Spaceborne GNSS-R from the SMAP Mission: First Assessment of Polarimetric Scatterometry over Land and Cryosphere
"> Figure 1
<p>The Soil Moisture Active Passive (SMAP) mission was successfully launched on 31 January 2015 into a Sun-Synchronous Orbit (SSO) with a local time of ascending node (LTAN) of 06:00 h, and an orbit reference height of ~685 km. The experiment set-up of the Global Navigation Satellite Systems Reflectometry (GNSS-R) experiment on-board the SMAP mission is represented in this figure. Scattered GPS signals were collected by the SMAP’s radar antenna at an elevation angle <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">θ</mi> <mi mathvariant="normal">e</mi> </msub> </mrow> </semantics> </math> ~55°. The gain of the H-Pol and V-Pol antenna was ~36 dB. Data processing was performed on-ground at NASA’s Jet Propulsion Laboratory (JPL).</p> "> Figure 2
<p>Signal processing chain to convert SMAP Level 1A “high rate” data to Delay Doppler Maps (DDMs). The SMAP orbit, attitude, and antenna pointing are used to predict times when specular reflections will be visible. These “high rate” data is filtered by these times, and only relevant portions converted to I/Q for GPS L2C DDM generation.</p> "> Figure 3
<p>One-day (~100 samples) averaged power waveforms [<math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">T</mi> <mrow> <mi>coh</mi> </mrow> </msub> </mrow> </semantics> </math> = 5 ms and <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">N</mi> <mrow> <mi>inc</mi> </mrow> </msub> </mrow> </semantics> </math> = 5] over selected target areas: (<b>a</b>) H-Pol Amazon; (<b>b</b>) V-Pol Amazon; (<b>c</b>) H-Pol boreal forests; (<b>d</b>) V-Pol boreal forests; (<b>e</b>) H-Pol Greenland; (<b>f</b>) V-Pol Greenland; (<b>g</b>) H-Pol Sahara; and (<b>h</b>) V-Pol Sahara.</p> "> Figure 4
<p>Definition of the trailing and leading edge width over a sample waveform.</p> "> Figure 5
<p>SMAP over-land power waveform analysis using one-year averaged values: (<b>a</b>) Signal-to-Noise Ratio H-Pol [dB]; (<b>b</b>) Signal-to-Noise Ratio V-Pol [dB]; (<b>c</b>) Polarimetric Ratio [dB]; (<b>d</b>) Global distribution of time-averaged retrieved surface soil moisture based on SMAP radiometer observations and application of the multi-temporal dual-channel algorithm by Piles et al [<a href="#B34-remotesensing-09-00362" class="html-bibr">34</a>,<a href="#B35-remotesensing-09-00362" class="html-bibr">35</a>]. Volumetric soil moisture measured for the first few centimeters (in fact the penetration depth depends on the soil mineralogical content and the moisture).</p> "> Figure 6
<p>SMAP over-land power waveforms shape analysis: (<b>a</b>) leading edge width H-Pol [m]; (<b>b</b>) leading edge width V-Pol [m]; (<b>c</b>) trailing edge width H-Pol [m]; and (<b>d</b>) trailing edge width V-Pol [m].</p> "> Figure 7
<p>(<b>a</b>) Global map of forest height produced from NASA’s ICESAT/GLAS, MODIS, and TRMM sensors. Available online: <a href="https://www.nasa.gov/topics/earth/features/forest20120217.html" target="_blank">https://www.nasa.gov/topics/earth/features/forest20120217.html</a>. (<b>b</b>) ETOPO1 Global Relief Model. Available online: <a href="https://www.ngdc.noaa.gov/mgg/global/global.html" target="_blank">https://www.ngdc.noaa.gov/mgg/global/global.html</a>.</p> "> Figure 8
<p>Sample power waveforms [<math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">T</mi> <mrow> <mi>coh</mi> </mrow> </msub> </mrow> </semantics> </math> = 5 ms and <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="normal">N</mi> <mrow> <mi>inc</mi> </mrow> </msub> </mrow> </semantics> </math> = 5]: (<b>a</b>) H-Pol Amazon; (<b>b</b>) V-Pol Amazon.</p> "> Figure 9
<p>SMAP over-land Signal-to-Noise Ratio at LHCP [dB] using one-year averaged values.</p> "> Figure 10
<p>Annual evolution (mean and standard deviation) of main waveforms’ parameters: (<b>a</b>) Signal-to-Noise Ratio H-Pol (dB); (<b>b</b>) Signal-to-Noise Ratio V-Pol (dB); (<b>c</b>) trailing edge width (m); (<b>d</b>) leading edge width (m); and (<b>e</b>) Polarimetric Ratio (dB).</p> "> Figure 11
<p>Regional study over Africa. Polarimetric Ratio (<b>a</b>) Summer; (<b>b</b>) Winter. Signal-to-Noise Ratio (<b>c</b>) Summer; (<b>d</b>) Winter. Trailing edge width (<b>e</b>) Summer; (<b>f</b>) Winter. Soil Water Index (<b>g</b>) Summer; (<b>h</b>) Winter. Normalized Difference Vegetation Index. (<b>i</b>) Summer; (<b>j</b>) Winter.</p> "> Figure 11 Cont.
