Stem Measurements and Taper Modeling Using Photogrammetric Point Clouds
"> Figure 1
<p>Area showing the location of the trees: (<b>a</b>) general position of the trees within Louisiana; (<b>b</b>) locations of all the trees photographed and cut; (<b>c</b>) the four most southern trees. The yellow arrows show the size of a rectangular box (highlighted) containing the southern four trees; (<b>d</b>) lidar point cloud of the rectangle containing the southern four trees from (<b>c</b>). The arrows from (<b>c</b>) to (<b>d</b>) indicate the top of each tree in the point cloud.</p> "> Figure 2
<p>Workflow of the photogrammetric-based stem reconstruction and diameter measurement. (<b>a</b>) Field photographs for an individual tree; (<b>b</b>) structure from motion (SfM) process of reconstruction (tie points, densified points, surface); (<b>c</b>) scaling the photogrammetric point clouds (PPC) with reference bar and d<sub>1.3</sub>; (<b>d</b>) diameter measurements in AutoCAD.</p> "> Figure 3
<p>An example of a reconstructed stem, with the lower part continuous, (i.e., measurable surface), and the upper part fragmented (i.e., unsuitable for accurate measurements).</p> "> Figure 4
<p>Diameter measurements on cross sections of the stem (<b>a</b>) successfully identified by the convex hull algorithm at height 4 m, (<b>b</b>) unsuccessful identified by the convex hull algorithm at height 11 m. The red line is the circumference of the tree as computed by the convex hull algorithm.</p> "> Figure 5
<p>Variation with height of diameters measured in the field and from the PPC for the side-view measurements.</p> "> Figure 6
<p>The PPC-based error vs. the stem height; (<b>a</b>) uncorrected (<b>b</b>) after bias correction with Equation (7). The dots represents outliers, which are estimated using the interquartile range approach.</p> "> Figure 7
<p>Comparisons of the models developed with the PPC-based measurement and the ground-based measurement. (<b>a</b>) Max and Burkhart (<b>b</b>) Baldwin and Feduccia (<b>c</b>) Lenhart et al. (<b>d</b>) Kozak.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Field Data Collection
2.2. Photorammetric Point Cloud Generation and Diameter Measurements
2.3. Assessment of Measurements and Bias Correction
2.4. Taper Modeling
3. Results
3.1. Tree Construction and Diameter Measurement
3.2. Taper Equations
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
Appendix A. Estimation of Residual Bias after Application of Equation (7)
References
- Max, T.A.; Burkhart, H.E. Segmented polynomial regression applied to taper equations. For. Sci. 1976, 22, 283–289. [Google Scholar]
- Baldwin, V.C.; Feduccia, D.P. Compatible tree-volume and upper-stem diameter equations for plantation loblolly pines in the west gulf region. South. J. Appl. For. 1991, 15, 92–97. [Google Scholar]
- Lenhart, J.D.; Hackett, T.L.; Laman, C.J.; Wiswell, T.J.; Blackard, J.A. Tree content and taper functions for loblolly and slash pine trees planted on non-old-fields in east texas. South. J. Appl. For. 1987, 11, 147–151. [Google Scholar]
- Kozak, A. My last words on taper equations. For. Chron. 2004, 80, 507–515. [Google Scholar] [CrossRef]
- Avery, T.E.; Burkhart, H. Forest Measurements; Mcgraw-Hill Ryerson: New York, NY, USA, 2001; p. 480. [Google Scholar]
- Husch, B.; Beers, T.W.; Kershaw, J.A. Forest Mensuration, 4th ed.; Wiley: New Yourk, NY, USA, 2002; p. 456. [Google Scholar]
- Burkhart, H.E.; Tome, M. Modeling Forest Trees and Stands; Springer: New York, NY, USA, 2012; p. 460. [Google Scholar]
- Lee, J.-H.; Ko, Y.; McPherson, E.G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 2016, 16, 208–220. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Dig. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Williams, M.S.; Cormier, K.L.; Briggs, R.G.; Martinez, D.L. Evaluation of the barr & stroud fp15 and criterion 400 laser dendrometers for measuring upper stem diameters and heights. For. Sci. 1999, 45, 53–61. [Google Scholar]
