Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA
<p>Location of four study sites in the eastern USA. The sites are represented by Landsat scenes of path/rows 12/28, 27/27, 14/32, and 16/37 in Maine (ME), Minnesota (MN), Pennsylvania-New Jersey (PANJ) and South Carolina (SC), respectively. The vertical and horizontal bands are LiDAR strip samples collected on about 7 to 12% coverage of the Landsat scenes.</p> "> Figure 2
<p>Importance ranking of the LiDAR and Landsat predictors used in site-specific and generalized models at four sites in the eastern USA. TCB and SWIR represent tasseled cap brightness and short-wave infrared reflectance bands, respectively while the other metrics are described in the <a href="#remotesensing-09-00598-t010" class="html-table">Table A1</a>.</p> "> Figure 3
<p>Equivalence plot of aboveground biomass (AGB) predictions by the generic and site-specific models at FIA plot locations. The black line represents the line of best fit, the dashed gray lines represent the 25% region of similarity for slope, and the shaded gray polygon represents the 25% region of similarity for intercept. The black and white vertical bars represent 95% confidence intervals for slope and intercept, respectively.</p> "> Figure 4
<p>Aboveground biomass distribution maps in the study areas in Maine (ME) and Minnesota (MN), based on the site-specific (left column) and generic models (right column) dependent only on Landsat derived predictors.</p> "> Figure 5
<p>Aboveground biomass distribution maps in the study areas in Pennsylvania-New Jersey (PANJ) and South Carolina (SC), based on the site-specific (left column) and generic models (right column) dependent only on Landsat derived predictors.</p> ">
Abstract
:1. Introduction
- (1)
- to compare the effectiveness of LiDAR and Landsat variables for estimating plot-level AGB using ordinary multiple linear and random forest based models at four study sites (i.e., Landsat scenes) across the eastern USA;
- (2)
- to evaluate the accuracy of site-specific and generic AGB models across the four study sites; and
- (3)
- to validate the performance models using FIA data.
2. Methods
2.1. Study Area
2.2. LiDAR Strip Samples and Processing
2.3. Landsat Time-Series Data and Pixel Level Curve Fitting
2.4. Field Data for Model Training
2.5. Field Data for Model Validation
2.6. Modeling and Validation
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
LiDAR Metrics | Description |
---|---|
DenStra1 | Total returns in the vertical height interval of 1 to 4 m divided by 3 |
DenStra2 | Total returns in the vertical height interval of 4 to 8 m divided by 4 |
DenStra3 | Total returns in the vertical height interval of 8 to 16 m divided by 8 |
DenStra4 | Total returns in the vertical height interval of 16 to 32 m divided by 16 |
DenStra5 | Total returns in the vertical height interval of 32 to 64 m divided by 32 |
Stratum0 | Total return proportion in the vertical height interval 0 to 1 m |
Stratum1 | Total return proportion in the vertical height interval 1 to 4 m |
Stratum2 | Total return proportion in the vertical height interval 4 to 8 m |
Stratum3 | Total return proportion in the vertical height interval 8 to 16 m |
Stratum4 | Total return proportion in the vertical height interval 16 to 32 m |
Stratum5 | Total return proportion in the vertical height interval 32 to 64 m |
CovMean | Percentage of all returns above mean (all returns above mean × 100/total count of all returns) |
CovMode | Percentage of all returns above mode per pixel (all returns above mode × 100/total count of all returns) |
CovDBH | Percentage of all returns above DBH per pixel (all returns above DBH × 100/total count of all returns) |
ElevAAD | Average absolute deviation of elevations of all returns above DBH |
ElevAv | Average of elevations of all returns above DBH |
CRR | Canopy relief ratio ((mean − min)/(max − min)) of elevations of all returns |
ElevCM | Cubic mean of elevations of all returns |
ElevCV | Coefficient of variation of elevations of all returns above DBH |
ElevIQ | Interquartile range of elevations of all returns above DBH |
ElevKurt | Kurtosis of elevations of all returns above DBH |
ElevL1 | First L-moment of elevations of all returns above DBH |
ElevL2 | Second L-moment of elevations of all returns above DBH |
