Using MODIS Data to Predict Regional Corn Yields
"> Figure 1
<p>Map of the USA showing the location of Illinois (<b>a</b>) and crop cover data for Illinois in 2013 (<b>b</b>) (corn is indicated by yellow).</p> "> Figure 2
<p>Map of the China showing the location of Heilongjiang (<b>a</b>) and crop cover data for Heilongjiang in 2012 (<b>b</b>) (Ccorn is indicated by yellow).</p> "> Figure 3
<p>Reported corn yields from 2000 to 2013 in the central AD, Illinois and from 2002 to 2012 in Harbin Prefecture, Heilongjiang.</p> "> Figure 4
<p>Data-flow diagram of the surface reflectance and crop cover data used to standardize the data.</p> "> Figure 5
<p>MODIS–derived and logistic-estimated cumulative LAI for corn in Illinois. The x-axis denotes the order of the dates for the remote sensing data product. For example, products for DOY 89 and 97 are indicated by 1 and 2, respectively.</p> "> Figure 6
<p>MODIS–derived and logistic-estimated LAI for corn in Illinois. The x-axis denotes the order of the dates for the remote sensing data product. For example, the products for DOY 89 and 97 are indicated by 1 and 2, respectively.</p> "> Figure 7
<p>Data-flow diagram showing the process used to classify the calibration and validation datasets.</p> "> Figure 8
<p>Estimated <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">τ</mi> <mi mathvariant="normal">P</mi> </msub> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mi mathvariant="normal">P</mi> </msub> </mrow> </semantics> </math> values by EOD of emergence (<b>a</b>) and maturity (<b>b</b>). The x-axis denotes the <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">τ</mi> <mi mathvariant="normal">P</mi> </msub> </mrow> </semantics> </math> values, and the y-axis denotes the <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mi mathvariant="normal">P</mi> </msub> </mrow> </semantics> </math> values.</p> "> Figure 9
<p>RMSE values by EOD for the phenology model estimates using a logistic function and the calibration datasets.</p> "> Figure 10
<p>Comparison between NASS–derived and estimated phenological stages at EOD 257.</p> "> Figure 11
<p>Estimated α and β values for the Y<sub>P</sub> (<b>a</b>) and Y<sub>F</sub> (<b>b</b>) corn yield models. The x-axis denotes the α values, and the y-axis denotes the β values.</p> "> Figure 12
<p>R<sup>2</sup> values by EOD for the corn yield prediction models at agricultural the district/prefecture level.</p> "> Figure 13
<p>Comparison of the reported and predicted agricultural district/prefecture-level corn yield at EOD 257 from the Y<sub>P</sub> (<b>a</b>) and Y<sub>F</sub> (<b>b</b>) models in Illinois and Heilongjiang.</p> "> Figure 14
<p>Comparison of the reported and predicted state/province-level corn yields at EOD 257 for the Y<sub>P</sub> (<b>a</b>) and Y<sub>F</sub> (<b>b</b>) models in Illinois and Heilongjiang (validation dataset: 2003, 2009, and 2012).</p> "> Figure 15
<p>CV values for the NASS–derived phenological stages in the validation dataset.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. Crop Yield and Phenology Data
2.2.2. Crop Cover Data
2.2.3. Remote Sensing Data
2.3. Estimation of LAI
2.3.1. Estimation of LAI Using Remote Sensing Data
2.3.2. Estimation of Daily LAI Using a Logistic Function
2.4. Prediction of Phenological Dates
2.5. Prediction of Crop Yield
2.5.1. YP Model Using LAD Accumulated from the Estimated Emergence Date
2.5.2. YF Model Using LAD Accumulated from an Arbitrarily Fixed Date
2.5.3. Comparison between the YP and YF Models
2.6. Classification of the Calibration and Validation Datasets
2.7. Degree of Agreement Analysis
3. Results
3.1. Crop Phenology
3.2. Crop Yield at the District Level
3.3. Crop Yield at the State/Province Level
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Trenberth, K.E. Climate change and extreme weather events. In Proceedings of the Catastrophe Modeling Forum: Changing Climatic Dynamic and Catast; Epstein, P., Ed.; Insurance Information Institute: New York, NY, USA, 2008; p. 7. [Google Scholar]
- Kumar, B.; Tuti, A. Effect and adaptation of climate change on fodder and livestock management. Int. J. Sci. Environ. Technol. 2016, 5, 1638–1645. [Google Scholar]
- Sinha, S.K.; Rao, N.H.; Swaminathan, M.S. Food security in the changing global climate. In Proceedings of the Changing Atmosphere: Implications for Global Security, Toronto, ON, Canada, 27–30 June 1988.
