Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems
"> Figure 1
<p>Location of study sites. ALS extents are shown in red, and GLAS footprint centres are indicated by an orange point.</p> "> Figure 2
<p>Example waveform indicating (<b>a</b>) the locations of the canopy top, ground elevation, and an example height threshold above the ground; and (<b>b</b>) the same waveform with fitted Gaussians.</p> "> Figure 3
<p>Methodological workflow for obtaining Squared Sum of fitted model Residuals (SSR) for independent predictor ranking from ALS and GLAS GF.</p> "> Figure 4
<p>Boxplots illustrating how GLAS scaling factors vary as a function of (<b>a</b>) footprint eccentricity and (<b>b</b>) laser campaign (Lc). Boxes indicate the median (black line), first (Q1) and third (Q3) quartiles (lower and upper box edges, respectively), up to 1.5-times the Interquartile Range (IQR) beyond the box (whiskers) and outliers greater than 1.5-times the IQR beyond the box (triangles). Note that whiskers extend to a point, which is no more than 1.5-times the IQR from the box; if no outliers exist beyond this range, the whiskers are truncated and do not always appear symmetrical as a result.</p> "> Figure 5
<p>Comparison of ALS and GLAS unscaled (grey) and scaled (black) estimates of GF where scaling factors were predicted via an RF model trained with the best suited predictor attributes using (<b>a</b>) all available training data and (<b>b</b>) an optimized subset.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Discrete Return ALS Data
2.2. GLAS Data
2.3. ALS Gap Fraction
2.4. GLAS Gap Fraction
2.5. Gap Fraction Scaling
2.6. Predictor Attributes
2.7. Gap Fraction Comparisons
3. Results
3.1. Consistency Assessment
3.2. Scaling Factor Sensitivity
3.3. Gap Fraction Comparisons
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ALS | Airborne Laser Scanning |
ASRIS | Australian Soil Resource Information System |
DLCD | Dynamic Land Cover Dataset |
FC | Fractional Cover |
GEDI | Global Ecosystem Dynamics Investigation |
GF | Gap Fraction |
GLAS | Geoscience Laser Altimeter System |
ICESat | Ice, Cloud and land Elevation Satellite |
LAI | Leaf Area Index |
LiDAR | Light Detection And Ranging |
LVIS | Land, Vegetation, and Ice Sensor |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautic Space Administration |
NVIS | National Vegetation Inventory System |
RMSE | Root Mean Squared Error |
SLICER | Scanning Lidar Imager of Canopies by Echo Recovery |
SRTM | Shuttle Radar Topography Mission |
VBF | Valley Bottom Flatness |
VCF | Vegetation Continuous Fields |
References
- Hopkinson, C.; Chasmer, L. Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens. Environ. 2009, 113, 275–288. [Google Scholar] [CrossRef]
- Hall, F.G.; Botkin, D.B.; Strebel, D.E.; Woods, K.D.; Goetz, S.J. Large-scale patterns of forest succession as determined by remote sensing. Ecology 1991, 72, 628–640. [Google Scholar] [CrossRef]
- Welles, J.M.; Cohen, S. Canopy structure measurement by gap fraction analysis using commercial instrumentation. J. Exp. Bot. 1996, 47, 1335–1342. [Google Scholar] [CrossRef]
- Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M. Airborne discrete-return LiDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. Remote Sens. Environ. 2011, 115, 1065–1080. [Google Scholar] [CrossRef]
- Tian, Y.H.; Wang, Y.J.; Zhang, Y.; Knyazikhin, Y.; Bogaert, J.; Myneni, R.B. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sens. Environ. 2003, 84, 143–159. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Miller, J.R.; Chen, J.M.; Rubinstein, I.G. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery. Remote Sens. Environ. 2004, 89, 200–216. [Google Scholar] [CrossRef]
- Parker, G.G.; Lefsky, M.A.; Harding, D.J. Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements. Remote Sens. Environ. 2001, 76, 298–309. [Google Scholar] [CrossRef]
- Lovell, J.L.; Jupp, D.L.; Culvenor, D.S.; Coops, N.C. Using airborne and ground-based ranging LiDAR to measure canopy structure in Australian forests. Can. J. Remote Sens. 2003, 29, 607–622. [Google Scholar] [CrossRef]
- Todd, K.W.; Csillag, F.; Atkinson, P.M. Three-dimensional mapping of light transmittance and foliage distribution using lidar. Can. J. Remote Sens. 2003, 29, 544–555. [Google Scholar] [CrossRef]
- Barilotti, A.; Turco, S.; Alberti, G. LAI Determination in Forestry Ecosystem by LiDAR Data Analysis. In Proceedings of Workshop 3D Remote Sensing in Forestry Report, Vienna, Austria, 14–15 February 2006.