ElevL3 | Third L-moment of elevations of all returns above DBH |
ElevL4 | Fourth L-moment of elevations of all returns above DBH |
ElevLCV | L-moment coefficient of variation of elevations of all returns above DBH |
ElevLkurt | L-moment kurtosis of elevations of all returns above DBH |
ElevLskew | L-moment skewness of elevations of all returns above DBH |
EMADmed | Median of the absolute deviations from the overall median of elevations |
EMADmod | Mode of the absolute deviations from the overall mode of elevations |
ElevMax | Maximum of elevations of all returns above DBH |
ElevMin | Minimum of elevations of all returns above DBH |
ElevMod | Mode of elevations of all returns above DBH |
ElevPi | ith percentile of elevations of all returns above DBH, where i = 1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95 and 99 |
ElevQM | Quadratic mean of elevations of all returns |
ElevSkew | Skewness of elevations of all returns above DBH |
ElevSD | Standard deviation of elevations of all returns above DBH |
ElevVar | Variance of elevations of all returns above DBH |
FPV | Filled potential volume (ratio of the volume under the canopy to volume under a surface anchored at the max height in the cell) |
rumple | Ratio of the surface area of the canopy surface to the flat area of the cell |
CHM | Canopy height model (canopy surface model normalized with bare-earth model) |
References
- Houghton, R.A.; Hall, F.; Goetz, S.C. Importance of biomass in the global carbon cycle. J. Geophys. Res. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Le Quere, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef]
- Köhl, M.; Lasco, R.; Cifuentes, M.; Jonsson, Ö.; Korhonen, K.T.; Mundhenk, P.; de Jesus Navar, J.; Stinson, G. Changes in forest production, biomass and carbon: Results from the 2015 UN FAO Global Forest Resource Assessment. For. Ecol. Manag. 2015, 352, 21–34. [Google Scholar] [CrossRef]
- Le Quéré, C.; Peters, G.P.; Andres, R.J.; Andrew, R.M.; Boden, T.A.; Ciais, P.; Friedlingstein, P.; Houghton, R.A.; Marland, G.; Moriarty, R.; et al. Global carbon budget 2013. Earth Syst. Sci. Data 2014, 6, 235–263. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- White, J.C.; Wulder, M.A.; Varhola, A.; Vastaranta, M.; Coops, N.C.; Cook, B.D.; Pitt, D.; Woods, M. A Best Practice Guide for Generating Forest Inventory Attributes from Airborne Laser Scanning Data Using an Area-Based Approach. Available online: http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/34887.pdf (accessed on 12 June 2017).
- Wulder, M.A.; White, E.M.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. LiDAR sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef]
- Deo, R.K.; Russell, M.B.; Domke, G.M.; Woodall, C.W.; Falkowski, M.J.; Cohen, W.B. Using Landsat time-series and LiDAR to inform aboveground forest biomass baselines in northern Minnesota, USA. Can. J. Remote Sens. 2017, 43, 28–47. [Google Scholar] [CrossRef]
- Deo, R.K. Modeling and mapping of aboveground biomass and carbon sequestration in the cool temperate forest of north-east China. Master’s Thesis, ITC, Enschede, The Netherlands, 2008. [Google Scholar]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. LiDAR remote sensing for ecosystem studies. BioScience 2002, 52, 19–30. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Yang, Y. Using Landsat-derived disturbance and recovery history and LiDAR to map forest biomass dynamics. Remote Sens. Environ. 2014, 151, 124–137. [Google Scholar] [CrossRef]
- Zald, H.S.; Ohmann, J.L.; Roberts, H.M.; Gregory, M.J.; Henderson, E.B.; McGaughey, R.J.; Braaten, J. Influence of LiDAR, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure. Remote Sens. Environ. 2014, 143, 26–38. [Google Scholar] [CrossRef]
- Hudak, A.T.; Lefsky, M.A.; Cohen, W.B.; Berterretche, M. Integration of LiDAR and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sens. Environ. 2002, 82, 397–416. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Næsset, E.; Gobakken, T. Estimation of above- and below- ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 2008, 112, 3079–3090. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LiDAR Data Analysis and Visualization; Version 3.21; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station; University of Washington: Seattle, WA, USA, 2014.
