Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces
"> Figure 1
<p>Ground-based microwave radiometer.</p> "> Figure 2
<p>Condition of footprints of (<b>a</b>) Phase I, (<b>b</b>) Phase II, (<b>c</b>) Phase III, (<b>d</b>) Phase IV, and (<b>e</b>) Phase V (see also <a href="#remotesensing-09-00655-t001" class="html-table">Table 1</a>).</p> "> Figure 3
<p>Diversity of the structures of the observed vegetation. (<b>a</b>) Relationship between dry mass and vegetation water content. (<b>b</b>) Relationship between vegetation water content in leaf and stem. (<b>c</b>) Relationship between vegetation water content and leaf area index.</p> "> Figure 4
<p>(<b>a</b>) Relationship between the observed 37 GHz vertical polarized brightness temperatures (TB) and the observed ground physical temperatures. Dashed line is the empirical relationship proposed by Holmes et al., 2008. (<b>b</b>) The difference between the physical temperature of the lookup table (293 (K)) and the physical temperature estimated by the empirical relationship of Holmes et al., 2008 using the 37 GHz vertical polarized brightness temperatures of the lookup table. Surface soil moisture, vegetation water content, and RMS height are set to 0.25 (m<sup>3</sup>/m<sup>3</sup>), 2.0 (kg/m<sup>2</sup>), and 0.1 (cm), respectively.</p> "> Figure 5
<p>Relationship between vegetation water content and polarization index at (<b>a</b>) 6.925 GHz and (<b>b</b>) 10.65 GHz. Gray dots are the dataset of the lookup table. We show the lookup table with every other bin for single scattering albedos and a RMS height for brevity.</p> "> Figure 6
<p>(<b>a</b>) Sensitivity of vegetation water content to <span class="html-italic">PI</span> as a function of RMS height and vegetation water content (surface soil moisture, vertical and horizontal single scattering albedos are set to 0.30 (m<sup>3</sup>/m<sup>3</sup>), 0.04, and 0.04, respectively). (<b>b</b>) Same as (<b>a</b>) but as a function of surface soil moisture and vegetation water content (RMS height, vertical and horizontal single scattering albedos are set to 0.1 (cm), 0.04, and 0.04, respectively). (<b>c</b>) Sensitivity of RMS height to <span class="html-italic">PI</span> as a function of RMS height and vegetation water content (surface soil moisture, vertical and horizontal single scattering albedos are set to 0.30 (m<sup>3</sup>/m<sup>3</sup>), 0.04, and 0.04, respectively). (<b>d</b>) Sensitivity of SSM to <span class="html-italic">PI</span> as a function of surface soil moisture and vegetation water content (RMS height, vertical and horizontal single scattering albedos are set to 0.1 (cm), 0.04, and 0.04, respectively).</p> "> Figure 7
<p>(<b>a</b>–<b>d</b>) Relationship between the surface soil moisture and the emissivity at (<b>a</b>,<b>b</b>) vertical polarized and (<b>c</b>,<b>d</b>) horizontal polarized 6.925 GHz microwave. (<b>a</b>,<b>c</b>) show every plot while (<b>b</b>,<b>d</b>) show the plots with vegetation water content less than 0.20 [kg/m<sup>3</sup>]. (<b>e</b>–<b>h</b>) same as (<b>a</b>–<b>d</b>) but for <span class="html-italic">ISW</span>. Gray dots are the dataset of the lookup table. We show the lookup table with every other bin for single scattering albedos and a RMS height for brevity.</p> "> Figure 8
<p>(<b>a</b>,<b>b</b>) Sensitivity of surface soil moisture to emissivity of (<b>a</b>) vertical polarized and (<b>b</b>) horizontal polarized microwave as a function of surface soil moisture and vegetation water content (RMS height, vertical and horizontal single scattering albedos are set to 0.1 (cm), 0.04, and 0.04, respectively). (<b>c</b>,<b>d</b>) Sensitivity of RMS height to emissivity of (<b>c</b>) vertical polarized and (<b>d</b>) horizontal polarized microwave as a function of RMS height and vegetation water content (surface soil moisture, vertical and horizontal single scattering albedos are set to 0.3 (m<sup>3</sup>/m<sup>3</sup>), 0.04, and 0.04, respectively). (<b>e</b>,<b>f</b>) Same as (<b>a</b>,<b>b</b>) but for <span class="html-italic">ISW</span>. (<b>g</b>,<b>h</b>) Same as (<b>c</b>,<b>d</b>) but for <span class="html-italic">ISW</span>.</p> "> Figure 9
<p>Slope of the linear regression between (<b>a</b>) 6.925 GHz emissivity and surface soil moisture, and (<b>b</b>) 6.925 GHz and 37 GHz <span class="html-italic">ISW</span> and surface soil moisture as a function of averaged vegetation water content among 20 observations sampled from our in-situ observations. Blue and green lines show the results of vertical polarized and horizontal polarized microwave, respectively. See manuscript for the details of this analysis.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Surface Physical Temperature Retrieval
