Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation
"> Figure 1
<p>Location of the study area in the Morada Nova Irrigation District, the State of Ceará (CE) in the northeast of Brazil. The sites of soil sample collections are indicated.</p> "> Figure 2
<p>Methodology used in the generation and validation of the linear and nonlinear computational models.</p> "> Figure 3
<p>Spectra of saline soils with increased values of electrical conductivity (EC), obtained in the laboratory.</p> "> Figure 4
<p>Relationship of electrical conductivity (EC) to (<b>a</b>) reflectance of the ProSpecTIR-VS band located at 1642 nm; and (<b>b</b>) first principal component (PC1).</p> "> Figure 5
<p>Relationship between measured electrical conductivity (EC) and that estimated by the PLSR model using laboratory reflectance data for the simulated 5-nm bands of the ProSpecTIR-VS sensor centered at 395, 1642, and 1717 nm.</p> "> Figure 6
<p>Relationship between measured electrical conductivity (EC) and that estimated by the PLSR model using reflectance data for 32 pixels of exposed soils (NDVI < 0.30) and three bands (395, 1642, and 1717 nm) of the ProSpecTIR-VS sensor.</p> "> Figure 7
<p>(<b>a</b>) ProSpecTIR-VS false-color composite and (<b>b</b>) Electric Conductivity (EC) estimated for areas of exposed soils in the hyperspectral image from the ProSpecTIR-VS sensor, based on the laboratory-calibrated PLSR model.</p> "> Figure 7 Cont.
<p>(<b>a</b>) ProSpecTIR-VS false-color composite and (<b>b</b>) Electric Conductivity (EC) estimated for areas of exposed soils in the hyperspectral image from the ProSpecTIR-VS sensor, based on the laboratory-calibrated PLSR model.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Field Data Collection
2.3. EC and Spectral Reflectance Measurements
2.4. Generation of the OLS, PLSR, MLP, and ELM Models with Laboratory Data
2.4.1. Model Calibration
2.4.2. Model Validation
2.5. Evaluation of the OLS, PLSR, MLP, and ELM Models with Laboratory Data
2.6. Model Application Using the ProSpecTIR-VS Hyperspectral Images
2.7. Influence of Bandwidth and Band Positioning on Soil EC Estimates
3. Results
3.1. Spectral Reflectance of the Saline Soils and Feature Selection
3.2. Performance Evaluation of the OLS, PLSR, MLP, and ELM Models
3.3. Laboratory-Calibrated PLSR Model Applied to Estimate Soil EC in the ProSpecTIR-VS Image
3.4. Influence of Bandwidth and Band Positioning on Soil EC Estimates
4. Discussion
5. Conclusions
- (1)
- The OLS, PLSR, and ELM models performed better than the MLP model in estimating EC in saline soils using spectroradiometric laboratory data. They presented larger adjusted R2, r, and RPD, and lower RMSE than the MLP model;
- (2)
- From the spectral attributes tested for estimating soil EC, and after feature selection, the metrics related to soil brightness (reflectance and principal components) had greater predictive power than the metrics related to spectral features (first-order derivative), irrespective of the type of model used;
- (3)
- The laboratory models were transferable to the aircraft level of data acquisition (ProSpecTIR-VS hyperspectral sensor), continuing to perform well in the pixel-by-pixel estimation of the exposed soil EC in the image. The greatest salinity levels were detected in exposed soils (NDVI < 0.30) from the central part of the study area, with EC estimates ranging from 10 to 20 dS·m−1;
