Mapping the Twilight Zone—What We Are Missing between Clouds and Aerosols
"> Figure 1
<p>Classification procedure applied to the Moderate-Resolution Imaging Spectro-Radiometer (MODIS) data; colors of each class are used in the example scene in <a href="#remotesensing-09-00577-f002" class="html-fig">Figure 2</a>c.</p> "> Figure 2
<p>Example scene for the classification procedure with (<b>a</b>) reflectance; (<b>b</b>) cloud classification (combining MYD35 and MYD06); and (<b>c</b>) the resulting classes for 19 August 2007 at 9:30 am.</p> "> Figure 3
<p>Frequency distribution of the reflectance of the classes: Cloud, Lost A, Lost B and Aerosol.</p> "> Figure 4
<p>Occurence frequencies of each class (colormaps are fitted to the range of values of each class).</p> "> Figure 5
<p>Mean reflectances of each class (colormaps are fitted to the range of values of each class).</p> "> Figure 6
<p>Reflectance range of all pixels in the classes considered. Boxes represent the inner-quartile range with the median, whiskers extend to the most extreme values within 1.5 inner-quartile ranges.</p> "> Figure 7
<p>Frequency of value assignment to each class for each month.</p> "> Figure 8
<p>Reflectances and frequencies as functions of distance to nearest cloud pixel (left-hand column) and aerosol pixel (right-hand column) with lines representing the reflectances and bars the frequency of occurrence. The median of the reflectances is marked by dots and line ends correspond to the 1.5 inner-quartile range of the reflectances.</p> "> Figure 9
<p>Schematic placement of the ”Lost” classes relative to aerosol and cloud retrievals with increasing reflectivity (based on [<a href="#B6-remotesensing-09-00577" class="html-bibr">6</a>]); colors of each class correspond to those used in <a href="#remotesensing-09-00577-f002" class="html-fig">Figure 2</a>c.</p> ">
Abstract
:1. Introduction
2. Data and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Koren, I.; Remer, L.A.; Kaufman, Y.; Martins, J.V. On the twilight zone between clouds and aerosols. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Costantino, L.; Bréon, F.-M. Aerosol indirect effect on warm clouds over South-East Atlantic. Atmos. Chem. Phys. 2013, 13, 69–88. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate systems Aerosol indirect effect on warm clouds over South-East Atlantic. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Charlson, R.J.; Ackerman, A.S.; Bender, F.A.-M.; Anderson, T.L.; Liu, Z. On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus 2007, 59, 715–727. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Heidinger, A.; Pierce, R.B.; Chin, M. Retrieving aerosol in a cloudy environment: aerosol product availibility as a function of spatial resolution. Atmos. Meas. Tech. 2012, 5, 1823–1840. [Google Scholar] [CrossRef]
- Várnai, T.; Marshak, A. Effect of Cloud Fraction on Near-Cloud Aerosol Behaviour in the MODIS Atmospheric Correction Ocean Color Product. Remote Sens. 2015, 7, 5283–5299. [Google Scholar] [CrossRef]
- Cho, H.-M.; Zhang, Z.; Meyer, K.; Lebsock, M.; Platnick, S.; Ackerman, A.S.; Di Girolamo, L.; Labannotte, L.C.; Cornet, C.; Riedi, J.; et al. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J. Geophys. Res. Atmos. 2015, 120, 4132–4154. [Google Scholar] [CrossRef] [PubMed]
- Várnai, T.; Marshak, A. MODIS observations of enhanced clear sky reflectance near clouds. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Fuchs, J.; Cermak, J. Where Aerosols Become Clouds—Potential for Global Analysis Based on CALIPSO Data. Remote Sens. 2015, 7, 4178–4190. [Google Scholar] [CrossRef]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B.; Menzel, P. Discriminating Clear-Sky from Cloud with MODIS. J. Geophys. Res. 1998, 103, 141–152. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol retrievals over ocean and land. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Platnick, S.; King, D.M.; Ackerman, S.A.; Paul Menzel, W.; Baum, B.A.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufmanm, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Wollner, U.; Koren, I.; Altaratz, O.; Remer, L.A. On the signature of the cirrus twilight zone. Environ. Res. Lett. 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.D.; Mayer, K.G.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Ridgway, B.; et al. MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets, p. 145. Available online: http://modisatmos.gsfc.nasa.gov/docs/C6MOD06OPUserGuide.pdf (accessed on 16 May 2017).
- Platnick, S.; Mayer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2017, 55, 502–525. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.A.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 9, 31–49. [Google Scholar] [CrossRef]
- Martins, J.V.; Tanré, D.; Remer, L.; Kaufman, Y.; Mattoo, S.; Levy, R. MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability. Geophys. Res. Lett. 2002, 29, 1–4. [Google Scholar] [CrossRef]
- Ackerman, S.; Strabala, K.; Menzel, P.; Frey, R.; Moeller, C.; Gumley, L.; Baum, B.; Wetzel Seemann, S.; Zhang, H. Discriminating Clear-Sky from Cloud with MODIS. Alghoritm Theoretical Basis Document (MOD35); University of Wisconsin-Madison: Madison, WI, USA, 2006; p. 125. [Google Scholar]
- Alfaro-Contreras, R.; Zhang, J.; Campbell, J.R.; Reid, J.S. Investigating the frequency and interannual variability in global above-cloud aerosol characteristics with CALIOP and OMI. Atmos. Chem. Phys. 2016, 16, 47–69. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Tanré, D.; Ginoux, P.; Fan, S. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 2005, 110, 1–16. [Google Scholar] [CrossRef]
- Klein, S.A.; Hartmann, D.L. The Seasonal Cycle of Low Stratiform Clouds. J. Clim. 1993, 6, 1587–1606. [Google Scholar] [CrossRef]
- Lu, M.-L.; McClatchey, R.A.; Seinfeld, J.H. Cloud Halos: Numerical Simulation of Dynamical Structure and Radiative Impact. J. Appl. Meteorol. 2002, 41, 832–848. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. 2013: Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, K.; Cermak, J.; Fuchs, J.; Andersen, H. Mapping the Twilight Zone—What We Are Missing between Clouds and Aerosols. Remote Sens. 2017, 9, 577. https://doi.org/10.3390/rs9060577
Schwarz K, Cermak J, Fuchs J, Andersen H. Mapping the Twilight Zone—What We Are Missing between Clouds and Aerosols. Remote Sensing. 2017; 9(6):577. https://doi.org/10.3390/rs9060577
Chicago/Turabian StyleSchwarz, Katharina, Jan Cermak, Julia Fuchs, and Hendrik Andersen. 2017. "Mapping the Twilight Zone—What We Are Missing between Clouds and Aerosols" Remote Sensing 9, no. 6: 577. https://doi.org/10.3390/rs9060577
APA StyleSchwarz, K., Cermak, J., Fuchs, J., & Andersen, H. (2017). Mapping the Twilight Zone—What We Are Missing between Clouds and Aerosols. Remote Sensing, 9(6), 577. https://doi.org/10.3390/rs9060577