- Deo, R.K.; Froese, R.E.; Falkowski, M.J.; Hudak, A.T. Optimizing variable radius plot size and LiDAR resolution to model standing volume in conifer forests. Can. J. Remote Sens. 2016, 42, 428–442. [Google Scholar] [CrossRef]
- Wallerman, J.P.; Holmgren, J. Estimating field-plot data of forest stands using airborne laser scanning and SPOT HRG data. Remote Sens. Environ. 2007, 110, 227–234. [Google Scholar] [CrossRef]
- Jenkins, J.C.; Chojnacky, D.C.; Heath, L.S.; Birdsey, R.A. National-scale biomass estimators for United States tree species. Forest Sci. 2003, 49, 12–35. [Google Scholar]
- Falster, D.S.; Duursma, R.A.; Ishihara, M.I.; Barneche, D.R.; FitzJohn, R.G.; Varhammar, A.; Aiba, M.; Ando, M.; Anten, N.; Aspinwall, M.J.; et al. BAAD: A biomass and allometry database for woody plants. Ecology 2015, 96. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Domke, G.M.; Woodall, C.W.; Smith, J.E.; Westfall, J.A.; McRoberts, R.E. Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates. For. Ecol. Manag. 2012, 270, 108–116. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A.; Vanclay, J.K. Forest Growth and Yield Modeling; Wiley: Hoboken, NY, USA, 2011. [Google Scholar]
- Hollaus, M.; Wagner, W.; Schadauer, K.; Maier, B.; Gabler, K. Growing stock estimation for alpine forests in Austria: A robust LiDAR-based approach. Can. J. For. Res. 2009, 39, 1387–1400. [Google Scholar] [CrossRef]
- Westfall, J. Spatial-scale considerations for a large-area forest inventory regression model. Forestry 2015, 88, 267–274. [Google Scholar] [CrossRef]
- Gleaspm, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar]
- Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83, 395–407. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.E.; Hartig, F.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Stratified aboveground forest biomass estimation by remote sensing data. Int. J. Appl. Earth Obs. 2015, 38, 229–241. [Google Scholar] [CrossRef]
- Moser, P.; Vibrans, A.C.; McRoberts, R.E.; Næsset, E.; Gobakken, T.; Chirici, G.; Mura, M.; Marchetti, M. Methods for variable selection in LiDAR-assisted forest inventories. Forestry 2016, 89, 1–13. [Google Scholar] [CrossRef]
- Chen, Q.; Laurin, G.V.; Battles, J.J.; Saah, D. Integration of airborne LiDAR and vegetation types derived from aerial photography for mapping aboveground live biomass. Remote Sens. Environ. 2012, 121, 108–117. [Google Scholar] [CrossRef]
- Brosofske, K.D.; Froese, R.E.; Falkowski, M.J.; Banksota, A. A review of methods for mapping and prediction of inventory attributes for operational forest management. Forest Sci. 2014, 60, 1–24. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Crookston, N.L.; Finley, A.O. yaimpute: An R package for kNN imputation. J. Stat. Softw. 2008, 23, 1–16. [Google Scholar] [CrossRef]
- Liaw, L.A.; Wiener, M. Classification and regression by random forest. R News. 2002, 2, 18–22. [Google Scholar]
- Zald, H.S.; Wulder, M.A.; White, J.C.; Hilker, T.; Hermosilla, T.; Hobart, G.W.; Coops, N.C. Integrating Landsat pixel composites and change metrics with LiDAR plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens. Environ. 2016, 176, 188–201. [Google Scholar] [CrossRef]