- (4)
- Finally, for all the models and simulated sensors, the performance of the narrowband sensors (ProSpecTIR-VS and HyspIRI) to estimate soil EC was better than the performance of the broadband instruments (RapidEye, HRG, and OLI). Within the set of multispectral sensors, the RPD values increased from the RapidEye to the HRG and OLI, which indicated the importance of the SWIR-1 and SWIR-2 bands to estimate soil EC.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eswaran, H.; Lal, R.; Reich, P.F. Land degradation: An overview. In International Conference on Land Degradation and Desertification, Khon Kaen, Thailand; Oxford Press: New Delhi, India, 2001. [Google Scholar]
- Metternicht, G.I.; Zink, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Dehaan, R.L.; Taylor, G.R. Field-derived spectra of salinized soils and vegetation as indicators irrigation-induced soil salinization. Remote Sens. Environ. 2002, 80, 406–417. [Google Scholar] [CrossRef]
- Kumar, S.; Gautam, G.; Saha, S.K. Hyperspectral remote sensing data derived spectral indices in characterizing salt-affected soils: A case study of Indo-Gangetic plains of India. Environ. Earth Sci. 2015, 73, 3299–3308. [Google Scholar] [CrossRef]
- Mashimbye, Z.E.; Cho, M.A.; Nell, J.P.; de Clercq, W.P.; Van Niekerk, A.; Turner, D.P. Model-based integrated methods for quantitative estimation of soil salinity from hyperspectral remote sensing data: A case study of selected South African soils. Pedosphere 2012, 22, 640–649. [Google Scholar] [CrossRef]
- Detar, W.R.; Chesson, J.H.; Penner, J.V.; Ojala, J.C. Detection of soil properties with airborne hyperspectral measurements of bare fields. Am. Soc. Agric. Biol. Eng. 2008, 51, 463–470. [Google Scholar]
- Hively, W.D.; Mccarty, G.W.; Reeves III, J.B.; Lang, M.W.; Oesterling, R.A.; Delwiche, S.R. Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields. Appl. Environ. Soil. Sci. 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Kobayashi, C.; Lau, I.; Wheaton, B.; Cater, D.; Bourke, L.; Asada, N.; Kashimura, O.; Ong, C.; Cudahy, T. Estimating soil salinity using hyperspectral data in the western australian wheat belt. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 21–26 July 2013.
- Yao, R.J.; Yang, J.S.; Gao, P.; Shao, H.B.; Liu, G.M.; Yu, S.P. Comparison of statistical prediction methods for characterizing the spatial variability of apparent electrical conductivity in coastal salt-affected farmland. Environ. Earth Sci. 2014, 71, 233–243. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Farifteh, J.; Van Der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Yu, Q. Machine Learning for Corporate Bankruptcy Prediction. Ph.D. Thesis, Computer Science, School of Science Aalto University, Helsinki, Finland, 2013. [Google Scholar]
- Li, J.; Du, Q.; Li, W.; Li, Y. Improving the performance of Extreme Learning Machine for hyperspectral image classification. In Proceedings of the SPIE 9501 Satellite Data Compression, Communications, and Processing XI, Baltimore, Maryland, United States, 21 May 2015.
- Zhou, Y.; Peng, J.; Chen, C.L.P. Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2351–2360. [Google Scholar] [CrossRef]