- Shimizu, A.; Yamada, S.; Arita, Y. Diameter measurements of the upper parts of trees using an ultra-telephoto digital photography system. Open J. For. 2014, 4, 316–326. [Google Scholar] [CrossRef]
- Nunes, M.H.; Görgens, E.B. Artificial intelligence procedures for tree taper estimation within a complex vegetation mosaic in brazil. PLoS ONE 2016, 11, e0154738. [Google Scholar] [CrossRef] [PubMed]
- Cushman, K.C.; Muller-Landau, H.C.; Condit, R.S.; Hubbell, S.P. Improving estimates of biomass change in buttressed trees using tree taper models. Methods Ecol. Evol. 2014, 5, 573–582. [Google Scholar] [CrossRef]
- Saarinen, N.; Kankare, V.; Vastaranta, M.; Luoma, V.; Pyörälä, J.; Tanhuanpää, T.; Liang, X.; Kaartinen, H.; Kukko, A.; Jaakkola, A.; et al. Feasibility of terrestrial laser scanning for collecting stem volume information from single trees. ISPRS J. Photogramm. Remote Sens. 2017, 123, 140–158. [Google Scholar] [CrossRef]
- Olofsson, K.; Holmgren, J. Single tree stem profile detection using terrestrial laser scanner data, flatness saliency features and curvature properties. Forests 2016, 7, 207. [Google Scholar] [CrossRef]
- You, L.; Tang, S.; Song, X.; Lei, Y.; Zang, H.; Lou, M.; Zhuang, C. Precise measurement of stem diameter by simulating the path of diameter tape from terrestrial laser scanning data. Remote Sens. 2016, 8, 717. [Google Scholar] [CrossRef]
- Henning, J.G.; Radtke, P.J. Detailed stem measurements of standing trees from ground-based scanning lidar. For.Sci. 2006, 52, 67–80. [Google Scholar]
- Coble, D.W.; Hilpp, K. Compatible cubic-foot stem volume and upper-stem diameter equations for semi-intensive plantation grown loblolly pipe trees in east Texas. South. J. Appl. For. 2006, 30, 132–141. [Google Scholar]
- Farrar, R.M. Stem-profile functions for predicting multiple-product volumes in natural longleaf pines. South. J. Appl. For. 1987, 11, 161–167. [Google Scholar]
- Westfall, J.A. Modifying Taper-Derived Merchantable Height Estimates to Account for Tree Characteristics; USDA Forest Service: Washington, DC, USA, 2006; p. 126. [Google Scholar]
- Newnham, R.M. Variable-form taper functions for four Alberta tree species. Can. J. For. Res. 1992, 22, 210–223. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Smith, R.C.; Cheeseman, P. On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 1986, 5, 56–68. [Google Scholar] [CrossRef]
- Harris Geospatial Solutions. Envi; Exelis Visual Information Solutions: Boulder, CO, USA, 2016. [Google Scholar]
- Hexagon Geospatial. Erdas Imagine; Hexagon AB: Stockholm, Switzerland, 2016. [Google Scholar]
- Schindler, K.; Bischof, H. On robust regression in photogrammetric point clouds. In Proceedings of the Pattern Recognition: 25th Dagm Symposium, Magdeburg, Germany, 10–12 September 2003; Michaelis, B., Krell, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 172–178. [Google Scholar]
- Soule, S.; Maurice, K.; Walcher, W.; Szabo, J. Advanced Point Cloud Generation for Photogrammetric Modeling of Complex 3d Objects. In Proceedings of the International Conference on Image Processing, Rochester, NY, USA, 24–28 June 2002; IEEE: New York, NY, USA, 2002; Volume 523, pp. 529–532. [Google Scholar]
- Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Vancouverm, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Haralick, R.M. Digital step edges from zero crossing of second directional derivatives. IEEE Trans. Patt. Anal. Mach. Intell. 1984, 1, 58–68. [Google Scholar] [CrossRef]
- Agisoft LLC. Agisoft Photoscan; Agisoft: St. Petersburg, Russia, 2014. [Google Scholar]
- Pix4d; Pix4D: Lausanne, Switzerland, 2014.
- Wu, C. Visualsfm v0.5.26. Available online: http://ccwu.me/vsfm/ (accessed on 11 July 2017).