<p>Regional study over Africa. Polarimetric Ratio (<b>a</b>) Summer; (<b>b</b>) Winter. Signal-to-Noise Ratio (<b>c</b>) Summer; (<b>d</b>) Winter. Trailing edge width (<b>e</b>) Summer; (<b>f</b>) Winter. Soil Water Index (<b>g</b>) Summer; (<b>h</b>) Winter. Normalized Difference Vegetation Index. (<b>i</b>) Summer; (<b>j</b>) Winter.</p> "> Figure 12
<p>Close up over Northern Africa. Polarimetric Ratio (<b>a</b>) Summer; (<b>b</b>) Winter. Signal-to-Noise Ratio (<b>c</b>) Summer; (<b>d</b>) Winter. Trailing Edge Width (<b>e</b>) Summer; (<b>f</b>) Winter.</p> "> Figure 13
<p>Close up over Southern Africa. Polarimetric Ratio (<b>a</b>) Summer; (<b>b</b>) Winter. Signal-to-Noise Ratio (<b>c</b>) Summer; (<b>d</b>) Winter. Trailing Edge Width (<b>e</b>) Summer; (<b>f</b>) Winter.</p> "> Figure 14
<p>Map of forest height over Northern Asia produced from NASA’s ICESAT/GLAS, MODIS, and TRMM sensors.</p> "> Figure 15
<p>Regional study over Norther Asia. Polarimetric Ratio (<b>a</b>) Summer; (<b>b</b>) Winter. Signal-to-Noise Ratio (<b>c</b>) Summer; (<b>d</b>) Winter. Trailing edge width (<b>e</b>) Summer; (<b>f</b>) Winter. Soil Water Index (<b>g</b>) Summer; (<b>h</b>) Winter. Normalized Difference Vegetation Index. (<b>i</b>) Summer; (<b>j</b>) Winter.</p> "> Figure 16
<p>Close up of Signal-to-Noise Ratio seasonal changes over central Russia: (<b>a</b>) Summer; (<b>b</b>) Winter; and over Eastern Russia: (<b>c</b>) Summer; and (<b>d</b>) Winter.</p> "> Figure 17
<p>View of the extent and frequency of surface melt for the Greenland ice sheet. Data from the National Snow and Ice Data Center.</p> "> Figure 18
<p>Regional study over North America and Greenland. Polarimetric Ratio (<b>a</b>) Summer; (<b>b</b>) Winter. Signal-to-Noise Ratio (<b>c</b>) Summer; (<b>d</b>) Winter. Trailing edge width (<b>e</b>) Summer; (<b>f</b>) Winter. Soil Water Index (<b>g</b>) Summer; (<b>h</b>) Winter. Normalized Difference Vegetation Index; (<b>i</b>) Summer; (<b>j</b>) Winter.</p> ">
Abstract
:1. Introduction
2. Description of the GNSS-R Experiment
3. Earth Surface Effects on GNSS-R Relevant to Land Applications
3.1. Global Scale
3.2. Regional Scale
3.2.1. Africa: Arid Deserts and Congolian Rainforests
3.2.2. Asia: Arid Deserts and Boreal Forests
3.2.3. North America and Greenland: Lakes Region and Ice Cap
4. Final Discussion
5. Conclusions and Future Opportunities
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hall, C.D.; Cordey, R.A. Multistatic scatterometry. In Proceedings of the 1988 IEEE International Geoscience and Remote Sensing Symposium, Edinburgh, UK, 13–16 September 1988; pp. 561–652. [Google Scholar]
- Martín-Neira, M. A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Martin-Neira, M.; D’Addio, S.; Buck, C.; Floury, N.; Prieto-Cerdeira, R. The PARIS ocean altimeter in-orbit demonstrator. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2209–2237. [Google Scholar] [CrossRef]
- Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Baup, F.; Lestarquit, L.; Ha, M.C. Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2° to 70°. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4781–4794. [Google Scholar] [CrossRef]
- Cardellach, E.; Rius, A.; Martin-Neira, M.; Fabra, F.; Nogues-Correig, O.; Ribo, S.; Kainulainen, J.; Camps, A.; D’Addio, S. Consolidation the precision of interferometric GNSS-R ocean altimetry using airborne experimental data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2209–2237. [Google Scholar] [CrossRef]