- Magnussen, S. Arguments for a model-dependent inference? Forestry 2015, 88, 317–325. [Google Scholar] [CrossRef]
- Gregoire, T.G.; Næsset, E.; McRoberts, R.E.; Ståhl, G.; Andersene, H.E.; Gobakken, T.; Ene, L.; Nelson, R. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sens. Environ. 2016, 173, 98–108. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Inference for LiDAR-assisted estimation of forest growing stock volume. Remote Sens. Environ. 2013, 128, 268–275. [Google Scholar] [CrossRef]
- McCaskill, G.L.; McWilliams, W.H.; Barnett, C.J.; Butler, B.J.; Hatfield, M.A.; Kurtz, C.M.; Morin, R.S.; Moser, W.K.; Perry, C.H.; Woodall, C.W. Maine’s Forests 2008; Resour. Bull. NRS-48; U.S. Department of Agriculture: Newtown Square, PA, USA, 2011.
- Miles, P.D.; Heinzen, D.; Mielke, M.E.; Woodall, C.W.; Butler, B.J.; Piva, R.J.; Meneguzzo, D.M.; Perry, C.H.; Gormanson, D.D.; Barnett, C.J. Minnesota’s Forests 2008; Resour. Bull. NRS-50; U.S. Department of Agriculture: Newtown Square, PA, USA, 2011.
- Crocker, S.J. Forests of New Jersey 2013; Resour. Update FS-27; U.S. Department of Agriculture: Newtown Square, PA, USA, 2014.
- McCaskill, G.L.; McWilliams, W.H.; Alerich, C.A.; Butler, B.J.; Crocker, S.J.; Domke, G.M.; Griffith, D.; Kurtz, C.M.; Lehman, S.; Lister, T.W.; et al. Pennsylvania’s Forests 2009; Resour. Bull. NRS-82; U.S. Department of Agriculture: Newtown Square, PA, USA, 2013.
- Rose, A.K. South Carolina’s Forests 2011; Resour. Bull. SRS-208; U.S. Department of Agriculture Forest Service: Asheville, NC, USA, 2016.
- USGS EROS. Landsat Surface Reflectance Higher-Level Data Products. U.S. Geological Survey, Earth Resources Observation and Science Center. 2017. Available online: https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products (accessed on 16 March 2017).
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- USGS EROS. Landsat Surface Reflectance-Derived Spectral Indices; Product Guide Version 2.9; U.S. Geological Survery, Earth Resources Observation and Science Center: Garretson, SD, USA, 2016. Available online: https://landsat.usgs.gov/sites/default/files/documents/si_product_guide.pdf (accessed on 11 April 2016).
- Heiskanen, J. Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data. Int. J. Remote Sens. 2006, 27, 1135–1158. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 1–16. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. Available online: http://www.R-project.org/ (accessed on 5 August 2016).
- Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- O’Connell, B.M.; LaPoint, E.B.; Turner, J.A.; Ridley, T.; Pugh, S.A.; Wilson, A.M.; Waddell, K.L.; Conkling, B.L. The Forest Inventory and Analysis Database: Database Description and User Guide Version 6.0.2 for Phase 2. Available online: https://www.fia.fs.fed.us/library/database-documentation/historic/ver6/FIADB%20User%20Guide%20P2_6-0-2_final-opt.pdf (accessed on 1 August 2016).
- Woodall, C.W.; Heath, L.S.; Domke, G.M.; Nichols, M.C. Methods and Equations for Estimating Aboveground Volume, Biomas, and Carbon for Trees in the US Forest Inventory 2010; Gen. Tech. Rep. NRS-88; USDA, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2011; p. 30.
