Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations
"> Figure 1
<p>Study domain. The spatial pattern of climatological (1998–2015) precipitation (mm year<sup>−1</sup>). The data are from TRMM monthly retrievals (version 3B43; 0.25° × 0.25°). Two of the blue lines represent two major rivers in the ASB, which generally includes the area to the east of 56°E in the study domain. Light-yellow color indicates the desert areas, defined as areas where annual precipitation is less than 250 mm. The two black arrows denote the direction of the river flow.</p> "> Figure 2
<p>(<b>a</b>) Spatial patterns of linear trends (cm year<sup>−1</sup>) of liquid water equivalent thickness. The data are retrieved by GRACE from 2003 to 2014. The dots represent the grids that are confident at the 95% level based on the two-tailed Student’s <span class="html-italic">t</span>-test. The boxes of blue, red, and black marked by “DNS”, “UPS”, and “WHB” represent the down-stream, up-stream, and the whole basin region, respectively. (<b>b</b>) The yearly time series of water volume anomaly (km<sup>3</sup>) in the three regions and TRMM precipitation (mm day<sup>−1</sup>) in the WHB.</p> "> Figure 3
<p>(<b>a</b>–<b>c</b>) The spatial patterns of NDVI. The data are from MODIS 16-day retrievals (version MOD13Q1; 250 × 250 m). The blue color denotes water body area. The Aral Sea is divided into three regions (NAS: north Aral Sea; SWAS: southwest Aral Sea; and SEAS: southeast Aral Sea) for further analysis. (<b>d</b>) Water surface area (left y-axis; km<sup>2</sup>) of the whole Aral Sea and three sub-regions and the water volume anomaly (right y-axis; km<sup>3</sup>) of the whole Aral Sea (defined within 44°N—46.5°N, 58.5°E—61°E) in the past decade. Water surface area is based on MODIS NDVI data on 25 or 26 June of each year and water volume anomaly is from GRACE yearly data. The shadings are the ranges of the water surface area based on two different NDVI thresholds of 0 and −0.18.</p> "> Figure 4
<p>Trends of temperature (°C year<sup>−1</sup>) for: (<b>a</b>) daytime; (<b>b</b>) nighttime; (<b>c</b>) daily average; and (<b>d</b>) diurnal temperature range (daytime minus nighttime temperature) from 2003 to 2015. Dots represent the grids that are confident at the 95% level. The red star in panel b represents the location of the Dike Kokaral dam.</p> "> Figure 5
<p>Trends of: (<b>a</b>) MODIS AOD (AOD decade<sup>−1</sup>); (<b>b</b>) TRMM precipitation (mm day<sup>−1</sup> decade<sup>−1</sup>); (<b>c</b>) CERES cloud cover fraction (% decade<sup>−1</sup>); (<b>d</b>) ESA CCI soil moisture (10<sup>−3</sup> m<sup>3</sup> m<sup>−3</sup> decade<sup>−1</sup>); and (<b>e</b>) MODIS NDVI (10<sup>−3</sup> NDVI decade<sup>−1</sup>) during 2003 to 2015 except for soil moisture which spans from 2003 to 2014. Dots represent the grids that are confident at the 95% level. Gray colors in (<b>c</b>,<b>d</b>) indicate water bodies.</p> "> Figure 6
<p>Summary of all trends computed in this study and the relationship between these trends. Trends of (<b>a</b>) water volume anomaly in the ASB, (<b>b</b>) water surface area of the Aral Sea, (<b>c</b>) surface temperature of the Aral Sea, and (<b>d</b>) related climate variables in the ASB. All trends are significant at 95% confidence level. The dark and light blue arrows respectively represent the cause-effect relationship and possible linkage between various trends. N.S. means no significant trends was detected.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. MODIS NDVI
2.2. MODIS AOD
2.3. MODIS Surface Temperature and Cloud
2.4. GRACE
2.5. Other Satellite Retrievals
2.6. Statistical Method