- Semmling, A.M.; Wickert, J.; Schön, S.; Stosius, R.; Gerber, T.; Markgraf, M.; Ge, M.; Beyerle, G. A zeppelin experiment to study airborne altimetry using specular Global Navigation Satellite System reflections. Radio Sci. 2013, 48, 427–440. [Google Scholar] [CrossRef]
- Lowe, S.T.; LaBrecque, J.L.; Zuffada, C.; Romans, L.J.; Young, L.E.; Hajj, G.A. First spaceborne observation of an Earth-reflected GPS signal. Radio Sci. 2002. [Google Scholar] [CrossRef]
- Gleason, S.; Hodgart, S.; Sun, Y.; Gommenginger, C.; Mackin, S.; Adjrad, M.; Unwin, M. Detection and processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1229–1241. [Google Scholar] [CrossRef]
- Unwin, M. TechDemoSat-1 and the GNSS reflectometry experiment. In Proceedings of the TechDemoSat-1 User Consultation Meeting, Southampton, UK, 5 March 2015. [Google Scholar]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef]
- Camps, A.; Hyuk, H.; Pablos, M.; Foti, G.; Gommerginger, C.; Liu, P.W.; Judge, J. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4730–4732. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.; Cipollini, P.; Zuffada, C. First spaceborne observation of sea surface height using GPS-Reflectometry. Geophys. Res. Lett. 2016, 42, 5435–5441. [Google Scholar] [CrossRef]
- Foti, G.; Gommerginger, C.; Jales, P.; Unwim, M.; Shaw, A.; Robertson, C.; Rosello, J. Spaceborne GNSS Reflectometry for ocean winds: First Results from the UK TechDemoSat-1 Mission. Geophys. Res. Lett. 2015, 43, 767–774. [Google Scholar] [CrossRef]
- Tye, J.; Jales, P.; Unwim, M.; Underwood, C. The first application of stare processing to retrieve mean square slope using the SGR-ReSI GNSS-R experiment on TDS-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4669–4677. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Spaceborne GNSS-R sea ice detection using Delay-Doppler Maps: First results from the UK TechDemoSat-1 mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4795–4801. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Camps, A.; Vila, P.; Munoz, J.F.; Cortiella, A.; Vidal, D.; Jane, J.; Catarino, N.; Hagenfeldt, M.; Palomo, P.; et al. 3Cat-2: An experimental nano-satellite for GNSS-R Earth observation: Mission concept and analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4540–4551. [Google Scholar] [CrossRef]
- Rose, R.; Wells, W.; Rose, D.; Ruf, C.; Ridley, A.; Nave, K. Nanosat technology and managed risk: An update of the CyGNSS microsatellite constellation mission development. In Proceedings of the 28th AIAA/USU Conference on Small Satellites, Logan, UT, USA, 2–7 August 2014; pp. 1–12. [Google Scholar]
- Zavorotny, V.U.; Voronovich, A.G. Bistatic GPS signal reflections at various polarizations from rough land surface with moisture content. In Proceedings of the 2000 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000; pp. 2852–2854. [Google Scholar]
- Larson, K.M.; Braun, J.J.; Small, E.E.; Zavorotny, V.U.; Gutmann, E.D.; Bilich, A.L. GPS multipath and its relation to near-surface soil moisture content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 1, 91–99. [Google Scholar] [CrossRef]
- SongHua, Y.; ZhaoNengCheng, F.; GongSoil, C. Moisture estimation based on BeiDou B1 interference signal analysis. Sci. China Earth Sci. 2016, 12, 2427–2440. [Google Scholar]
- Motte, E.; Zribi, M.; Fanise, P.; Egido, A.; Darrozes, J.; Al-Yaari, A.; Baghdadi, N.; Baup, F.; Dayau, S.; Fieuzal, R.; et al. GLORI: A GNSS-R dual polarization airborne instrument for land surface monitoring. Sensors 2016, 16, 732. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Savi, P. Polarimetric GNSS-R measurements for soil moisture and vegetation sensing. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 5260–5263. [Google Scholar]
