Comparative Assessments of the Latest GPM Mission’s Spatially Enhanced Satellite Rainfall Products over the Main Bolivian Watersheds
"> Figure 1
<p>The study area (<b>a</b>) with the number of rain gauges included in studied 0.25° SREs pixels (<b>b</b>) 0.25° mean slope pixel derived from SRTM-GL1 (<b>c</b>) and mean monthly rainfall amounts derived from TMPA for the 1998–2015 period for each considered regions (<b>d</b>–<b>f</b>).</p> "> Figure 2
<p>Annual rainfall pattern for all SREs. Rainfall amounts are in mm.</p> "> Figure 3
<p>Taylor diagram for monthly rainfall considering the whole Bolivia (<b>a</b>), Amazon (<b>b</b>), La Plata (<b>c</b>) and TDPS (<b>d</b>) regions separately. The continuous curved lines represent RMSE values.</p> "> Figure 4
<p>Absolute Bias (%) and RMSE (%) for different slope classes. Black squares, blue tringle and green point represent TMPA, IMERG and GSMaP-v6, respectively.</p> "> Figure 5
<p>Performance diagram for the whole Bolivia (<b>a</b>), Amazon (<b>b</b>), La Plata (<b>c</b>) and TDPS (<b>d</b>) regions. Straight and curved lines represent the B and CSI values, respectively.</p> "> Figure 6
<p>POD and FAR for different slope classes. Black squares, blue tringle and green point represent TMPA, IMERG and GSMaP-v6, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Method Used
2.3.1. Pre-Process
2.3.2. Comparison Methodology
3. Results and Discussion
3.1. Annual Scale
3.2. Monthly Scale
3.3. Daily Scale
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, Z. Comparison of Integrated Multisatellite Retrievals for GPM ( IMERG ) and TRMM Multisatellite Precipitation Analysis ( TMPA ) Monthly Precipitation Products: Initial Results. J. Hydrometeorol. 2016, 17, 777–790. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D.S. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2016. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3B43 Monthly Precipitation Products over Mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef]
- Tang, B.H.; Shao, K.; Li, Z.L.; Wu, H.; Nerry, F.; Zhou, G. Estimation and validation of land surface temperatures from chinese second-generation polar-orbit FY-3A VIRR data. Remote Sens. 2015, 7, 3250–3273. [Google Scholar] [CrossRef]
- Müller, M.F.; Thompson, S.E. Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal. Adv. Water Resour. 2013, 60, 121–134. [Google Scholar] [CrossRef]
- Amani, M.; Parsian, S.; MirMazloumi, S.M.; Aieneh, O. Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 176–186. [Google Scholar] [CrossRef]
- Condom, T.; Rau, P.; Espinoza, J.C. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol. Process. 2010, 25, 1924–1933. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.-P.; Gosset, M.; Molina, J.; Hernan Yuque Lima, W.; Pillco Zolá, R.; Timouk, F.; Garnier, J. Assessment of satellite rainfall products over the Andean plateau. Atmos. Res. 2016, 167, 1–14. [Google Scholar] [CrossRef]
- Blacutt, L.A.; Herdies, D.L.; de Gonçalves, L.G.G.; Vila, D.A.; Andrade, M. Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia. Atmos. Res. 2015, 163, 117–131. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.P.; Timouk, F.; Calmant, S.; Pillco, R.; Molina, J.; Lavado-Casimiro, W.; Arsen, A.; Crétaux, J.F.; Garnier, J. Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. Int. J. Remote Sens. 2015, 36, 465–488. [Google Scholar] [CrossRef]