3. Results
3.1. The Shrinking Aral Sea
3.2. LST Trend
3.3. AOD Trend
3.4. Other Climate Trends
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Huang, J.P.; Yu, H.P.; Dai, A.G.; Wei, Y.; Kang, L.T. Drylands face potential threat under 2 °C global warming target. Nat. Clim. Chang. 2017, 7, 417–422. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.H.; Khan, S.; Ma, X.Y. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. Mater. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Higgins, G.M.; Dieleman, P.J.; Abernethy, C.L. Trends in Irrigation Development, and Their Implications for Hydrologists and Water-Resources Engineers. Hydrol. Sci. J. 1988, 33, 43–59. [Google Scholar] [CrossRef]
- Micklin, P.P. Desiccation of the Aral Sea—A Water Management Disaster in the Soviet-Union. Science 1988, 241, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.P.; Yu, H.P.; Guan, X.D.; Wang, G.Y.; Guo, R.X. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Luo, G.; Chen, X.; Maisupova, B.; Madaminov, A.A.; Han, Q.; Djenbaev, B.M. Carbon stock and its responses to climate change in Central Asia. Glob. Chang. Biol. 2015, 21, 1951–1967. [Google Scholar] [CrossRef] [PubMed]
- Micklin, P. The Aral Sea disaster. Annu. Rev. Earth Planet. Sci. 2007, 35, 47–72. [Google Scholar] [CrossRef]
- The World Bank. Irrigation in Central Asia. 2003. Available online: http://siteresources.worldbank.org/ECAEXT/Resources/publications/Irrigation-in-Central-Asia/Irrigation_in_Central_Asia-Full_Document-English.pdf (accessed on 15 August 2017).
- Gaybullaev, B.; Chen, S.C.; Gaybullaev, D. Changes in water volume of the Aral Sea after 1960. Appl. Water Sci. 2012, 2, 285–291. [Google Scholar] [CrossRef]
- Nurushev, A. Crisis of the Aral Sea. Himal. Cent. Asian Stud. 1999, 3, 50–58. [Google Scholar]
- Parajuli, S.P.; Yang, Z.L. Understanding dust emission in the Bodele region by extracting locally mobilized dust aerosols from satellite Aerosol Optical Depth data using principal component analysis. Aeolian Res. 2017, 24, 105–113. [Google Scholar] [CrossRef]
- Small, E.E.; Sloan, L.C.; Nychka, D. Changes in surface air temperature caused by desiccation of the Aral Sea. J. Clim. 2001, 14, 284–299. [Google Scholar] [CrossRef]
- Conrad, C.; Schonbrodt-Stitt, S.; Low, F.; Sorokin, D.; Paeth, H. Cropping Intensity in the Aral Sea Basin and Its Dependency from the Runoff Formation 2000–2012. Remote Sens. 2016, 8, 630. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M.; Guo, W. Long-term hydrological changes of the Aral Sea observed by satellites. J. Geophys. Res. Oceans 2014, 119, 3313–3326. [Google Scholar] [CrossRef]
- Zmijewski, K.; Becker, R. Estimating the Effects of Anthropogenic Modification on Water Balance in the Aral Sea Watershed Using GRACE: 2003–12. Earth Interact. 2014, 18, 1–16. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Wielicki, B.A. Clouds and the Earth’s radiant energy system (CERES): An earth observing system experiment. Bull. Am. Meteorol. Soc. 1996, 77, 853–868. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Sol. Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; de Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.N.; Li, W.H.; Deng, H.J.; Fang, G.H.; Li, Z. Changes in Central Asia's Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.F.; Dirmeyer, P.A.; Wisser, D.; Bosilovich, M.G.; Mocko, D.M. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA. J. Hydrometeorol. 2013, 14, 275–289. [Google Scholar] [CrossRef]
- Bank TW. Saving a Corner of the Aral Sea. 2005. Available online: http://www.worldbank.org/en/results/2005/09/01/saving-a-corner-of-the-aral-sea (accessed on 15 August 2017).
