Remote Sensing from Ground to Space Platforms Associated with Terrain Attributes as a Hybrid Strategy on the Development of a Pedological Map
<p>Location of the study area with calibration, validation and prediction sample location.</p> "> Figure 2
<p>Illustration of the digital soil mapping strategy.</p> "> Figure 3
<p>(<b>a</b>) Landsat image in true color composite (3R2G1B) with bare soil; (<b>b</b>) color composition 5R4G3B; (<b>c</b>) altitude map with soil profiles indication; and (<b>d</b>) geology map of the area [<a href="#B38-remotesensing-08-00826" class="html-bibr">38</a>].</p> "> Figure 4
<p>Soil class maps: (<b>a</b>) TFS-1 (traditional soil map until suborder classification); (<b>b</b>) TFS-2 (traditional soil map until suborder classification, with additional characteristics); (<b>c</b>) average of spectral curve obtained in laboratory for samples with different textures; (<b>d</b>) spectral curve from pixels of Landsat bands; (<b>e</b>) digital soil map equivalent to TFS-1; and (<b>f</b>) digital soil map equivalent to TFS-2. K: kaolinite; G: gibbsite; Go: goethite; Q: quartz; OM; organic matter; and B1-B7 landsat bands.</p> "> Figure 5
<p>(<b>a</b>) Top soil spectra from satellite classes; (<b>b</b>) 3D image of the area, in composition 543; and (<b>c</b>) topsoil spectra from laboratory. K: kaolinite; H: haematite; TQ: Typic Quartzipsamment; THu: Typic Hapludult; THud: Typic Hapludox; THa: Typic Hapludalf; TE: Typic Eutrudepts.</p> "> Figure 6
<p>(<b>a</b>) Soil line between bands 4 and 3; and (<b>b</b>) bands 5 and 7 from laboratory spectra. (<b>c</b>) Soil line between bands 4 and 3; and (<b>d</b>) bands 5 and 7 from satellite spectra, related with soil texture.</p> "> Figure 7
<p>Complete topossequence of studied area. Spectra of soil profiles from the: (<b>a</b>) Typic Quartzipsamment (TQ); (<b>b</b>) Typic Hapludox (THud); (<b>c</b>) Typic Hapludalf (THa); and (<b>d</b>) Typic Hapludult (THu). (<b>e</b>) Comparison between sandy and clayey soils, and quartz, kaolinite and magnetite [<a href="#B61-remotesensing-08-00826" class="html-bibr">61</a>]. H: Hematite, G: Goethite, Q: Quartz, M: Magnetite, I: Ilmemite.</p> "> Figure 8
<p>(<b>a</b>) Scores of the first three principal components of the whole laboratory spectral library dataset; (<b>b</b>) scores of the first three principal components of the whole wet-laboratory dataset; (<b>c</b>) distribution of calibration and validation soil samples in the first principal component scores; and (<b>d</b>) distribution of calibration and validation soil samples in the second principal component scores of the whole laboratory spectra.</p> "> Figure 9
<p>Soil attributes maps: (<b>a</b>) Clay content determined in wet laboratory (A horizon); (<b>b</b>) clay content determined by spectroscopy (A horizon); (<b>c</b>) clay content determined in wet laboratory (B horizon); (<b>d</b>) clay content determined by spectroscopy (B horizon); (<b>e</b>) total Fe<sub>2</sub>O<sub>3</sub> content determined in wet laboratory (A horizon); (<b>f</b>) total Fe<sub>2</sub>O<sub>3</sub> content determined by spectroscopy (A horizon); (<b>g</b>) total Fe<sub>2</sub>O<sub>3</sub> content determined in wet laboratory (B horizon); and (<b>h</b>) total Fe<sub>2</sub>O<sub>3</sub> content determined by spectroscopy (B horizon).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Sampling and Soil Characterization
2.2. Soil Database for Digital Mapping
2.3. Undersurface Soil Attributes Quantification and Mapping
2.4. Digital Mapping Strategy
2.5. Comparison between Traditional (TFS) and Digital (DSC) Soil Maps
3. Results and Discussion
3.1. Soils in the Study Area
3.2. Spectral Data from Laboratory to Satellite
3.3. Prediciton of Soil Attrinutes by Spectra
3.4. Spatial Modeling of Soil Attributes in Undersurface Layer
3.5. Removing the Redundancy on the Datasets (DsSA, DsSB and DsTP)
3.6. Soil Attributes Spacialization and Its Relationship with Soil Classification and Mapping
3.7. Supervised Classification and Digital Soil Maps
4. Conclusions
- Soil laboratory spectra is strong information to validate and understand satellite data.