- McRoberts, R.E. The national forest inventory of the United States of America. J. For. Sci. 2008, 24, 127–135. [Google Scholar]
- Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Solberg, S.; McRoberts, R.E. The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data. Remote Sens. Environ. 2015, 168, 252–264. [Google Scholar] [CrossRef]
- Deo, R.K. Application of an imputation method for geospatial inventory of forest structural attributes across multiple spatial scales in the Great Lake States, USA. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 2014. [Google Scholar]
- Cížková, L.; Cížek, P. Numerical linear algebra. In Handbook of Computational Statistics: Concepts and Methods; Gentle, J.E., Hardle, W.K., Mori, Y., Eds.; Springer: Heidelberg, Germany, 2012; pp. 105–137. [Google Scholar]
- Evans, J.S.; Murphy, M.A. rfUtilities: Random Forests Model Selection and Performance Evaluation. 2015. Available online: http://cran.r-project.org/package=rfUtilities (accessed on 10 November 2016).
- Murphy, M.A.; Evans, J.S.; Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 2010, 91, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Fekety, P.A.; Falkowski, M.J.; Hudak, A.T. Temporal transferability of LiDAR-based imputation of forest inventory attributes. Can. J. For. Res. 2015, 45, 422–435. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Robinson, A.P.; Duursma, R.A.; Marshall, J.D. A regression-based equivalence test for model validation: shifting the burden of proof. Tree Physiol. 2005, 25, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A. Equivalence: Provides Tests and Graphics for Assessing Tests of Equivalence. R Package Version 0.7.2. 2016. Available online: https://cran.r-project.org/web/packages/equivalence (accessed on 17 January 2017).
- White, J.C.; Arnett, J.T.; Wulder, M.A.; Tompalski, P.; Coops, N.C. Evaluating the impact of leaf-on and leaf-off airborne laser scanning data on the estimation of forest inventory attributes with the area-based approach. Can. J. For. Res. 2015, 45, 1498–1513. [Google Scholar] [CrossRef]
- Villikka, M.; Packalén, P.; Maltamo, M. The suitability of leaf-off airborne laser scanning data in an area-based forest inventory of coniferous and deciduous trees. Silva Fennica. 2012, 46, 99–110. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Espirito-Santo, F.D.B.; Hunter, M.O.; de Oliveira, R. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Nelson, R.; Krabill, W.; Tonelli, J. Regional forest inventory using an airborne profiling LiDAR. Jpn. Soc. For. Plan. 2008, 13, 287–294. [Google Scholar]
- Maltamo, M.; Bollandsås, O.M.; Gobakken, T.; Næsset, E. Large-scale prediction of aboveground biomass in heterogeneous mountain forests by means of airborne laser scanning. Can. J. For. Res. 2016, 46, 1138–1144. [Google Scholar] [CrossRef]