- Fritz, A.; Kattenborn, T.; Koch, B. Uav-based photogrammetric point clouds—Tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 141–146. [Google Scholar] [CrossRef]
- Forsman, M.; Börlin, N.; Holmgren, J. Estimation of tree stem attributes using terrestrial photogrammetry with a camera rig. Forests 2016, 7, 61. [Google Scholar] [CrossRef]
- Mikita, T.; Janata, P.; Surový, P. Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry. Forests 2016, 7, 165. [Google Scholar] [CrossRef]
- Mensah, S.; Glèlè Kakaï, R.; Seifert, T. Patterns of biomass allocation between foliage and woody structure: The effects of tree size and specific functional traits. Ann. For. Res. 2016, 1, 59. [Google Scholar] [CrossRef]
- Garber, S.M.; Maguire, D.A. Modeling stem taper of three central oregon species using nonlinear mixed effects models and autoregressive error structures. For. Ecol. Manag. 2003, 179, 507–522. [Google Scholar] [CrossRef]
- Valentine, H.T.; Gregoire, T.G. A switching model of bole taper. Can. J. For. Res. 2001, 31, 1400–1409. [Google Scholar] [CrossRef]
- Nyland, R.D. Silviculture. Concepts and Applications; McGraw-Hill: New York, NY, USA, 1996; p. 633. [Google Scholar]
- Smith, D.M. The Practice of Silviculture: Applied Forest Ecology, 9th ed.; Wiley: New York, NY, USA, 1997; p. 537. [Google Scholar]
- Turner, D.; Lucieer, A.; Wallace, L. Direct georeferencing of ultrahigh-resolution uav imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Liang, X.L.; Jaakkola, A.; Wang, Y.S.; Hyyppa, J.; Honkavaara, E.; Liu, J.B.; Kaartinen, H. The use of a hand-held camera for individual tree 3d mapping in forest sample plots. Remote Sens. 2014, 6, 6587–6603. [Google Scholar] [CrossRef]
- Robertson, F.D. Timber Cruising Handbook; USDA Forest Service: Washington, DC, USA, 2000; p. 268. [Google Scholar]
- Autodesk. Autocad Civil 3d; Autodesk: SanRafael, CA, USA, 2016. [Google Scholar]
- Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 1996, 22, 469–483. [Google Scholar] [CrossRef]
- Maas, H.G.; Bienert, A.; Scheller, S.; Keane, E. Automatic forest inventory parameter determination from terrestrial laser scanner data. Int. J. Remote Sens. 2008, 29, 1579–1593. [Google Scholar] [CrossRef]
- The Math Works Inc. Matlab R2017a; The Math Works Inc.: Natick, MA, USA, 2017. [Google Scholar]
- Daniilidis, K.; Spetsakis, M.E. Understanding noise sensitivity in structure from motion. In Visual Navigation; Aloimonos, Y., Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1996; pp. 61–88. [Google Scholar]
- Stängle, S.M.; Sauter, U.H.; Dormann, C.F. Comparison of models for estimating bark thickness of picea abies in southwest germany: The role of tree, stand, and environmental factors. Ann. For. Sci. 2017, 74, 16. [Google Scholar] [CrossRef]
- Montealegre, A.; Lamelas, M.; Riva, J. Interpolation routines assessment in als-derived digital elevation models for forestry applications. Remote Sens. 2015, 7, 8631–8654. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C. Topographic accuracy assessment of bare earth lidar-derived unstructured meshes. Adv. Water Resour. 2013, 52, 165–177. [Google Scholar] [CrossRef]
- Schabenberger, O.; Pierce, F.J. Contemporary Statistical Models for the Plant and Soil Sciences; CRC Press: Boca Raton, FL, USA, 2002; p. 730. [Google Scholar]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; WCB McGraw-Hill: Boston, MA, USA, 1996; p. 1408. [Google Scholar]
- Grubbs, F.E. Sample criteria for testing outlying observations. Ann. Math. Stat. 1950, 21, 27–58. [Google Scholar] [CrossRef]
- Thode, H.C. Testing for Normality; Marcel Dekker: New York, NY, USA, 2002; p. 368. [Google Scholar]