- Satge, F.; Denezine, M.; Pillco, R.; Timouk, F.; Pinel, S.; Molina, J.; Garnier, J.; Seyler, F.; Bonnet, M.-P. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau. ISPRS J. Photogramm. Remote Sens. 2016, 121, 157–166. [Google Scholar] [CrossRef]
- Kummerow, C.D.; Randel, D.L.; Kulie, M.; Wang, N.Y.; Ferraro, R.; Joseph Munchak, S.; Petkovic, V. The evolution of the goddard profiling algorithm to a fully parametric scheme. J. Atmos. Ocean. Technol. 2015, 32, 2265–2280. [Google Scholar] [CrossRef]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M.; et al. A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data. J. Meteorol. Soc. Jpn. 2009, 87, 137–151. [Google Scholar] [CrossRef]
- Yamamoto, M.K.; Shige, S. Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers. Atmos. Res. 2014, 163, 36–47. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation; NASA/GSFC: Greenbelt, MD, USA, 2014. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Oliveira, R.; Maggioni, V.; Vila, D.; Morales, C. Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region. Remote Sens. 2016, 8, 544. [Google Scholar] [CrossRef]
- Hussain, Y.; Satge, F. Performance of CMORPH, TMPA and PERSIANN rainfall datasets over plain, mountainous and glacial regions of Pakistan. Theor. Appl. Climatol. 2017, 1–14. [Google Scholar] [CrossRef]
- Prakash, S.; Sathiyamoorthy, V.; Mahesh, C.; Gairola, R.M. An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region. Int. J. Remote Sens. 2014, 35, 3018–3035. [Google Scholar] [CrossRef]
- Scheel, M.L.M.; Rohrer, M.; Huggel, C.; Santos Villar, D.; Silvestre, E.; Huffman, G.J. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2011, 15, 2649–2663. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Nasrollahi, N.; Hsu, K.; Sorooshian, S. Evaluation of satellite-based precipitation estimation over Iran. J. Arid Environ. 2013, 97, 205–219. [Google Scholar] [CrossRef]
- Ochoa, A.; Pineda, L.; Crespo, P.; Willems, P. Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific–Andean region of Ecuador and Peru. Hydrol. Earth Syst. Sci. 2014, 18, 3179–3193. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing Multiple Measures of Forecast Quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Marengo, J.A.; Ronchail, J.; Carpio, J.M.; Flores, L.N.; Guyot, J.L. The extreme 2014 flood in south-western Amazon basin: The role of tropical-subtropical South Atlantic SST gradient. Environ. Res. Lett. 2014, 9, 124007. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Chavez, S.; Ronchail, J.; Junquas, C.; Takahashi, K.; Lavado, W. Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Ressour. Res. 2015, 51, 3459–3475. [Google Scholar] [CrossRef]
- Satgé, F.; Espinoza, R.; Zolá, R.; Roig, H.; Timouk, F.; Molina, J.; Garnier, J.; Calmant, S.; Seyler, F.; Bonnet, M.-P. Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.-L.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. 2009, 114, D24101. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Hossain, F. Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 704–718. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Y. Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theor. Appl. Climatol. 2014, 118, 429–445. [Google Scholar] [CrossRef]
TMPA | IMERG | GSMaP-v6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | RMSE | CC | Bias | RMSE | CC | Bias | RMSE | CC | |||||||