- Hutchinson, C.F. Uses of satellite data for famine early warning in sub-Saharan Africa. Int. J. Remote Sens. 1991, 12, 1405–1421. [Google Scholar] [CrossRef]
- Kouadio, L.; Duveiller, G.; Djaby, B.; Jarroudi, M.E.; Defourny, P. Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, R.B.; Hall, F.G. Global crop forecasting. Science 1980, 208, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, X.; Li, X.; Tian, H.; Pan, Z. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS ONE 2013, 8, e70816. [Google Scholar] [CrossRef] [PubMed]
- Kussul, N.; Shelestov, A.; Skakun, S. Grid and sensor web technologies for environmental monitoring. Earth Sci. Inform. 2009, 2, 37–51. [Google Scholar] [CrossRef]
- Li, A.; Liang, S.; Wang, A.; Qin, J. Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogramm. Eng. Rem. Sens. 2007, 73, 1149–1157. [Google Scholar] [CrossRef]
- Figueiredo, G.K.; Brunsell, N.A.; Rocha, J.V.; Lamparelli, R.A.; Picoli, M.C. Using temporal stability to estimate soya bean yield: A case study in Paraná state, Brazil. Int. J. Remote Sens. 2016, 37, 1223–1242. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands. Int. J. Remote Sens. 2015, 36, 4570–4589. [Google Scholar] [CrossRef]
- Kolotii, A.; Kussul, N.; Shelestov, A.; Skakun, S.; Yailymov, B.; Basarab, R.; Lavreniuk, M.; Oliinyk, T.; Ostapenko, V. Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. Int. Arch. Photogramm. Remote Sens. 2015, 40, 39–44. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef] [Green Version]
- Sibley, A.M.; Grassini, P.; Thomas, N.E.; Cassman, K.G.; Lobell, D.B. Testing remote sensing approaches for assessing yield variability among maize fields. Agron. J. 2014, 106, 24–32. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Staggenborg, S.A.; Ristic, Z. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes; Ahuja, L.H., Saseendran, S.A., Eds.; Advances in Agricultural Systems Modeling; Series 1; ASA-CSSA: Madison, WI, USA, 2008; pp. 301–355. [Google Scholar]
- Islam, A.S.; Bala, S.K. Assessment of Potato Phenological Characteristics Using MODIS-Derived NDVI and LAI Information. Gisci. Remote Sens. 2008, 45, 454–470. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar]
- Kandasamy, S.; Baret, F.; Verger, A.; Neveux, P.; Weiss, M. A comparison of methods for smoothing and gap filling time series of remote sensing observations–application to MODIS LAI products. Biogeosciences 2013, 10, 4055–4071. [Google Scholar] [CrossRef]
- Kandasamy, S.; Fernandes, R. An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms: Application to 20 year NOAA AVHRR data over Canada. Remote Sens. Environ. 2015, 164, 114–129. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre-and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- Shao, Y.; Campbell, J.B.; Taff, G.N.; Zheng, B. An analysis of cropland mask choice and ancillary data for annual corn yield forecasting using MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 78–87. [Google Scholar] [CrossRef]
- Huang, L.; Yang, Q.; Liang, D.; Dong, Y.; Xu, X.; Huang, W. The estimation of winter wheat yield based on MODIS remote sensing data. In Computer and Computing Technologies in Agriculture V. IFIP Advances in Information and Communication Technology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 496–503. [Google Scholar]
- Mkhabela, M.S.; Mashinini, N.N. Early maize yield forecasting in the four agro-ecological regions of Swaziland using NDVI data derived from NOAAs-AVHRR. Agric. For. Meteorol. 2005, 129, 1–9. [Google Scholar] [CrossRef]
- Lobell, D.B. The use of satellite data for crop yield gap analysis. Field Crops Res. 2013, 143, 56–64. [Google Scholar] [CrossRef]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.; Zhou, G. The Model of Wheat Yield Forecast based on MODIS-NDVI: A Case Study of XinXiang. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Science, I-7, XXII ISPRS Congress, Melbourne, Australia, 25 August–1 September 2012.