- Morsdorf, F.; Kötz, B.; Meier, E.; Itten, K.; Allgöwer, B. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens. Environ. 2006, 104, 50–61. [Google Scholar] [CrossRef]
- Thomas, V.; Treitz, P.; McCaughey, J.H.; Morrison, I. Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: An examination of scanning density. Can. J. For. Res. 2006, 36, 34–47. [Google Scholar] [CrossRef]
- Hopkinson, C.; Chasmer, L. Using discrete laser pulse return intensity to model canopy transmittance. Photogramm. J. Finl. 2007, 20, 16–26. [Google Scholar]
- Lefsky, M.A.; Cohen, W.; Acker, S.; Parker, G.G.; Spies, T.; Harding, D. LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
- Yang, W.; Ni-Meister, W.; Lee, S. Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation LiDAR waveforms using an extended geometric optical and radiative transfer model. Remote Sens. Environ. 2011, 115, 2810–2822. [Google Scholar] [CrossRef]
- North, P.; Rosette, J.; Suárez, J.; Los, S. A Monte Carlo radiative transfer model of satellite waveform LiDAR. Int. J. Remote Sens. 2010, 31, 1343–1358. [Google Scholar] [CrossRef]
- Luo, S.; Wang, C.; Li, G.; Xi, X. Retrieving leaf area index using ICESat/GLAS full-waveform data. Remote Sens. Lett. 2013, 4, 745–753. [Google Scholar] [CrossRef]
- Tang, H.; Dubayah, R.; Swatantran, A.; Hofton, M.; Sheldon, S.; Clark, D.B.; Blair, B. Retrieval of vertical LAI profiles over tropical rain forests using waveform LiDAR at La Selva, Costa Rica. Remote Sens. Environ. 2012, 124, 242–250. [Google Scholar] [CrossRef]
- Tang, H.; Brolly, M.; Zhao, F.; Strahler, A.H.; Schaaf, C.L.; Ganguly, S.; Zhang, G.; Dubayah, R. Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sens. Environ. 2014, 143, 131–141. [Google Scholar] [CrossRef]
- Tang, H.; Dubayah, R.; Brolly, M.; Ganguly, S.; Zhang, G. Large-scale retrieval of leaf area index and vertical foliage profile from the spaceborne waveform lidar (GLAS/ICESat). Remote Sens. Environ. 2014, 154, 8–18. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mahoney, C.; Hopkinson, C.; Held, A.; Kljun, N.; van Gorsel, E. ICESat/GLAS Canopy Height Sensitivity Inferred from Airborne LiDAR. Photogramm. Eng. Remote Sens. 2016, 82, 351–363. [Google Scholar] [CrossRef]
- Van Gorsel, E.; Leuning, R.; Cleugh, H.A.; Keith, H.; Kirschbaum, M.U.; Suni, T. Application of an alternative method to derive reliable estimates of nighttime respiration from eddy covariance measurements in moderately complex topography. Agric. For. Meteorol. 2008, 148, 1174–1180. [Google Scholar] [CrossRef]
- Hopkinson, C.; Lovell, J.; Chasmer, L.; Jupp, D.; Kljun, N.; van Gorsel, E. Integrating terrestrial and airborne LiDAR to calibrate a 3D canopy model of effective leaf area index. Remote Sens. Environ. 2013, 136, 301–314. [Google Scholar] [CrossRef]
- Brenner, A.C.; Zwally, H.J.; Bentley, C.R.; Csathó, B.M.; Harding, D.J.; Hofton, M.A.; Minster, J.B.; Roberts, L.; Saba, J.L.; Thomas, R.H.; et al. Geoscience Laser Altimeter System (GLAS) Algorithm Theoretical Basis Document 4.1: Derivation of Range and Range Distributions From Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003.