- Næsset, E. Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data. Remote Sens. Environ. 2005, 98, 356–370. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Bailly, J.S.; Barbier, N.; Gond, V.; Hérault, B.; El Hajj, M.; Fabre, F.; Perrin, J. Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: Application on French Guiana. Remote Sens. 2016, 8, 240. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Guitet, S.; Bailly, J.S.; Hérault, B.; Gond, V.; El Hajj, M.; Minh, D.H.T. Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. Int. J. Appl. Earth Obs. 2016b, 52, 502–514. [Google Scholar] [CrossRef]
- Shendryk, I.; Hellström, M.; Klemedtsson, L.; Kljun, N. Low-density LiDAR and optical imagery for biomass estimation over boreal forest in Sweden. Forests 2014, 5, 992–1010. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.C.; Nelson, R. LiDAR remote sensing of forest biomass: A scale-invariant estimation approach using airborne lasers. Remote Sens. Environ. 2009, 113, 182–196. [Google Scholar] [CrossRef]
- Lim, K.S.; Treitz, P.M. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand. J. For. Res. 2004, 19, 558–570. [Google Scholar] [CrossRef]
- Smith, P.F.; Ganesh, S.; Liu, P. A comparison of random forest regression and multiple linear regression for prediction in neuroscience. J. Neurosci. Methods. 2013, 220, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Pourrahmati, M.R.; Baghdadi, N.N.; Darvishsefat, A.A.; Namiranian, M.; Fayad, I.; Bailly, J.S.; Gond, V. Capability of GLAS/ICESat data to estimate forest canopy height and volume in mountainous forests of Iran. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5246–5261. [Google Scholar] [CrossRef]
- Huang, W.; Swatantran, A.; Johnson, K.; Duncanson, L.; Tang, H.; Dunne, J.O.N.; Hurtt, G.; Dubayah, R. Local discrepancies in continental scale biomass maps: A case study over forested and non-forested landscapes in Maryland, USA. Carbon Balance Manag. 2015, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- McRoberts, R.E. The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area. Remote Sens. Environ. 2010, 114, 1710–1717. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modelling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
Site | Average Annual Precipitation (mm) | Average Annual Temperature °C | † Cooling Degree Days °C | † Heating Degree Days °C |
---|---|---|---|---|
ME | 1170 | 5.2 | 100 | 4750 |
MN | 712 | 4.4 | 160 | 5200 |
PANJ | 1237 | 10.6 | 380 | 3150 |
SC | 1200 | 18.2 | 1180 | 1250 |
ME (Path 12, Row 28) † | MN (Path 27, Row 27) | PANJ (Path 14, Row 32) | SC (Path 16, Row 37) |
---|---|---|---|
L5-1985-205 | L5-1986-233 | L5-1984-265 | L5-1984-247 |
L5-1986-256 | L5-1987-236 | L5-1987-257 | L5-1985-185 |
L5-1988-246 | L5-1989-257 | L5-1988-212 | L5-1986-236 |
L5-1990-251 | L5-1990-212 | L5-1990-185 | L5-1987-239 |
L5-1992-257 | L5-1991-263 | L5-1991-172 | L5-1988-258 |
L5-1993-259 | L5-1995-210 | L5-1993-241 | L5-1991-202 |