0.25° | 0.25° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | |
Bolivia | 3.6 | 55.4 | 0.8 | 4.1 | 3.4 | 55.6 | 55.9 | 0.79 | 0.79 | −25.1 | −25.1 | 81.1 | 81.2 | 0.52 | 0.53 |
Amazon | 1.8 | 53.4 | 0.76 | 3.1 | 3.5 | 52.8 | 52.3 | 0.78 | 0.77 | −31.5 | −30.7 | 83.5 | 81.3 | 0.38 | 0.38 |
La Plata | 6.2 | 45.1 | 0.7 | 8.3 | 5.7 | 51.6 | 52.8 | 0.6 | 0.59 | −19.7 | −19.4 | 53.8 | 54.5 | 0.6 | 0.6 |
TDPS | 7.9 | 54 | 0.63 | −6.1 | −5.6 | 49 | 51.5 | 0.68 | 0.67 | −4.1 | −2.8 | 55.9 | 56.8 | 0.53 | 0.54 |
TMPA 3B43 | IMERG-FR (0.1°–0.25°) | GSMaP-v6 (0.1°–0.25°) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bias | CC | RMSE | Bias (%) | CC | RMSE | Bias | CC | RMSE | ||||||||
0.25° | 0.25° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | ||
Bolivia | All | 1.2 | 0.78 | 90.7 | −2.3 | −1.4 | 0.77 | 0.78 | 95.2 | 92.7 | −22.6 | −22.4 | 0.63 | 0.63 | 116.8 | 115.1 |
Wet | 5.7 | 0.76 | 64.2 | −0.1 | 0.7 | 0.72 | 0.74 | 70.4 | 68.2 | −20.9 | −20.7 | 0.51 | 0.54 | 87 | 85.7 | |
Dry | −7.2 | 0.71 | 135.9 | −6.5 | −5.3 | 0.73 | 0.73 | 134.6 | 131.5 | −25.9 | −25.6 | 0.57 | 0.57 | 162.9 | 160.1 | |
Amazon | All | 0.5 | 0.75 | 82.7 | −1.2 | 0.8 | 0.76 | 0.76 | 84.6 | 82 | −30.1 | −29.1 | 0.54 | 0.56 | 112 | 108.7 |
Wet | 6.2 | 0.74 | 59.7 | 1.9 | 3.3 | 0.72 | 0.73 | 63.5 | 60.7 | −28.9 | −28 | 0.42 | 0.44 | 87.9 | 84.5 | |
Dry | −8.5 | 0.67 | 117 | −6.2 | −3.2 | 0.69 | 0.7 | 114.7 | 112.8 | −32 | −30.7 | 0.49 | 0.49 | 142.4 | 140.1 | |
La Plata | All | 1.4 | 0.82 | 86.1 | −10 | −1.4 | 0.76 | 0.76 | 102.1 | 100.8 | −17 | −16.5 | 0.76 | 0.77 | 98.8 | 96.1 |
Wet | 4.9 | 0.73 | 63.3 | −17 | 0.7 | 0.64 | 0.65 | 76 | 76.5 | −16.4 | −15.4 | 0.6 | 0.63 | 72.3 | 71.4 | |
Dry | −8.5 | 0.8 | 120.5 | 10.2 | −7.2 | 0.76 | 0.79 | 132.8 | 122.6 | −18.8 | −19.7 | 0.75 | 0.78 | 135.6 | 129.2 | |
TDPS | All | 6.1 | 0.68 | 105.4 | −17.4 | −18.2 | 0.72 | 0.73 | 74.1 | 80.6 | 9.4 | 10.2 | 0.64 | 0.64 | 142.8 | 145.4 |
Wet | 4.9 | 0.64 | 58.6 | −16.2 | −16.8 | 0.67 | 0.7 | 41.6 | 44.8 | 11.2 | 11.6 | 0.53 | 0.56 | 80.2 | 80.8 | |
Dry | 8.9 | 0.41 | 207.3 | −20 | −21.2 | 0.54 | 0.52 | 143.2 | 158.6 | 5.4 | 7.3 | 0.46 | 0.45 | 275.8 | 286.1 |
Classes | TMPA | IMERG | GSMaP-v6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
AB | RMSE | CC | AB | RMSE | CC | AB | RMSE | CC | ||
Amazon | 0°–2.5° | 35.9 | 71.4 | 0.71 | 36.7 | 70.7 | 0.71 | 35.8 | 77.5 | 0.66 |
2.5°–5° | 40.8 | 76.8 | 0.80 | 39.9 | 74.1 | 0.81 | 67.3 | 136.3 | 0.16 | |
5°–10° | 45.8 | 80.0 | 0.87 | 38.7 | 70.8 | 0.90 | 42.3 | 83.5 | 0.86 | |
10°–15° | 49.8 | 82.2 | 0.85 | 52.8 | 89.5 | 0.82 | 58.7 | 137.7 | 0.41 | |
>15° | 56.6 | 93.6 | 0.64 | 55.6 | 92.2 | 0.66 | 61.5 | 113.1 | 0.47 | |
La Plata | 0°–2.5° | 40.8 | 65.3 | 0.87 | 49.6 | 84.6 | 0.75 | 34.4 | 57.9 | 0.86 |
2.5°–5° | 53.0 | 91.9 | 0.89 | 57.2 | 111.0 | 0.89 | 55.6 | 97.9 | 0.86 | |
5°–10° | 50.5 | 94.0 | 0.81 | 61.3 | 111.8 | 0.79 | 42.3 | 81.5 | 0.83 | |
10°–15° | 47.2 | 84.3 | 0.85 | 52.8 | 102.8 | 0.79 | 52.9 | 101.0 | 0.77 | |
>15° | 48.0 | 90.6 | 0.79 | 52.3 | 97.8 | 0.75 | 54.2 | 108.8 | 0.71 | |
TDPS | 0°–2.5° | 92.6 | 131.8 | 0.71 | 58.8 | 93.2 | 0.83 | 100.0 | 153.9 | 0.69 |
2.5°–5° | 59.8 | 99.8 | 0.56 | 53.8 | 99.0 | 0.61 | 60.4 | 101.9 | 0.56 | |
5°–10° | 52.0 | 83.1 | 0.81 | 50.2 | 87.8 | 0.77 | 63.0 | 100.8 | 0.72 | |