- Zwally, H.; Schutz, H.; Bentley, C.; Bufton, J.; Herring, T.; Minster, J.; Spinhirne, J.; Thomas, R. GLAS/ICESat L2 Global Land Surface Altimetry Data, Version 33; National Snow and Ice Data Center: Boulder, CO, USA, 2011. [Google Scholar]
- Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance. Geophys. Res. Lett. 2005, 32, L21S02. [Google Scholar] [CrossRef]
- Harding, D.J.; Carabajal, C.C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys. Res. Lett. 2005, 32, L21S10. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Urban, T.J.; Gutierrez, R.; Schutz, B.E. Characterization of ICESat/GLAS waveforms over terrestrial ecosystems: Implications for vegetation mapping. J. Geophys. Res. Biogeosci. 2008, 113, G02S03. [Google Scholar] [CrossRef]
- Duong, V.H.; Lindenbergh, R.; Pfeifer, N.; Vosselman, G. Single and two epoch analysis of ICESat full waveform data over forested areas. Int. J. Remote Sens. 2008, 29, 1453–1473. [Google Scholar] [CrossRef]
- Lymburner, L.; Tan, P.; Mueller, N.; Thackway, R.; Lewis, A.; Thankappan, M.; Randall, L.; Islam, A.; Senarath, U. The National Dynamic Land Cover Dataset; Commonwealth of Australia (Geoscience Australia): Canberra, Australia, 2011.
- Los, S.; Rosette, J.; Kljun, N.; North, P.; Chasmer, L.; Suárez, J.; Hopkinson, C.; Hill, R.; van Gorsel, E.; Mahoney, C.; et al. Vegetation height and cover fraction between 60°S and 60°N from ICESat GLAS data. Geosci. Model Dev. 2012, 5, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, C.; Kljun, N.; Los, S.O.; Chasmer, L.; Hacker, J.M.; Hopkinson, C.; North, P.R.J.; Rosette, J.A.B.; van Gorsel, E. Slope Estimation from ICESat/GLAS. Remote Sens. 2014, 6, 10051–10069. [Google Scholar] [CrossRef]
- Rosette, J.A.B.; North, P.R.J.; Suárez, J.C. Vegetation height estimates for a mixed temperate forest using satellite laser altimetry. Int. J. Remote Sens. 2008, 29, 1475–1493. [Google Scholar] [CrossRef]
- Means, J.E.; Acker, S.A.; Harding, D.J.; Blair, J.B.; Lefsky, M.A.; Cohen, W.B.; Harmon, M.E.; McKee, W.A. Use of large-footprint scanning airborne lidar to estimate forest stand characteristics in the Western Cascades of Oregon. Remote Sens. Environ. 1999, 67, 298–308. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar Remote Sensing for Ecosystem Studies Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. Bioscience 2002, 52, 19–30. [Google Scholar]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef]
- Burrough, P. Principles of geographical information systems for land resources assessment. Geocarto Int. 1986, 1, 54. [Google Scholar] [CrossRef]
- Gallant, J.C.; Dowling, T.I.; Read, A.M.; Wilson, N.; Tickle, P.; Inskeep, C. 1 Second SRTM Derived Digital Elevation Models User Guide; Commonwealth of Australia (Geoscience Australia): Canberra, Australia, 2011.
- Gallant, J.C.; Dowling, T.I. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39, 1347. [Google Scholar] [CrossRef]
- DiMiceli, C.M.; Carroll, M.L.; Sohlberg, R.A.; Huang, C.; Hansen, M.C.; Townshend, J.R.G. Annual Global Automated MODIS Vegetation Continuous Fields (MOD44B); University of Maryland: College Park, MD, USA, 2011. [Google Scholar]
- ESCAVI. Australian Vegetation Attribute Manual: National Vegetation Information System; Technical Report, Executive Steering Committee for Australian Vegetation Information (ESCAVI); Report No. 6.0; Department of Environment and Heritage: Canberra, Australia, 2003.