- Casanova, D.; Epema, G.F.; Goudriaan, J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crop. Res. 1997, 55, 83–92. [Google Scholar] [CrossRef]
- Maki, M.; Homma, K. Empirical regression models for estimating multiyear leaf area index of rice from several vegetation indices at the field scale. Remote Sens. 2014, 6, 4764–4779. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Duc, H.N.; Nguyen, L.D. Prediction of rice crop yield using MODIS EVI−LAI data in the Mekong Delta, Vietnam. Int. J. Remote Sens. 2013, 34, 7275–7292. [Google Scholar] [CrossRef]
- De Wasseige, C.; Bastin, D.; Defourny, P. Seasonal variation of tropical forest LAI based on field measurements in Central African Republic. Agric. For. Meteorol. 2003, 119, 181–194. [Google Scholar] [CrossRef]
- Noureldin, N.A.; Aboelghar, M.A.; Saudy, H.S.; Ali, A.M. Rice yield forecasting models using satellite imagery in Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 125–131. [Google Scholar] [CrossRef]
- Bach, H. Yield estimation of corn based on multitemporal LANDSAT-TM data as input for agrometeorological model. Pure Appl. Opt. 1998, 7, 809–825. [Google Scholar] [CrossRef]
- Liu, X.; Jin, J.; Herbert, S.J.; Zhang, Q.; Wang, G. Yield components, dry matter, LAI and LAD of soybeans in Northeast China. Field Crops Res. 2005, 93, 85–93. [Google Scholar] [CrossRef]
- López-Bellido, F.J.; López-Bellido, R.J.; Khalil, S.K.; López-Bellido, L. Effect of planting date on winter kabuli chickpea growth and yield under rainfed mediterranean conditions. Agron. J. 2008, 4, 957–964. [Google Scholar] [CrossRef]
- Wolfe, D.W.; Henderson, D.W.; Hsiao, T.C.; Alvino, A. Interactive Water and Nitrogen Effects on Senescence of Maize. I. Leaf Area Duration, Nitrogen Distribution, and Yield. Agron. J. 1988, 80, 859–864. [Google Scholar] [CrossRef]
- Alias, M.A.; Bukhsh, H.A.; Ahmad, R.; Malik, A.U.; Hussain, S.; Ishaque, M. Profitability of three maize hybrids as influenced by varying plant density and potassium application. J. Anim. Plant Sci. 2011, 21, 42–47. [Google Scholar]
- Russell, W.A. Genetic improvement of maize yields. Adv. Agron. 1991, 46, 245–298. [Google Scholar]
- Eberhart, S.T.; Russell, W.A. Stability parameters for comparing varieties. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Gitelson, A.A.; Peng, Y.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C. Green leaf area index estimation in Maize and Soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
- Rouse, J.; Hass, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. In Third ERTS Symposium; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens. Environ. 2016, 174, 258–265. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Power, J.F.; Willis, W.O.; Reichman, G.A. Effect of soil temperature, phosphorus and plant age on growth analysis of barley. Agron. J. 1967, 59, 231–234. [Google Scholar] [CrossRef]
- Soler, C.; Sentelhas, P.; Hoogenboom, G. Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 2007, 27, 165–177. [Google Scholar] [CrossRef]
- Lin, L. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.L.; King, T.S.; Chinchilli, V.M. The concordance correlation coefficient for repeated measures estimated by variance components. J. Biopharm. Stat. 2009, 19, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Cutforth, H.W.; Shaykewich, C.F. A temperature response function for corn development. Agric. For. Meteorol. 1990, 50, 159–171. [Google Scholar] [CrossRef]
- Biswal, A.; Sahay, B.; Ramana, K.V.; Rao, S.V.C.K.; Sai, M.S. Relationship between AWiFS derived Spectral Vegetation Indices with Simulated Wheat Yield Attributes in Sirsa district of Haryana. Int. Arch. Photogramm. Remote Sens. 2014, 40, 689. [Google Scholar] [CrossRef]
- Heiskanen, J.; Rautiainen, M.; Stenberg, P.; Mõttus, M.; Vesanto, V.H.; Korhonen, L.; Majasalmi, T. Seasonal variation in MODIS LAI for a boreal forest area in Finland. Remote Sens. Environ. 2012, 126, 104–115. [Google Scholar] [CrossRef]