2.2. Vegetation Retrieval
2.3. Surface Soil Moisture Retrieval
3. Methods and Materials
3.1. In-Situ Observation
3.2. Radiative Transfer Model
4. Results
4.1. 37 GHz Vertical Brightness Temperature—Physical Temperature Relationship
4.2. PI-VWC Relationship
4.3. SSM-Emissivity & SSM-ISW Relationship
5. Discussion
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anderson, W.B.; Zaitchik, B.F.; Hain, C.R.; Anderson, M.C.; Yilmaz, M.T.; Mecikalski, J.; Schultz, L. Towards an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci. 2012, 16, 2893–2913. [Google Scholar] [CrossRef]
- Taylor, C.M.; de Jeu, R.A.M.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier soils. Nature 2012, 489, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; van Dijk, A.I.J.M.; de Jeu, R.A.M.; Canadell, J.G.; McCabe, M.F.; Evens, J.P.; Wang, G. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 2015, 5, 470–474. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C.; et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 2014, 509, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.P.; Houser, P.R. A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res. Atmos. 2001, 106, 11761–11774. [Google Scholar] [CrossRef]
- Yang, K.; Watanabe, T.; Koike, T.; Li, X.; Fujii, H.; Tamagawa, K.; Ma, Y.; Ishikawa, H. Auto-calibration System Developed to Assimilate AMSR-E Data into a Land Surface Model for Estimating Soil Moisture and the Surface Energy Budget. J. Meteorol. Soc. Jpn. 2007, 85A, 229–242. [Google Scholar] [CrossRef]
- Rasmy, M.; Koike, T.; Boussetta, S.; Lu, H.; Li, X. Development of a Satellite Land Data Assimilation System Coupled With a Mesoscale Model in the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2847–2862. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T. Simultaneous estimation of both hydrological and ecological parameters in an ecohydrological model by assimilating microwave signal. J. Geophys. Res. Atmos. 2014, 119. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T.; Walker, J.P. A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics. J. Geophys. Res. Atmos. 2015, 120. [Google Scholar] [CrossRef]
- Sawada, Y.; Koike, T. Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011). J. Geophys. Res. Atmos. 2016, 121, 8229–8242. [Google Scholar] [CrossRef]
- Lu, H.; Yang, K.; Koike, T.; Zhao, L.; Qin, J. An improvement of the radiative transfer model component of a land data assimilation system and its validation on different land characteristics. Remote. Sens. 2015, 7, 6358–6379. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil Moisture Retrieval From AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Koike, T.; Nakamura, Y.; Kaihotsu, I.; Davva, G.; Matsuura, N.; Tamagawa, K.; Fujii, H. Development of an Advanced Microwave Scanning Radiometer (AMSR-E) Algorithm of Soil Moisture and Vegetation Water Content. Ann. J. Hydraul. Eng. 2004, 48, 217–222. (In Japanese) [Google Scholar] [CrossRef]
- Fujii, H.; Koike, T.; Imaoka, K. Improvement of the AMSR-E Algorithm for Soil Moisture Estimation by Introducing a Fractional Vegetation Coverage Dataset Derived from MODIS Data. J. Remote Sens. Soc. Jpn. 2009, 29, 282–292. [Google Scholar]
- Ulaby, F.; Moore, R.K.; Fung, A. Microwave Remote Sensing: Active and Passive—Volume Scattering and Emission Theory; Artech House: Dedham, MA, USA, 1986. [Google Scholar]
- Kuria, D.N.; Koike, T.; Lu, H.; Tsutsui, H.; Graf, T. Field-Supported Verification and Improvement of a Passive Microwave Surface Emission Model for Rough, Bare and Wet Soil Surfaces by Incorporating Shadowing Effects. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1207–1216. [Google Scholar] [CrossRef]
- Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A Model for Microwave Emission From Vegetation-Covered Fields. J. Geophys. Res. 1982, 87, 11229–11237. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P. Microwave polarization index for monitoring vegetation growth. IEEE Trans. Geosci. Remote Sens. 1988, 26, 617–621. [Google Scholar] [CrossRef]
- Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. 2009, 114, D04113. [Google Scholar] [CrossRef]
- Wang, S.; Wigneron, J.P.; Jiang, L.M.; Parrens, M.; Yu, X.Y.; Al-Yaari, A.; Ye, Q.Y.; Fernandez-Moran, R.; Ji, W.; Kerr, Y. Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations. Remote Sens. 2015, 7, 5734–5757. [Google Scholar] [CrossRef]