- Park, J.; Johnson, J.T.; Ouellete, J. Modeling polarimetric sea surface specular scattering for GNSS-R applications. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 1903–1904. [Google Scholar]
- Camps, A.; Marchan-Hernandez, J.F.; Bosch-Lluis, X.; Rodriguez-Alvarez, N.; Ramos-Perez, O.; Valencia, E.; Tarongi, J.M.; Park, H.; Carreno-Luengo, H.; Alonso-Arroyo, A.; et al. Review of GNSS-R instruments and tools developed at the Universitat Politecnica de Catalunya-BarcelonaTech. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014; pp. 3826–3829. [Google Scholar]
- Ferrazzoli, P.; Guerriero, L.; Pierdicca, N.; Rahmoune, R. Forest biomass monitoring with GNSS-R: Theoretical simulations. Adv. Space Res. 2011, 47, 1823–1832. [Google Scholar] [CrossRef]
- Wu, X.R.; Jin, S.G. GPS-Reflectometry: Forest canopies polarization scattering properties and modelling. Adv. Space Res. 2014, 54, 863–870. [Google Scholar] [CrossRef]
- Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N. Airborne GNSS-R soil moisture and above ground biomass observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1522–1532. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Amezaga, A.; Vidal, D.; Olive, R.; Munoz, J.F.; Camps, A. First Polarimetric GNSS-R Measurements from a Stratospheric Flight over Boreal Forests. Remote Sens. 2015, 7, 13120–13138. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.; O’Neill, P.; Spencer, M.; Jackson, T.; Entin, L.; Im, E.; Kellogg, K. The Soil Moisture Active Passive Mission (SMAP). In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008. [Google Scholar]
- Carreno-Luengo, H.; Camps, A. Unified GNSS-R formulation including coherent and incoherent scattering components. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 4815–4818. [Google Scholar]
- Gleason, S. Remote Sensing of Ocean, Ice and Land Surfaces Using Bistatically Scattered GNSS Signals From Low Earth Orbit. Ph.D. Thesis, University of Surrey, Surrey, UK, 2000. [Google Scholar]
- Pei, Y. GNSS Reflectometry for Land Surface Monitoring and Buried Object Detection. Ph.D. Thesis, Poltecnico de Torino, Turin, Italy, 2014. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Radar remote sensing and surface scattering and emission theory. In Microwave Remote Sensing: Active and Passive; Addison-Wesley: Reading, MA, USA, 1982; Volume 2, p. 1008. [Google Scholar]
- Piles, M.; Entekhabi, D.; Konings, A.G.; McColl, K.A.; Das, N.N.; Jagdhuber, T. Multi-temporal microwave retrievals of soil moisture and vegetation parameters from SMAP. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 242–245. [Google Scholar]
- Konings, A.G.; Piles, M.; Rotzer, K.; McColl, K.A.; Chan, S.K.; Entekhabi, D. Vegetation optical depth and scattering albedo retrieval using time series of dual polarized L-band radiometer observations. Remote Sens. Environ. 2016, 172, 178–189. [Google Scholar] [CrossRef]
- Pierdicca, N.; Guerriero, L.; Giusto, R.; Brogioni, M.; Egido, A. SAVERS: A simulator of GNSS reflections from bare and vegetated soils. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6542–6554. [Google Scholar] [CrossRef]
- Kandel, P.N. Estimation of above ground forest biomass and carbon stock by integrating LiDAR, satellite image and field measurement in Nepal. Res. J. Agric. For. Sci. 2014, 2, 1–6. [Google Scholar]
- Soil Water Index [SWI]. Available online: http://land.copernicus.eu/global/products/swi (accessed on 10 February 2017).
- Vegetation Index [NDVI]. Available online: http://neo.sci.gsfc.nasa.gov/ (accessed on 7 February 2017).