- Itabari, J.K.; Gregory, P.J.; Jones, R.K. Effects of temperature soil water status and depth of planting on germination and emergence of maize (Zea mays) adapted to semi-arid eastern Kenya. Exp. Agric. 1993, 29, 351–364. [Google Scholar] [CrossRef]
- Chen, G.H.; Wiatrak, P. Soybean development and yield are influenced by planting date and environmental conditions in the southeastern coastal plain, United States. Agron. J. 2010, 102, 1731–1737. [Google Scholar] [CrossRef]
- Thomison, P.; Nielson, R. Impact of delayed planting on heat unit requirements for seed maturation in maize. In Pontificia Universidad Católica deChile; Departamento de Ciencias Vegetales, Seminario Internacional Semillas: Santiago, Chile, 2002; pp. 140–164. [Google Scholar]
- Sakamoto, T.; Wardlow, B.D.; Gitelson, A.A. Detecting spatiotemporal changes of corn developmental stages in the U.S. corn belt using MODIS WDRVI data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1926–1936. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sens. Environ. 2013, 131, 215–231. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Akhmedov, B.; Beard, L.; Stern, A.; Mueller, R. Operational prediction of crop yields using MODIS data and products. In International Archives of Photogrammetry, Remote Sensing and Spatial Information, Sciences Special Publications, Commission Working Group VIII WG VIII/10; European Commission DG JRC-Institute for the Protection and Security of the Citizen: Ispra, Italy, 2007. [Google Scholar]
- Gunn, S.; Farrar, J.F.; Collis, B.E.; Nason, M. Specific leaf weight in barley: Individual leaves versus whole plants. New Phytol. 1999, 413, 45–51. [Google Scholar] [CrossRef]
- Kim, S.H.; Hong, S.Y.; Sudduth, K.A.; Kim, Y.; Lee, K. Comparing LAI estimates of corn and soybean from vegetation indices of multi-resolution satellite images. Korean J. Remote Sens. 2012, 28, 597–609. [Google Scholar] [CrossRef]
EOD | Emergence | Maturity | ||||
---|---|---|---|---|---|---|
R2 | RMSE (Days) | NRMSE (%) | R2 | RMSE (Days) | NRMSE (%) | |
209 | 0.51 | 5.31 | 3.98 | 0.27 | 7.61 | 2.95 |
257 | 0.41 | 6.30 | 4.72 | 0.70 | 4.91 | 1.90 |
321 | 0.35 | 6.29 | 4.72 | 0.78 | 4.43 | 1.71 |
EOD | YP Model | YF Model | ||||
---|---|---|---|---|---|---|
R2 | RMSE (kg/ha) | NRMSE (%) | R2 | RMSE (kg/ha) | NRMSE (%) | |
209 | 0.65 | 1158.82 | 13.20 | 0.57 | 1283.03 | 14.62 |
257 | 0.68 | 1083.74 | 12.35 | 0.68 | 1086.66 | 12.38 |
321 | 0.70 | 1042.43 | 11.88 | 0.66 | 1127.67 | 12.85 |
Region | EOD | YP Model | YF Model | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE (kg/ha) | NRMSE (%) | CCC | R2 | RMSE (kg/ha) | NRMSE (%) | CCC | ||
IL | 209 | 0.43 | 1785.62 | 19.27 | 0.21 | 0.18 | 2137.85 | 23.07 | −0.12 |
257 | 0.87 | 687.68 | 7.42 | 0.93 | 0.99 | 1006.67 | 10.86 | 0.78 | |
321 | 0.95 | 684.72 | 7.39 | 0.91 | 0.94 | 1068.36 | 11.53 | 0.74 | |
HE | 209 | 0.99 | 1115.68 | 15.72 | 0.59 | 0.96 | 1008.13 | 14.20 | 0.68 |
257 | 0.99 | 964.88 | 13.59 | 0.68 | 0.99 | 839.75 | 11.83 | 0.79 | |
321 | 0.99 | 664.07 | 9.36 | 0.87 | 0.99 | 816.82 | 11.51 | 0.79 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, H.-Y.; Kim, K.S.; Park, N.-W.; Lee, B.-W. Using MODIS Data to Predict Regional Corn Yields. Remote Sens. 2017, 9, 16. https://doi.org/10.3390/rs9010016
Ban H-Y, Kim KS, Park N-W, Lee B-W. Using MODIS Data to Predict Regional Corn Yields. Remote Sensing. 2017; 9(1):16. https://doi.org/10.3390/rs9010016
Chicago/Turabian StyleBan, Ho-Young, Kwang Soo Kim, No-Wook Park, and Byun-Woo Lee. 2017. "Using MODIS Data to Predict Regional Corn Yields" Remote Sensing 9, no. 1: 16. https://doi.org/10.3390/rs9010016
APA StyleBan, H. -Y., Kim, K. S., Park, N. -W., & Lee, B. -W. (2017). Using MODIS Data to Predict Regional Corn Yields. Remote Sensing, 9(1), 16. https://doi.org/10.3390/rs9010016