L5-1995-249 | L5-1997-247 | L5-1995-231 | L5-1993-191 |
L5-1998-225 | L5-1998-218 | L5-1997-172 | L5-1994-258 |
L5-1999-244 | L5-1999-205 | L5-2000-261 | L5-1995-229 |
L5-2003-255 | L5-2000-256 | L5-2002-186 | L5-1996-184 |
L5-2004-258 | L5-2001-226 | L5-2003-237 | L5-1998-173 |
L5-2008-237 | L5-2003-248 | L5-2006-197 | L5-2000-227 |
L5-2010-242 | L5-2006-256 | L5-2007-248 | L5-2002-200 |
L5-2011-229 | L5-2007-259 | L5-2008-235 | L5-2005-208 |
L8-2014-237 | L5-2008-230 | L5-2010-240 | L5-2007-230 |
L8-2015-176 | L5-2010-235 | L5-2011-243 | L5-2011-273 |
L5-2011-254 | L8-2014-219 | L8-2014-233 | |
L8-2013-259 | L8-2015-206 |
Sites | Mean | Minimum | Maximum | Standard Deviation | Coefficient of Variation (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
CMS † Data | FIA Data ‡ | CMS Data | FIA Data | CMS Data | FIA Data | CMS Data | FIA Data | CMS Data | FIA Data | |
ME | 69.04 | 78.04 | 0.84 | 2.13 | 218.71 | 201.88 | 60.29 | 43.99 | 87.31 | 56.36 |
MN | 51.29 | 50.54 | 1.88 | 3.33 | 185.24 | 146.46 | 45.67 | 30.38 | 89.05 | 60.12 |
PANJ | 105.38 | 136.57 | 0.66 | 0 | 388.15 | 396.79 | 86.37 | 102.43 | 81.96 | 75.01 |
SC | 83.41 | 97.36 | 0.14 | 0 | 329.62 | 226.86 | 86.64 | 52.56 | 103.87 | 53.98 |
Site-Specific & Generic Models | Model Type † | ‡ Variables Selected | RF-Model | MLR-Model | ||
---|---|---|---|---|---|---|
Pseudo R2 | RMSE (Mg·ha−1) | Adj.R2 | RMSE (Mg·ha−1) | |||
ME | LiD.LS | ElevMax, CovDBH, DenStra4, SWIR, Stratum3, Stratum0 | 0.79 | 26.8 | 0.86 | 20.5 |
MN | LiD.LS | CovDBH, Stratum3, Stratum4, ElevP05 | 0.65 | 26.7 | 0.78 | 19.9 |
PANJ | LiD.LS | CovMean, Stratum1, Stratum2, Stratum3, Stratum5, ElevSD | 0.68 | 48.2 | 0.82 | 33.0 |
SC | LiD.LS | CovDBH, DenStra4, ElevCM | 0.86 | 31.2 | 0.92 | 23.3 |
Generic | LiD.LS | TCB, Stratum1, Stratum2, Stratum3, Stratum4, Stratum0 | 0.76 | 35.7 | 0.85 | 27.5 |
ME | LS | TCB, DI, EVI, IFZ | 0.45 | 44.3 | 0.61 | 35.4 |
MN | LS | TCB, DI, TCG, IFZ, NDMI, TCA | 0.18 | 47.5 | 0.26 | 36.4 |
PANJ | LS | SWIR, EVI, TCG, NDMI, NDVI, TCA | 0.45 | 63.4 | 0.44 | 60.0 |
SC | LS | SWIR, DI, TCG, NBR, TCW | 0.27 | 73.1 | 0.44 | 60.7 |
Generic | LS | SWIR, TCB, EVI, IFZ, NBR, NDVI, TCW | 0.32 | 60.8 | 0.33 | 59.2 |
Site | Model | † Variables Selected | RF-Model | MLR-Model | ||
---|---|---|---|---|---|---|
Pseudo R2 | RMSE (Mg·ha−1) | Adj.R2 | RMSE (Mg·ha−1) | |||
ME | LiD.LS | TCB, Stratum1, Stratum2, Stratum3, Stratum4, Stratum0 | 0.77 | 28.2 | 0.88 | 19.3 |
MN | LiD.LS | ” | 0.64 | 27.2 | 0.78 | 19.6 |
PANJ | LiD.LS | ” | 0.55 | 57.1 | 0.83 | 32.9 |
SC | LiD.LS | ” | 0.83 | 34.7 | 0.93 | 20.1 |
Site | No. of Plots | Correlation Coef. (r) | Bias (Mg·ha−1) † | RMSE (Mg·ha−1) ‡ | |||
---|---|---|---|---|---|---|---|
Generic Model | Site-Spec. Model | Generic Model | Site-Spec. Model | Generic Model | Site-Spec. Model | ||
ME | 59 | 0.89 | 0.88 | 3.8 (4.8) | 14.7 (18.5) | 21.8 (27.5) | 26.3 (33.2) |