10°–15° | 57.1 | 94.5 | 0.84 | 49.0 | 79.5 | 0.90 | 53.9 | 91.2 | 0.79 |
TMPA | IMERG | GSMaP-v6 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
POD | FAR | BIAS | CSI | POD | FAR | BIAS | CSI | POD | FAR | BIAS | CSI | ||||||||||
0.25° | 0.25° | 0.25° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | 0.1° | 0.25° | ||
Bolivia | All | 0.51 | 0.55 | 1.13 | 0.32 | 0.51 | 0.56 | 0.56 | 0.54 | 1.16 | 1.2 | 0.31 | 0.34 | 0.58 | 0.6 | 0.59 | 0.57 | 1.42 | 1.38 | 0.32 | 0.34 |
Wet | 0.55 | 0.51 | 1.12 | 0.35 | 0.55 | 0.6 | 0.53 | 0.5 | 1.17 | 1.2 | 0.34 | 0.37 | 0.62 | 0.63 | 0.57 | 0.54 | 1.42 | 1.37 | 0.34 | 0.36 | |
Dry | 0.41 | 0.65 | 1.16 | 0.23 | 0.4 | 0.45 | 0.65 | 0.63 | 1.14 | 1.2 | 0.23 | 0.26 | 0.49 | 0.5 | 0.66 | 0.64 | 1.43 | 1.4 | 0.25 | 0.27 | |
Amazon | All | 0.59 | 0.51 | 1.2 | 0.37 | 0.57 | 0.61 | 0.53 | 0.55 | 1.21 | 1.27 | 0.35 | 0.37 | 0.59 | 0.61 | 0.56 | 0.52 | 1.35 | 1.35 | 0.33 | 0.35 |
Wet | 0.65 | 0.47 | 1.22 | 0.41 | 0.62 | 0.66 | 0.5 | 0.52 | 1.24 | 1.29 | 0.39 | 0.4 | 0.63 | 0.65 | 0.53 | 0.49 | 1.34 | 1.33 | 0.37 | 0.38 | |
Dry | 0.49 | 0.59 | 1.18 | 0.29 | 0.46 | 0.51 | 0.6 | 0.62 | 1.13 | 1.23 | 0.27 | 0.3 | 0.51 | 0.53 | 0.63 | 0.59 | 1.38 | 1.39 | 0.27 | 0.28 | |
La Plata | All | 0.4 | 0.59 | 0.99 | 0.26 | 0.43 | 0.47 | 0.62 | 0.57 | 1.13 | 1.09 | 0.25 | 0.33 | 0.57 | 0.58 | 0.61 | 0.56 | 1.45 | 1.33 | 0.3 | 0.29 |
Wet | 0.45 | 0.56 | 1.02 | 0.29 | 0.47 | 0.51 | 0.58 | 0.53 | 1.13 | 1.09 | 0.28 | 0.36 | 0.6 | 0.62 | 0.59 | 0.54 | 1.45 | 1.34 | 0.32 | 0.32 | |
Dry | 0.24 | 0.73 | 0.87 | 0.14 | 0.28 | 0.3 | 0.75 | 0.72 | 1.12 | 1.07 | 0.15 | 0.25 | 0.46 | 0.46 | 0.68 | 0.64 | 1.43 | 1.29 | 0.23 | 0.17 | |
TDPS | All | 0.46 | 0.62 | 1.21 | 0.26 | 0.49 | 0.54 | 0.55 | 0.55 | 1.1 | 1.61 | 0.3 | 0.33 | 0.59 | 0.6 | 0.64 | 0.63 | 1.62 | 1.2 | 0.29 | 0.3 |
Wet | 0.48 | 0.54 | 1.05 | 0.3 | 0.52 | 0.58 | 0.51 | 0.5 | 1.07 | 1.6 | 0.34 | 0.36 | 0.62 | 0.64 | 0.61 | 0.6 | 1.6 | 1.16 | 0.32 | 0.32 | |
Dry | 0.39 | 0.78 | 1.72 | 0.17 | 0.38 | 0.44 | 0.68 | 0.67 | 1.2 | 1.66 | 0.21 | 0.23 | 0.48 | 0.47 | 0.72 | 0.72 | 1.68 | 1.31 | 0.22 | 0.22 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satgé, F.; Xavier, A.; Pillco Zolá, R.; Hussain, Y.; Timouk, F.; Garnier, J.; Bonnet, M.-P. Comparative Assessments of the Latest GPM Mission’s Spatially Enhanced Satellite Rainfall Products over the Main Bolivian Watersheds. Remote Sens. 2017, 9, 369. https://doi.org/10.3390/rs9040369
Satgé F, Xavier A, Pillco Zolá R, Hussain Y, Timouk F, Garnier J, Bonnet M-P. Comparative Assessments of the Latest GPM Mission’s Spatially Enhanced Satellite Rainfall Products over the Main Bolivian Watersheds. Remote Sensing. 2017; 9(4):369. https://doi.org/10.3390/rs9040369
Chicago/Turabian StyleSatgé, Frédéric, Alvaro Xavier, Ramiro Pillco Zolá, Yawar Hussain, Franck Timouk, Jérémie Garnier, and Marie-Paule Bonnet. 2017. "Comparative Assessments of the Latest GPM Mission’s Spatially Enhanced Satellite Rainfall Products over the Main Bolivian Watersheds" Remote Sensing 9, no. 4: 369. https://doi.org/10.3390/rs9040369
APA StyleSatgé, F., Xavier, A., Pillco Zolá, R., Hussain, Y., Timouk, F., Garnier, J., & Bonnet, M. -P. (2017). Comparative Assessments of the Latest GPM Mission’s Spatially Enhanced Satellite Rainfall Products over the Main Bolivian Watersheds. Remote Sensing, 9(4), 369. https://doi.org/10.3390/rs9040369