- Prigent, C.; Aires, F.; Jimenez, C.; Papa, F.; Roger, J. Multiangle backscattering observations of continental surfaces in ku-band (13 GHz) from satellites: Understanding the signals, particularly in arid regions. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1364–1373. [Google Scholar] [CrossRef]
- Liu, P.W.; Judge, J.; DeRoo, R.D.; England, A.W.; Bongiovanni, T.; Luke, A. Dominant backscattering mechanisms at L-band during dynamic soil moisture conditions for sandy soils. Remote Sens. Environ. 2016, 178, 104–112. [Google Scholar] [CrossRef]
- McColl, K.A.; Entekhabi, D.; Piles, M. Uncertainty analysis of soil moisture and vegetation indices using aquarius scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4259–4272. [Google Scholar] [CrossRef]
- Stephen, H.; Long, D.G. Modeling microwave emissions of the erg surfaces in the Sahara desert. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2822–2830. [Google Scholar] [CrossRef]
- Fabra, F. GNSS-R as a Source of Opportunity for Remote Sensing of the Cryosphere. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2014. [Google Scholar]
- Fabra, F.; Cardellach, E.; Nogues-Correig, O.; Oliveras, S.; Ribo, S.; Arco, J.C.; Rius, A.; Belmonte-Rivas, M.; Semmling, M.; Macelloni, G.; et al. GNSS-R for Studies of the Cryosphere. Workshop on GNSS-Reflectometry. Barcelona: Spain, 22 October 2010. Available online: http://congress.cimne.com/gnss-r10/frontal/presentaciones/130.pdf (accessed on 3 December 2016).
- Boniface, K.; Braun, J.J.; McCreight1, J.L.; Nievinski, F.G. Comparison of snow data assimilation system with GPS reflectometry snow depth in the Western United States. Hydrol. Process. 2015, 29, 2425–2437. [Google Scholar] [CrossRef]
- Maetzler, C. Aplications of SMOS over terrestrial ice and snow. In Proceedings of the 3rd SMOS Workshop, DLR, Oberpfaffenhofen, Germany, 10–12 December 2001. [Google Scholar]
- Belmonte Rivas, M.; Maslanik, J.A.; Axelrad, P. Bistatic scattering of GPS signals off artic sea ice. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1548–1553. [Google Scholar] [CrossRef]
- MacGregor, J.A.; Fahnestock, M.A.; Catania, G.A.; Aschwanden, A.; Clow, G.D.; Colgan, W.T.; Gogineni, S.P.; Morlighem, M.; Nowicki, S.M.; Paden, J.D.; et al. A synthesis of the basal thermal state of the Greenland Ice Sheet. AGU J. Geophys. Res. Earth Surf. 2016, 121, 1328–1350. [Google Scholar] [CrossRef] [PubMed]
- Wiehl, M. Potential of reflected GNSS signals for ice sheet remote sensing. Prog. Electromagn. Res. 2003, 40, 177–205. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carreno-Luengo, H.; Lowe, S.; Zuffada, C.; Esterhuizen, S.; Oveisgharan, S. Spaceborne GNSS-R from the SMAP Mission: First Assessment of Polarimetric Scatterometry over Land and Cryosphere. Remote Sens. 2017, 9, 362. https://doi.org/10.3390/rs9040362
Carreno-Luengo H, Lowe S, Zuffada C, Esterhuizen S, Oveisgharan S. Spaceborne GNSS-R from the SMAP Mission: First Assessment of Polarimetric Scatterometry over Land and Cryosphere. Remote Sensing. 2017; 9(4):362. https://doi.org/10.3390/rs9040362
Chicago/Turabian StyleCarreno-Luengo, Hugo, Stephen Lowe, Cinzia Zuffada, Stephan Esterhuizen, and Shadi Oveisgharan. 2017. "Spaceborne GNSS-R from the SMAP Mission: First Assessment of Polarimetric Scatterometry over Land and Cryosphere" Remote Sensing 9, no. 4: 362. https://doi.org/10.3390/rs9040362
APA StyleCarreno-Luengo, H., Lowe, S., Zuffada, C., Esterhuizen, S., & Oveisgharan, S. (2017). Spaceborne GNSS-R from the SMAP Mission: First Assessment of Polarimetric Scatterometry over Land and Cryosphere. Remote Sensing, 9(4), 362. https://doi.org/10.3390/rs9040362