- Sawada, Y.; Tsutsui, H.; Koike, T.; Rasmy, M.; Seto, R.; Fujii, H. A field verification of an algorithm for retrieving vegetation water content from passive microwave observations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2082–2095. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Patton, J.; Hornbuckle, B. Initial Validation of SMOS Vegetation Optical Thickness in Iowa. IEEE Trans. Geosci. Remote Sens. Lett. 2013, 42, 647–651. [Google Scholar] [CrossRef]
- Crow, W.T.; Chan, S.T.K.; Entekhabi, D.; Houser, P.R.; Hsu, A.Y.; Jackson, T.J.; Njoku, E.G.; O’Nell, P.E.; Shi, J.; Zhan, X. An observing system simulation experiment for Hydros radiometer-only soil moisture products. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1289–1303. [Google Scholar] [CrossRef]
- Zhan, X.; Crow, W.T.; Jackson, T.J.; O’Nell, P.E. Improving spaceborne radiometer soil moisture retrievals with alternative aggregation rules for ancillary parameters in highly heterogeneous vegetated areas. IEEE Trans. Geosci. Remote Sens. Lett. 2008, 5, 261–265. [Google Scholar] [CrossRef]
- Neelam, M.; Mohanty, B.P. Global sensitivity analysis of the radiative transfer model. Water Resour. Res. 2015, 51, 2428–2443. [Google Scholar] [CrossRef]
- Jackson, T.J.; Schmmuge, T.J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 1991, 36, 203–212. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P. Microwave vegetation indexes for detecting biomass and water conditions of agricultural crops. Remote Sens. Environ. 1992, 40, 15–26. [Google Scholar] [CrossRef]
- Ferrazzoli, P.; Guerriero, L.; Paloscia, S.P.; Pampaloni, P. Modeling Polarization Properties of Emission from Soil Covered with Vegetation. IEEE Trans. Geosci. Remote Sens. 1992, 30, 157–165. [Google Scholar] [CrossRef]
- Chen, K.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.C.; Fung, A.K. The emission of rough surfaces calculated by the integral equation method with a comparison to a three dimensional moment method simulation. IEEE Trans. Geosci. Remote Sens. 2001, 38, 249–256. [Google Scholar] [CrossRef]
- Dobson, D.M.; Ulaby, F.; Hallikainen, M.; El-Rayes, M. Microwave dielectric behavior of wet soil—Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Haubrock, S.N.; Kuhnert, M.; Chabrillat, S.; Guntner, A.; Kaufmann, H. Spatiotemporal variations of soil surface roughness from in-situ laser scanning. Catena 2009, 79, 128–139. [Google Scholar] [CrossRef]
- Alvarez-Mozos, J.; Verhoest, N.E.C.; Larranaga, A.; Casali, J.; Gonzalez-Audicana, M. Influence of surface roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations. Sensors 2009, 9, 463–489. [Google Scholar] [CrossRef] [PubMed]
- Calvet, J.C.; Wigneron, J.P.; Walker, J.; Karbou, F.; Chanzy, A.; Albergel, C. Sensitivity of Passive Microwave Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1190–1199. [Google Scholar] [CrossRef]
- Shibata, A.; Imaoka, K.; Koike, T. AMSR/AMSR-E level 2 and 3 algorithm developments and data validation plans of NASDA. IEEE Trans. Geosci. Remote Sens. 2003, 41, 195–203. [Google Scholar] [CrossRef]
Phase | Observed Plant(s) | Period |
---|---|---|
I | Oat | June 2012–September 2012 |
II | Wheat | December 2012–June 2013 |
III | Corn & Soybean | August 2013–December 2013 |
IV | Oat & Soybean | May 2014–June 2014 |
V | Olive | August 2015–February 2016 |
Type | Name | Value (s) | # of Bins | Intervals of Two Bins | Increment (Δ in Equation (7)) |
---|---|---|---|---|---|
variable in LUT | Surface soil moisture (m3/m3) | 0.005–0.5 | 100 | 0.005 | 10 |
Vegetation water content (kg/m2) | 0.0–4.0 | 100 | 0.04 | 10 | |
Single scattering albedo (vertical) | 0.0–0.09 | 10 | 0.01 | 2 | |
Single scattering albedo (horizontal) | 0.0–0.09 | 10 | 0.01 | 2 | |
RMS height of soil surface (cm) | 0.1–1.0 | 10 | 0.1 | 2 | |
Invariable in LUT | Wavelength-independent parameter of VOD-VWC relationship (b’) | 0.5 | |||
Wavelength-dependent parameter of VOD-VWC relationship (χ) | −1.0 | ||||
Correlation length of soil surface (cm) | 1.5 | ||||
Physical Temperature (K) | 293 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawada, Y.; Tsutsui, H.; Koike, T. Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces. Remote Sens. 2017, 9, 655. https://doi.org/10.3390/rs9070655
Sawada Y, Tsutsui H, Koike T. Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces. Remote Sensing. 2017; 9(7):655. https://doi.org/10.3390/rs9070655
Chicago/Turabian StyleSawada, Yohei, Hiroyuki Tsutsui, and Toshio Koike. 2017. "Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces" Remote Sensing 9, no. 7: 655. https://doi.org/10.3390/rs9070655
APA StyleSawada, Y., Tsutsui, H., & Koike, T. (2017). Ground Truth of Passive Microwave Radiative Transfer on Vegetated Land Surfaces. Remote Sensing, 9(7), 655. https://doi.org/10.3390/rs9070655