- Baidya Roy, S.; Smith, M.; Morris, L.; Orlovsky, N.; Khalilov, A. Impact of the desiccation of the Aral Sea on summertime surface air temperatures. J. Arid Environ. 2014, 110, 79–85. [Google Scholar] [CrossRef]
- O’Hara, S.L.; Wiggs, G.F.S.; Mamedov, B.; Davidson, G.; Hubbard, R.B. Exposure to airborne dust contaminated with pesticide in the Aral Sea region. Lancet 2000, 355, 627–628. [Google Scholar] [CrossRef]
- Bozheyeva, G.; Kunakbayev, Y.; Yeleukenov, D. Former Soviet Biological Weapons Facilities in Kazakhstan. Past Present and Future. Available online: http://nsarchive2.gwu.edu//NunnLugar/2015/49.%201999-06-00%20Former%20Soviet%20Biological%20Weapons%20Facilities%20in%20Kazakhstan.Past%20Present%20and%20Future%20%28from%20Web%29.pdf (accessed on 15 August 2017).
- ScienceScope. Bioweapons cleanup. Science 2002, 295, 603. [Google Scholar]
- Pandey, A.C.; Jha, N.K. Central Asia: Democratic deficit and challenges of sustainable development. J. Environ. Res. Dev. 2007, 1, 403–411. [Google Scholar]
- Anand, R.K. The Aral Sea Disaster and Health Crisis. IOSR J. Humanit. Soc. Sci. 2015, 20, 32–37. [Google Scholar]
- Phillip, W.W. The Aral Sea environmental health crisis. J. Rural Remote Environ. Health 2002, 1, 29–34. [Google Scholar]
- Jin, Q.; Wei, J.; Yang, Z.L.; Pu, B.; Huang, J. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations. Atmos. Chem. Phys. 2015, 15, 9897–9915. [Google Scholar] [CrossRef]
- Jin, Q.; Yang, Z.L.; Wei, J. Seasonal Responses of Indian Summer Monsoon to Dust Aerosols in the Middle East, India, and China. J. Clim. 2016, 29, 6329–6349. [Google Scholar] [CrossRef]
- Parajuli, S.P.; Yang, Z.L.; Lawrence, D.M. Diagnostic evaluation of the Community Earth System Model in simulating mineral dust emission with insight into large-scale dust storm mobilization in the Middle East and North Africa (MENA). Aeolian Res. 2016, 21, 21–35. [Google Scholar] [CrossRef]
- Xi, X.; Sokolik, I.N. Seasonal dynamics of threshold friction velocity and dust emission in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 1536–1564. [Google Scholar] [CrossRef] [PubMed]
- Li, P.Y.; Qian, H.; Howard, K.W.F.; Wu, J.H. Building a new and sustainable “Silk Road economic belt”. Environ. Earth Sci. 2015, 74, 7267–7270. [Google Scholar] [CrossRef]
- Normile, D. China’s Belt and Road Infrastructure Plan Also Includes Science. Available online: http://www.sciencemag.org/news/2017/05/china-s-belt-and-road-infrastructure-plan-also-includes-science (accessed on 30 August 2017).
- Mischke, S.; Liu, C.; Zhang, J.; Zhang, C.; Zhang, H.; Jiao, P.; Plessen, B. The world’s earliest Aral-Sea type disaster: the decline of the Loulan Kingdom in the Tarim Basin. Sci. Rep. 2017, 7, 43102. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Bohn, T.J.; Podest, E.; McDonald, K.C.; Lettenmaier, D.P. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 2011, 6, 034021. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Q.; Wei, J.; Yang, Z.-L.; Lin, P. Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations. Remote Sens. 2017, 9, 900. https://doi.org/10.3390/rs9090900
Jin Q, Wei J, Yang Z-L, Lin P. Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations. Remote Sensing. 2017; 9(9):900. https://doi.org/10.3390/rs9090900
Chicago/Turabian StyleJin, Qinjian, Jiangfeng Wei, Zong-Liang Yang, and Peirong Lin. 2017. "Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations" Remote Sensing 9, no. 9: 900. https://doi.org/10.3390/rs9090900
APA StyleJin, Q., Wei, J., Yang, Z. -L., & Lin, P. (2017). Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations. Remote Sensing, 9(9), 900. https://doi.org/10.3390/rs9090900