- Spectral reflectance with local models indicated high performance for clay, iron and weathering indexes with R2 from 0.76 to 0.90. This corroborates the hypothesis for quantification of soil attributes all over the area, getting more spatial representativeness without wet laboratory analysis. It was used near 155 samples to model the other 317, allowing us a high observation density. On the other hand, chemical information (such as the sum of cations) could not be quantified by spectra. On this matter, we changed the strategy and used elevation to assist the soil mapping, which had a good correlation with the sum of bases (r = −0,85).
- The predicted information improved the spatial resolution of soil mapping. This facilitated the identification of spatial structures of soil attributes obtaining good predictions with 0.78 until 0.88 R2. Good prediction performances are important because the final digital soil class maps depends on: (a) the errors of the predictions made by the calibration spectral models; and (b) the errors resulting from the spatial interpolation process. Therefore, these errors can be incorporated into the algorithm used for digital soil mapping.
- Soils with homogenous spectra from horizon A to B, such as Oxisols, can be detected by satellite data, contrary to Ultisols and Alfisols. On the other hand, relief parameter such as elevation was able to discriminate these soil classes, and aggregated with spectra information.
- Satellite (surface) and laboratory (surface and undersurface) spectral information, and relief parameters, when integrated, have strong potential for discriminating pedological soil classes.
- The key of this work was to obtain pattern samples along topossequences constructing a database (library) of spectra, which assisted quantification of attributes for all the area, and corroborate with the satellite information.
- Color compositions 5R4G3B from Landsat have great performance on discriminate soils developed from sandstone and basalt. From sandy (low iron) to clayey (high iron) topossequence, the colors went from weak/light purple to strong blue, respectively. Thus, color and spectral patterns signatures can evaluate satellite data to achieve soil information.
- In some situations, spectra give information that relief does not. The opposite is also true. Images help on delineation giving information about the surface, but not for the undersurface soils. Thus, the integration of soil spectroscopy information using laboratory and satellite spectral libraries, terrain parameters and statistical methodologies allowed the prediction of a detailed pedological map. The predictive performance of the methodology for digital soil class mapping was satisfactory. Digital soil maps were similar to the conventional ones showing a kappa index of 0.52 and global accuracy of 69%, as a field validation of 75%–80%.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mendonça-Santos, M.L.; dos Santos, H.G. The state of the art of Brazilian soil mapping and prospects for digital soil mapping. Dev. Soil Sci. 2006, 31, 39–54. [Google Scholar]
- Santos, H.G.; Hochmüller, D.P.; Cavalcanti, A.C.; Rêgo, R.S.; Ker, J.C.; Panoso, L.A.; Amaral, J.A.M. Procedimentos Normativos de Levantamentos Pedológicos; EMBRAPA-SPI; EMBRAPA-CNPS: Brasília; Rio de Janeiro, Brasil, 1995. [Google Scholar]