- Mahoney, C.; Hopkinson, C.; Held, A.; Simard, M. Continental-Scale Canopy Height Modeling by Integrating National, Spaceborne, and Airborne LiDAR Data. Can. J. Remote Sens. 2016, 42, 574–590. [Google Scholar] [CrossRef]
- Australian Soil Resources Information System (ASRIS). Australian Soil Resource Information System; CSIRO: Canberra, Australia, 2014. [Google Scholar]
- Rossel, V.R.A.; Chen, C.; Grundy, M.J.; Searle, R.; Clifford, D.; Campbell, P.H. The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil Res. 2015, 53, 845–864. [Google Scholar]
- Harvey, A.C.; Collier, P. Testing for functional misspecification in regression analysis. J. Econom. 1977, 6, 103–119. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Grosse, E.; Shyu, M.J. Statistical Models in S; Chapter Local Regression Models; Chapman and Hall: New York, NY, USA, 1992; pp. 309–376. [Google Scholar]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Optimizing the k-Nearest Neighbour technique for estimating forest aboveground biomass using airborne laser scanning data. Remote Sens. Environ. 2015, 163, 13–22. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 2011, 116, G04021. [Google Scholar] [CrossRef]
- Nelson, R. Model effects on GLAS-based regional estimates of forest biomass and carbon. Int. J. Remote Sens. 2010, 31, 1359–1372. [Google Scholar] [CrossRef]
Data | Units | Resolution | Description | Reference |
---|---|---|---|---|
Aspect | ° | 30 m | Derived from Shuttle Radar Topography Mission (SRTM) elevation product. Aspect is the direction of the maximum rate of change in the z-value from each cell in a raster surface. | [38] |
Slope | ° | 30 m | Derived from SRTM elevation product. Slope is the rate of maximum change in z-value from each cell. | [38] |
Elevation | m | 30 m | National SRTM Digital Elevation Model (DEM), Version 1.0. | [39] |
Valley Bottom Flatness (VBF) | - | 30 m | Derived from SRTM DEM. VBF is a topographic index that identifies areas of deposited material at a range of scales based on the observations that valley bottoms are low and flat relative to their surroundings and that large valley bottoms are flatter than smaller ones. | [40] |
Vegetation Continuous Fields (VCF) | % | 250 m | Derived from Moderate Resolution Imaging Spectroradiometer (MODIS) MOD44B product. The VCF collection contains proportional estimates for vegetative cover types: woody vegetation, herbaceous vegetation and bare ground. | [41] |
Vegetation classification | - | 100 m | The National Vegetation Information System (NVIS) is a comprehensive data system that provides information on the extent and distribution of vegetation types in Australian landscapes based on extensive field data acquisition. | [42] |
Vegetation height | m | 250 m | Derived product based on the integration of GLAS data with other Australian inventory products. | [43] |
Land cover classification | - | 250 m | The National Dynamic Land Cover Dataset of Australia is the first nationally-consistent and thematically-comprehensive land cover reference for Australia based on MODIS data. | [31] |
Soil type | - | 250 m | Based on extensive field acquisitions, the Atlas of Australian Soils was compiled in the 1960s to provide a consistent national description of Australia’s soils. | [44] |
Soil depth | m | 90 m | Derived from extensive field acquisitions and spectroscopic measurements, soil depth profile (A and B horizons) | [45] |
Soil nitrogen | % | 90 m | Derived from extensive field acquisitions and spectroscopic measurements, a mass fraction of total nitrogen in the soil by weight. | [45] |
Soil phosphorus | % | 90 m | Derived from extensive field acquisitions and spectroscopic measurements, a mass fraction of total phosphorus in the soil by weight. | [45] |
Soil pH | - | 90 m | Derived from extensive field acquisitions and spectroscopic measurements, a pH of 1:5 soil/0.01M calcium chloride (CaCl2) extract. | [45] |
Attribute | SSR | Fit Type |
---|---|---|
Phosphorus | 0.01 | L |
Height | 0.01 | L |
Nitrogen | 0.06 | L |
VCF | 0.15 | L |
Slope | 0.16 | NL |
Aspect | 0.20 | L |
Elevation | 0.22 | L |
pH | 0.44 | L |
NVIS | 0.70 | L |
Soil | 1.53 | L |
Depth | 2.00 | L |
VBF | - | L |
Land cover | - | L |
GLAS GF | Dataset | N | R2 | RMSE | F2 | FB | |
---|---|---|---|---|---|---|---|
Unscaled | All Data | 309 | 0.77 | 0.18 | 0.32 | 0.20 | −0.09 |
Scaled | 0.88 | 0.11 | 0.59 | −0.01 | 0.01 | ||
% difference | 14 | −39 | 84 | −105 | 111 | ||
Unscaled | Optimized Data | 102 | 0.83 | 0.16 | 0.34 | 0.21 | −0.10 |
Scaled | 0.89 | 0.09 | 0.67 | −0.01 | 0.01 | ||
% difference | 7 | −43 | 97 | −105 | 90 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahoney, C.; Hopkinson, C.; Kljun, N.; Van Gorsel, E. Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems. Remote Sens. 2017, 9, 59. https://doi.org/10.3390/rs9010059
Mahoney C, Hopkinson C, Kljun N, Van Gorsel E. Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems. Remote Sensing. 2017; 9(1):59. https://doi.org/10.3390/rs9010059
Chicago/Turabian StyleMahoney, Craig, Chris Hopkinson, Natascha Kljun, and Eva Van Gorsel. 2017. "Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems" Remote Sensing 9, no. 1: 59. https://doi.org/10.3390/rs9010059
APA StyleMahoney, C., Hopkinson, C., Kljun, N., & Van Gorsel, E. (2017). Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems. Remote Sensing, 9(1), 59. https://doi.org/10.3390/rs9010059