; Magnani, F.; Sabater, N.; Rivera, J.P.; Mohammed, G.; Moreno, J. Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. Remote Sens. Environ. 2016, 176, 139–151. [Google Scholar] [CrossRef]
- Goulas, Y.; Fournier, A.; Daumard, F.; Champagne, S.; Ounis, A.; Marloie, O.; Moya, I. Gross primary production of a wheat canopy relates stronger to far red than to red solar-induced chlorophyll fluorescence. Remote Sens. 2017, 9, 97. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; van der Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 2015, 166, 8–21. [Google Scholar] [CrossRef]
- Yang, L. Structure of the red fluorescence band in chloroplasts. J. Gen. Phys. 1966, 49, 763–780. [Google Scholar]
- Brody, S.S.; Brody, M. Fluorescence properties of aggregated chlorophyll in vivo and in vitro. Trans. Faraday Soc. 1962, 58, 416–428. [Google Scholar] [CrossRef]
- Fournier, A.; Daumard, F.; Champagne, S.; Ounis, A.; Goulas, Y.; Moya, I. Effect of canopy structure on sun-induced chlorophyll fluorescence. ISPRS J. Photogramm. Remote Sens. 2012, 68, 112–120. [Google Scholar] [CrossRef]
- Middleton, E.M.; Cheng, Y.B.; Campbell, P.K.; Huemmrich, K.F.; Zhang, Q.; Kustas, W.P. Canopy level chlorophyll fluorescence and the PRI in a cornfield. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Munich, Germany, 22–27 July 2012; pp. 7117–7120. [Google Scholar]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant Phys. 1998, 152, 283–296. [Google Scholar] [CrossRef]
- Van der Tol, C.; Berry, J.; Campbell, P.; Rascher, U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. 2014, 119, 2312–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Description | Value/Range | Default | Unit |
---|---|---|---|---|
Cab | Leaf chlorophyll a + b content | 5, 10, 20, 30, 40, 50, 60, 80 | 40 | μg/cm2 |
LAI | Leaf area index | 0.5, 1.5, 3, 4, 5, 7 | 3 | m2/m2 |
LIDFa + LIDFb | Leaf inclination | [1, 0], [−1, 0], [0, −1], [0, 1], [0, 0], [−0.35, −0.15] | [−0.35, −0.15] | - |
SZA | Solar zenith angle | 27, 29, 31, 36, 39, 46, 50, 57, 61, 68, 72 | - | degree |
VZA | View zenith angle | 0 | - | degree |
XTSApr 8&9 Apr. | XTSApr 18 Apr. | XTSNov 7 Nov. | XTSNov 8 Dec. | Sanya Station | Nanbin Farm | |
---|---|---|---|---|---|---|
Latitude Longitude | 11′N 27′E | 11′N 27′E | 11′N 27′E | 11′N 27′E | 18′N 18′E | 22′N 10′E |
Vegetation type | Wheat | Wheat | Wheat | Wheat | Gold coin grass | Vegetables and crops |
Cab ( μg cm−2) | 55.29 | 53.68 | 40.98–54.38 | 21.22–54.38 | 40.83 | 15.22–56.68 |
LAI (m2 m−2) | 2.48 | 2.92 | - | - | - | - |
Canopy Structure | Spherical | Spherical | Spherical | Spherical | Planophile | Planophile |
Fc | 0.72 | 0.79 | 0.15–0.52 | 0.21–0.63 | 0.67 | 0.28–0.91 |
Objective | Diurnal experiment | Diurnal experiment | Fertilization treatments | Varieties treatments | Diurnal experiment | Multispecies experiment |
Field Experiment Dataset | ||||||
XTS Farm | Sanya Station | Nanbin Farm | All | |||
O2-A band | y = 0.0050x + 0.0261 R2 = 0.9150, RMSE = 0.0820 y = 0.0052x () | y = 0.0065x + 0.1220 R2 = 0.7870, RMSE = 0.1540 y = 0.0076x () | y = 0.0134x − 0.3721 R2 = 0.8390, RMSE = 0.2030 y = 0.0092x () | y = 0.0062x + 0.0240 R2 = 0.6551, RMSE = 0.2070 y = 0.0064x | ||
O2-B band | y = 0.0032x + 0.0095 R2 = 0.8190, RMSE = 0.0830 y = 0.0033x () | y = 0.0035x + 0.1650 R2 = 0.7070 RMSE = 0.0900 y = 0.0049x () | y = 0.0034x + 0.2559 R2 = 0.3360, RMSE = 0.1670 y = 0.0063x () | y = 0.0032x + 0.1103 R2 = 0.5192, RMSE = 0.1500 y = 0.0041x | ||
Simulated Dataset | ||||||
Erectophile | Spherical | Planophile | ||||
O2-A band | y = 0.0035x − 0.0763 R2 = 0.9940, RMSE = 0.0170 y = 0.0031x () | y = 0.0057x − 0.0372 R2 = 0.9992, RMSE = 0.0120 y = 0.0055x () | y = 0.0067x + 0.0321 R2 = 0.9998, RMSE = 0.0160 y = 0.0068x () | |||
O2-B band | y = 0.0017x − 0.0598 R2 = 0.979, RMSE = 0.0150 y = 0.0014x () | y = 0.0034x − 0.0506 R2 = 0.9965, RMSE = 0.014 y = 0.0032x () | y = 0.0046x + 0.0232 R2 = 0.9995, RMSE = 0.0090 y = 0.0047x () |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Liu, L.; Liu, X.; Hu, J. Response of Canopy Solar-Induced Chlorophyll Fluorescence to the Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll. Remote Sens. 2017, 9, 911. https://doi.org/10.3390/rs9090911
Du S, Liu L, Liu X, Hu J. Response of Canopy Solar-Induced Chlorophyll Fluorescence to the Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll. Remote Sensing. 2017; 9(9):911. https://doi.org/10.3390/rs9090911
Chicago/Turabian StyleDu, Shanshan, Liangyun Liu, Xinjie Liu, and Jiaochan Hu. 2017. "Response of Canopy Solar-Induced Chlorophyll Fluorescence to the Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll" Remote Sensing 9, no. 9: 911. https://doi.org/10.3390/rs9090911
APA StyleDu, S., Liu, L., Liu, X., & Hu, J. (2017). Response of Canopy Solar-Induced Chlorophyll Fluorescence to the Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll. Remote Sensing, 9(9), 911. https://doi.org/10.3390/rs9090911