MN | 70 | 0.80 | 0.81 | 20.4 (41.3) | 11.3 (22.9) | 28.1 (56.9) | 23.3 (47.1) |
PANJ | 30 | 0.92 | 0.92 | 15.9 (12.8) | 17.0 (13.7) | 39.2 (31.7) | 42.3 (34.2) |
SC | 60 | 0.85 | 0.82 | 40.0 (41.1) | 34.2 (35.1) | 51.4 (52.8) | 51.1 (52.5) |
Poo-led | 219 | 0.87 | 19.30 (23.89) | 63.34 (44.99) |
Sites | Mean AGB of Sample Plot Data | Std. Error of Agb in Sample Observations | Generic Model | Site-Specific Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean AGB Prediction Over All Pixels | Est. Bias | MARE § | Std. Error | Mean AGB Prediction Over All Pixels | Est. Bias | MARE § | Std. Error | |||
ME | 69.0 | 8.7 | 89.6 | −6.9 | 96.4 | 3.0 | 96.7 | 0 | 96.7 | 2.9 |
MN | 51.3 | 6.4 | 69.3 | 10.8 | 58.5 | 3.0 | 64.4 | 0 | 64.4 | 2.8 |
PANJ | 105.4 | 12.3 | 89.8 | −9.7 | 99.5 | 5.2 | 109.0 | 0 | 109.0 | 4.8 |
SC | 83.4 | 12.2 | 102.3 | 5.4 | 96.9 | 3.3 | 103.0 | 0 | 103.0 | 3.3 |
Sites | Mean AGB of Sample Plot Data | Std. Error of AGB in Sample Observations | Generic Model | Site-Specific Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean AGB Prediction Over All Pixels | Est. Bias | MARE § | Std. Error | Mean AGB Prediction Over All Pixels | Est. Bias | MAR § | Std. Error | |||
ME | 79.3 | 6.1 | 89.6 | 3.8 | 85.8 | 2.8 | 96.7 | 14.7 | 82.0 | 2.9 |
MN | 49.4 | 3.7 | 69.3 | 20.4 | 48.9 | 2.3 | 64.4 | 11.3 | 53.1 | 2.4 |
PANJ | 123.6 | 17.6 | 89.8 | 15.9 | 73.9 | 6.6 | 109.0 | 17.0 | 92.0 | 7.2 |
SC | 97.4 | 6.8 | 102.3 | 40.0 | 62.3 | 4.2 | 103.0 | 34.2 | 68.8 | 4.9 |
Landsat Metrics | ME | MN | PANJ | SC |
---|---|---|---|---|
IFZ | 76.8 | 54.3 | 30.7 | 49.8 |
SWIR | 71.2 | 55.5 | 29.1 | 43.1 |
NDMI | 68.5 | 24.2 | 37.5 | 39.0 |
DI | 68.1 | 41.3 | 37.1 | 48.3 |
Greenness | 65.4 | 11.2 | 34.8 | 22.8 |
Wetness | 65.2 | 31.4 | 35.0 | 40.1 |
SAVI | 63.4 | 10.3 | 35.9 | 22.2 |
Brightness | 57.9 | 36.4 | 23.1 | 41.9 |
TCA | 54.2 | 17.5 | 49.3 | 34.7 |
NDVI | 52.8 | 13.1 | 53.6 | 33.1 |
EVI | 48.7 | 10.1 | 26.5 | 23.5 |
NBR2 | 39.7 | 17.4 | 26.5 | 28.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deo, R.K.; Russell, M.B.; Domke, G.M.; Andersen, H.-E.; Cohen, W.B.; Woodall, C.W. Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA. Remote Sens. 2017, 9, 598. https://doi.org/10.3390/rs9060598
Deo RK, Russell MB, Domke GM, Andersen H-E, Cohen WB, Woodall CW. Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA. Remote Sensing. 2017; 9(6):598. https://doi.org/10.3390/rs9060598
Chicago/Turabian StyleDeo, Ram K., Matthew B. Russell, Grant M. Domke, Hans-Erik Andersen, Warren B. Cohen, and Christopher W. Woodall. 2017. "Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA" Remote Sensing 9, no. 6: 598. https://doi.org/10.3390/rs9060598
APA StyleDeo, R. K., Russell, M. B., Domke, G. M., Andersen, H.-E., Cohen, W. B., & Woodall, C. W. (2017). Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA. Remote Sensing, 9(6), 598. https://doi.org/10.3390/rs9060598