- Hollander, M.; Wolfe, D.A. Nonparametric Statistical Methods; John Wiley and Sons: New York, NY, USA, 1973; p. 503. [Google Scholar]
- SAS Institute. Sas 9.1; SAS Institute: Cary, NC, USA, 2010. [Google Scholar]
- Cao, Q.V. Calibrating a segmented taper equation with two diameter measurements. South. J. Appl. For. 2009, 33, 58–61. [Google Scholar]
- Trincado, G.; Burkhart, H.E. A generalized approach for modeling and localizing stem profile curves. For. Sci. 2006, 52, 670–682. [Google Scholar]
- Williams, M.S.; Reich, R.M. Exploring the error structure of taper equations. For. Sci. 1997, 43, 378–386. [Google Scholar]
- Grothendieck, G. Nls2: Non-Linear Regression with Brute Force, Version 0.2. The Comprehensive R Archive Network (CRAN), 2013. Available online: https://cran.r-project.org/web/packages/nls2/nls2.pdf (accessed on 11 July 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Jiang, L.-C.; Liu, R.-L. Segmented taper equations with crown ratio and stand density for dahurian larch (larix gmelinii) in Northeastern China. J. For. Res. 2011, 22, 347–352. [Google Scholar] [CrossRef]
- Sharma, M.; Zhang, S.Y. Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern canada. For. Ecol. Manag. 2004, 198, 39–53. [Google Scholar] [CrossRef]
- Grimmett, G.D.; Stirzaker, D.R. Probability and Random Processes; Oxford University Press: New York, NY, USA, 2002; p. 600. [Google Scholar]
- Poole, D. Linear Algebra; Thomson Brooks/Cole: Toronto, ON, Canada, 2005; p. 712. [Google Scholar]
- Vidal, C.; Alberdi, I.A.; Mateo, L.H.; Redmond, J.J. National Forest Inventories: Assessment of Wood Availability and Use; Springer: Cham, Switzerland, 2016; p. 845. [Google Scholar]
- Lejeune, G.; Ung, C.-H.; Fortin, M.; Guo, X.; Lambert, M.-C.; Ruel, J.-C. A simple stem taper model with mixed effects for boreal black spruce. Eur. J. For. Res. 2009, 128, 505–513. [Google Scholar] [CrossRef]
- Newberry, J.D.; Burkhart, H.E. Variable-form stem profile models for loblolly pine. Can. J. For. Res. 1986, 16, 109–114. [Google Scholar] [CrossRef]
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multi-image 3d reconstruction data evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Nikolov, I.; Madsen, C. Benchmarking close-range structure from motion 3d reconstruction software under varying capturing conditions. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, Proceedings of the Protection: 6th International Conference, Euromed 2016, Nicosia, Cyprus, 31 October–5 November 2016, Part I; Ioannides, M., Fink, E., Moropoulou, A., Hagedorn-Saupe, M., Fresa, A., Liestøl, G., Rajcic, V., Grussenmeyer, P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 15–26. [Google Scholar]
- Weng, J.; Huang, T.S.; Ahuja, N. Motion and structure from two perspective views: Algorithms, error analysis, and error estimation. IEEE Trans. Patt. Anal. Mach. Intell. 1989, 11, 451–476. [Google Scholar] [CrossRef]
- Li, R.; Weiskittel, A.R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the north american acadian region. Ann. For. Sci. 2010, 67, 302. [Google Scholar] [CrossRef]
Photo Alignment | Point Cloud Densification | Mesh Building | |||
---|---|---|---|---|---|
Accuracy | Medium & High | Quality | High | Face count | High |
Key points | 100,000 | Depth filtering | Disabled | Interpolation | Disabled |
Tie points | 60,000 |
Model | Equation |
---|---|
Max–Burkhart Equation (4) in original paper | |
Baldwin-Feduccia Equation (2) in original paper | |
Lenhart et al. Equation (26) in original paper | |
Kozak Equation (3) in original paper |