- Tuia, D.; Volpi, M.; Mura, M.D.; Rakotomamonjy, A.; Flamary, R. Automatic Feature Learning for Spatio-Spectral Image Classification with Sparse SVM. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6062–6074. [Google Scholar] [CrossRef]
- Bagnasco, L.; Zotti, M.; Sitta, N.; Oliveri, P. A PCA-based hyperspectral approach to detect infections by mycophilic fungi on dried porcini mushrooms (boletus edulis and allied species). Talanta 2015, 144, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Wei, Y.; Sun, X.; Zhou, Y. Estimation of chlorophyll-a concentration in turbid lake using spectral smoothing and derivative analysis. Int. J. Environ. Res. Public Health 2013, 10, 2979–2994. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra, F.F.H.; Silva, F.R. Identificação mineralógica das frações areia e argila dos solos aluviais do perímetro K do projeto de irrigação de Morada Nova, Ceará. ReCiênc. Agron. 1991, 22, 29–37. [Google Scholar]
- Galvão, L.S.; Pizarro, M.A.; Epiphanio, J.C.N. Variations in reflectance of tropical soils: Spectral-chemical composition relationships from AVIRIS data. Remote Sens. Environ. 2001, 75, 245–255. [Google Scholar] [CrossRef]
- Unger, D.; Bowes, C.; Farrish, K.; Hung, I.K. Mapping oilfield brine-contaminated sites with mid-spatial resolution remotely sensed data. GISci. Remote Sens. 2013, 50, 623–632. [Google Scholar] [CrossRef]
- Moreira, L.C.J.; Teixeira, A.d.S.; Galvão, L.S. Potential of multispectral and hyperspectral data to detect salineexposed soils in Brazil. GISci. Remote Sens. 2015, 4, 416–436. [Google Scholar] [CrossRef]
- Price, J.C. Calibration of satellite radiometers and the comparison of vegetation indices. Remote Sens. Environ. 1987, 21, 15–27. [Google Scholar] [CrossRef]
- Galvão, L.S.; Vitorello, I.; Almeida Filho, R. Effects of band positioning and bandwidth on NDVI measurements of tropical savannas. Remote Sens. Environ. 1999, 67, 181–193. [Google Scholar] [CrossRef]
- Howari, F.M.; Goodell, P.C.; Miyamoto, S. Spectral properties of salt crusts formed on saline soils. J. Environ. Qual. 2002, 31, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.C.J.; Teixeira, A.S.; Galvão, L.S. Laboratory salinization of Brazilian alluvial soils and the spectral effects of gypsum. Remote Sens. 2014, 6, 2647–2663. [Google Scholar] [CrossRef]
- Zhang, T.; Shao, Y.; Gong, H.; Li, L.; Wang, L. Salt content distribution and paleoclimatic significance of the lop nur “Ear” feature: Results from analysis of EO-1 hyperion imagery. Remote Sens. 2014, 6, 7783–7799. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forth coming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Roberts, D.A.; Dennison, P.E.; Hulley, G.C. Special issue on the Hyperspectral Infrared Imager (HyspIRI): Emerging science in terrestrial and aquatic ecology, radiation balance and hazards. Remote Sens. Environ. 2015, 167, 1–5. [Google Scholar] [CrossRef]
Mean (dS·m−1) | Maximum (dS·m−1) | Minimum (dS·m−1) | Standard Deviation (dS·m−1) | Coefficient of Variation (%) | n | Moran’s Autocorrelation Index |
---|---|---|---|---|---|---|
7.82 | 19.90 | 0.90 | 4.67 | 21.83 | 153 | 0.261 |
Data Transformation | n | Selected Feature | Adjusted R2 |
---|---|---|---|
Reflectance (original) | 3 | 395, 1642, 1717 nm | 0.953 |
Derivative analysis | 38 | 409, 596, 629, 657, 700, 724, 729, 738, 743, 772, 826, 994, 1133, 1140, 1171, 1196, 1222, 1234, 1241, 1398, 1410, 1542, 1573, 1817, 1829, 1867, 1904, 1910, 2016, 2173, 2191, 2229, 2279, 2304, 2348, 2354, 2379, 2429 nm | 0.619 |
PCA | 6 | 1, 2, 3, 5, 6, 10 | 0.957 |
Transformation | Model | Mean Error (dS·m−1) | RMSE (dS·m−1) | r | RPD |
---|---|---|---|---|---|
Reflectance (no transformation) | OLS | 0.001064 | 0.109996 | 0.9643 | 46.72 |
PLSR | 0.000982 | 0.099936 | 0.9698 | 46.73 | |
MLP | −0.008723 | 0.120006 | 0.7724 | 35.64 | |
ELM | −0.001077 | 0.110011 | 0.9585 | 44.55 | |
Derivative Analysis | OLS | 0.026216 | 3.744000 | 0.8168 | 1.25 |
PLSR | −0.016673 | 3.732100 | 0.8274 | 1.26 | |
MLP | 0.092369 | 4.159821 | 0.2644 | 1.12 | |
ELM | 0.047595 | 3.840164 | 0.6237 | 1.22 | |
PCA | OLS | −0.001354 | 0.140012 | 0.9735 | 32.04 |
PLSR | −0.001278 | 0.130016 | 0.9758 | 32.05 | |
MLP | 0.010228 | 0.140714 | 0.8579 | 29.44 | |
ELM | −0.001370 | 0.139988 | 0.9632 | 32.71 |
Data Transformation | n | Selected Feature | Adjusted R2 |
---|---|---|---|
ProSpecTIR-VS | 3 | 395, 1642, 1717 nm | 0.953 |
HyspIRI | 3 | 390, 1200, 1630 nm | 0.950 |
RapidEye/REIS | 5 | All bands | 0.153 |
HRG/SPOT-5 | 4 | All bands | 0.456 |
OLI/Landsat-8 | 6 | All bands | 0.553 |
Simulated Sensor | Model | Mean Error | RMSE | R | RPD |
---|---|---|---|---|---|
(dS·m−1) | (dS·m−1) | ||||
ProSpecTIR-VS | OLS | 0.001064 | 0.109996 | 0.9647 | 46.72 |
PLSR | 0.000982 | 0.099936 | 0.9698 | 46.73 | |
MLP | −0.008723 | 0.120006 | 0.7724 | 35.64 | |
ELM | −0.001077 | 0.110011 | 0.9585 | 44.55 | |
HyspIRI | OLS | −0.001078 | 0.110022 | 0.9596 | 46.65 |
PLSR | −0.000914 | 0.099979 | 0.9685 | 47.71 | |
MLP | −0.007997 | 0.110012 | 0.8641 | 40.62 | |
ELM | 0.001175 | 0.110018 | 0.9626 | 44.98 | |
RapidEye/REIS | OLS | 0.044688 | 4.619802 | 0.3127 | 1.01 |
PLSR | 0.043199 | 4.396226 | 0.3435 | 1.06 | |
MLP | −0.073114 | 5.133092 | 0.2901 | 0.90 | |
ELM | 0.034349 | 4.530097 | 0.3247 | 1.03 | |
HRG/SPOT-5 | OLS | 0.020606 | 2.130286 | 0.5112 | 1.75 |
PLSR | 0.019950 | 2.029891 | 0.5354 | 1.84 | |
MLP | −0.082261 | 2.369872 | 0.4632 | 1.56 | |
ELM | 0.040459 | 2.089888 | 0.5242 | 1.78 | |
OLI/Landsat-8 | OLS | 0.024781 | 2.561905 | 0.6216 | 2.10 |
PLSR | −0.013974 | 2.439819 | 0.6529 | 2.21 | |
MLP | 0.026442 | 2.840107 | 0.5468 | 1.87 | |
ELM | −0.024571 | 2.509813 | 0.6273 | 2.14 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha Neto, O.C.d.; Teixeira, A.D.S.; Leão, R.A.d.O.; Moreira, L.C.J.; Galvão, L.S. Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation. Remote Sens. 2017, 9, 42. https://doi.org/10.3390/rs9010042
Rocha Neto OCd, Teixeira ADS, Leão RAdO, Moreira LCJ, Galvão LS. Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation. Remote Sensing. 2017; 9(1):42. https://doi.org/10.3390/rs9010042
Chicago/Turabian StyleRocha Neto, Odílio Coimbra da, Adunias Dos Santos Teixeira, Raimundo Alípio de Oliveira Leão, Luis Clenio Jario Moreira, and Lênio Soares Galvão. 2017. "Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation" Remote Sensing 9, no. 1: 42. https://doi.org/10.3390/rs9010042
APA StyleRocha Neto, O. C. d., Teixeira, A. D. S., Leão, R. A. d. O., Moreira, L. C. J., & Galvão, L. S. (2017). Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR-VS Aerial Imagery and Sensor Simulation. Remote Sensing, 9(1), 42. https://doi.org/10.3390/rs9010042