Height | Diameter | Bias | Mean Absolute Error | RMSE | |||
---|---|---|---|---|---|---|---|
[m] | [mm] | [mm] | [%] | [mm] | [%] | [mm] | [%] |
1 | 312 | −12.1 | −3.9 | 14.8 | 4.8 | 19.4 | 6.2 |
1.3 | 306 | −12.0 | −3.9 | 13.5 | 4.4 | 17.1 | 5.6 |
2 | 296 | −13.5 | −4.6 | 16.1 | 5.4 | 20.4 | 6.9 |
3 | 287 | −16.4 | −5.7 | 19.2 | 6.7 | 22.5 | 7.8 |
4 | 278 | −17.2 | −6.2 | 18.2 | 6.6 | 22.4 | 8.0 |
5 | 270 | −20.3 | −7.5 | 20.3 | 6.5 | 23.3 | 8.6 |
6 | 263 | −19.5 | −7.4 | 20.3 | 7.7 | 23.3 | 8.9 |
7 | 256 | −20.0 | −7.8 | 20.0 | 7.8 | 23.8 | 9.3 |
8 | 247 | −20.0 | −8.1 | 20.5 | 8.3 | 24.2 | 9.8 |
9 | 244 | −22.4 | −9.2 | 23.8 | 9.8 | 26.7 | 11.0 |
10 | 242 | −18.2 | −7.5 | 20.9 | 8.6 | 22.9 | 9.4 |
11 | 249 | −19.9 | −8.0 | 19.9 | 8.0 | 24.1 | 9.7 |
12 | 229 | −8.1 | −3.5 | 18.1 | 7.9 | 22.1 | 9.6 |
Total | - | −17.2 | −6.3 | 18.8 | 6.9 | 22.5 | 8.2 |
Equation | Coeff | Original | Bias [mm] | MAB [mm] | RMSE [mm] | |||
---|---|---|---|---|---|---|---|---|
Field | PPC | Field | PPC | Field | PPC | |||
Max–Burkhart | b1 | −3.0257 | 5.7 | 12.4 | 14.1 | 19.4 | 18.1 | 24.4 |
b2 | 1.4586 | |||||||
b3 | −1.4464 | |||||||
b4 | 39.1081 | |||||||
a1 | 0.7431 | |||||||
a2 | 0.1125 | |||||||
Baldwin–Feduccia | b1 | 1.22467 | −6.2 | 0.1 | 14.7 | 17.9 | 18.6 | 21.9 |
b2 | 0.3563 | |||||||
Lenhart et al. | b | 0.841837 | 16.0 | 23.2 | 19.5 | 25.4 | 27.3 | 34.9 |
Equation | Coeff. | Data | p-Value | R2 | Bias [mm] | MAB [mm] | RMSE [mm] | RMSE [%] |
---|---|---|---|---|---|---|---|---|
Max–Burkhart | b1 | −0.48 | <0.001 | 0.98 | −0.9 | 8.7 | 12.2 | 4 |
b2 | −0.41 | 0.01 | ||||||
b3 | 2.72 | 0.02 | ||||||
a | 0.29 | <0.001 | ||||||
Baldwin–Feduccia | b1 | 1.11 | <0.001 | 0.98 | −0.6 | 8.6 | 11.7 | 5 |
b2 | 0.24 | <0.001 | ||||||
Lenhart et al. | b | 0.5288 | 0.01 | 0.97 | −2.0 | 9.8 | 12.9 | 5 |
Kozak | a0 | 1.35 | <0.001 | 0.98 | −0.01 | 8.4 | 11.9 | 5 |
a1 | 0.94 | <0.001 | ||||||
b0 | 0.19 | <0.001 | ||||||
b1 | 0.3 | 0.02 | ||||||
b2 | 0.01 | 0.25 | ||||||
b3 | −0.05 | 0.19 |
Equation | Coeff. | Estimates | p-Value | R2 | Bias [mm] | MAB [mm] | RMSE [mm] | RMSE [%] |
---|---|---|---|---|---|---|---|---|
Max–Burkhart | b1 | −0.64 | <0.001 | 0.95 | −2.2 | 13.5 | 18.4 | 6 |
b2 | −0.33 | <0.001 | ||||||
b3 | 3.53 | 0.37 | ||||||
a | 0.2 | <0.001 | ||||||
Baldwin–Feduccia | b1 | 1.12 | <0.001 | 0.95 | −1.4 | 13.3 | 18.3 | 6 |
b2 | 0.24 | <0.001 | ||||||
Lenhart et.al. | b | 0.519 | <0.001 | 0.94 | −0.7 | 13.6 | 18.6 | 7 |
Kozak | a0 | 1.81 | <0.001 | 0.95 | −0.1 | 12.5 | 16.7 | 5 |
a1 | 0.84 | <0.001 | ||||||
b0 | 0.15 | <0.001 | ||||||
b1 | 0.42 | 0.02 | ||||||
b2 | −0.01 | 0.54 | ||||||
b3 | −0.04 | 0.77 |
Equation | R2 | Bias [mm] | MAB [mm] | RMSE [mm] |
---|---|---|---|---|
Max-Burkhart | 0.98 | −3.6 | 9.7 | 14.0 |
Baldwin-Feduccia | 0.97 | −2.9 | 9.4 | 13.7 |
Lenhart et al. | 0.97 | −2.5 | 10 | 14.2 |
Kozak | 0.98 | −2.0 | 9.4 | 13.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, R.; Strimbu, B.M. Stem Measurements and Taper Modeling Using Photogrammetric Point Clouds. Remote Sens. 2017, 9, 716. https://doi.org/10.3390/rs9070716
Fang R, Strimbu BM. Stem Measurements and Taper Modeling Using Photogrammetric Point Clouds. Remote Sensing. 2017; 9(7):716. https://doi.org/10.3390/rs9070716
Chicago/Turabian StyleFang, Rong, and Bogdan M. Strimbu. 2017. "Stem Measurements and Taper Modeling Using Photogrammetric Point Clouds" Remote Sensing 9, no. 7: 716. https://doi.org/10.3390/rs9070716
APA StyleFang, R., & Strimbu, B. M. (2017). Stem Measurements and Taper Modeling Using Photogrammetric Point Clouds. Remote Sensing, 9(7), 716. https://doi.org/10.3390/rs9070716