- Minasny, B.; McBratney, A.B. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Coleman, T.L.; Agbu, P.A.; Montgomery, O.L.; Gao, T.; Prasad, S. Spectral band selection for quantifying selected properties in highly weathered soils. Soil Sci. 1991, 151, 355–361. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Lagacherie, P.; McBratney, A.B.; Voltz, M. Digital Soil Mapping: An Introductory Perspective; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hartemink, A.E.; Minasny, B. Towards digital soil morphometrics. Geoderma 2014, 230–231, 305–317. [Google Scholar] [CrossRef]
- Legros, J.-P. Mapping of the Soil; Science Publishers: Enfield, Jersey, Plymouth, 2006. [Google Scholar]
- Bazaglia Filho, O.; Rizzo, R.; Lepsch, I.F.; Prado, H.; Gomes, F.H.; Mazza, J.A.; Demattê, J.A.M. Comparison between detailed digital and conventional soil maps of an area with complex geology. Rev. Bras. Ciênc. Solo 2013, 37, 1136–1148. [Google Scholar] [CrossRef]
- Ziadat, F.M.; Taylor, J.C.; Brewer, T.R. Merging Landsat TM imagery with topographic data to aid soil mapping in the Badia region of Jordan. J. Arid Environ. 2003, 54, 527–541. [Google Scholar] [CrossRef]
- Ziadat, F.M. Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma 2007, 140, 73–80. [Google Scholar] [CrossRef]
- Dobos, E.; Micheli, E.; Baumgardner, M.F.; Biehl, L.; Helt, T. Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma 2000, 97, 367–391. [Google Scholar] [CrossRef]
- Dobos, E.; Montanarella, L.; Nègre, T.; Micheli, E. A regional scale soil mapping approach using integrated AVHRR and DEM data. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 30–42. [Google Scholar] [CrossRef]
- McBratney, A.B.; Santos, M.L.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- McBratney, A.B.; Minasny, B.; Viscarra Rossel, R. Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis. Geoderma 2006, 136, 272–278. [Google Scholar] [CrossRef]
- Carré, F.; McBratney, A.B.; Minasny, B. Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma 2007, 141, 1–14. [Google Scholar] [CrossRef]
- Hengl, T.; Toomanian, N.; Reuter, H.I.; Malakouti, M.J. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma 2007, 140, 417–427. [Google Scholar] [CrossRef]
- Mora-Vallejo, A.; Claessens, L.; Stoorvogel, J.; Heuvelink, G.B.M. Small scale digital soil mapping in Southeastern Kenya. CATENA 2008, 76, 44–53. [Google Scholar] [CrossRef]
- Demattê, J.A.; Campos, R.C.; Alves, M.C.; Fiorio, P.R.; Nanni, M.R. Visible–NIR reflectance: A new approach on soil evaluation. Geoderma 2004, 121, 95–112. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. Adv. Agron. 2002, 75, 173–243. [Google Scholar]
- Shepherd, K.D.; Walsh, M.G. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Vasques, G.M.; Demattê, J.A.M.; Viscarra Rossel, R.A.; Ramírez-López, L.; Terra, F.S. Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths. Geoderma 2014, 223–225, 73–78. [Google Scholar] [CrossRef]
- Shi, Z.; Ji, W.; Viscarra Rossel, R.A.; Chen, S.; Zhou, Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library. Eur. J. Soil Sci. 2015, 66, 679–687. [Google Scholar] [CrossRef]
- Rizzo, R.; Demattê, J.A.M.; Lepsch, I.F.; Gallo, B.C.; Fongaro, C.T. Digital soil mapping at local scale using a multi-depth VIS–NIR spectral library and terrain attributes. Geoderma 2016, 274, 18–27. [Google Scholar] [CrossRef]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil spectral library and its use in soil classification. Rev. Bras. Ciênc. Solo 2010, 34, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Franceschini, M.H.D.; Demattê, J.A.M.; da Silva Terra, F.; Vicente, L.E.; Bartholomeus, H.; de Souza Filho, C.R. Prediction of soil properties using imaging spectroscopy: Considering fractional vegetation cover to improve accuracy. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 358–370. [Google Scholar] [CrossRef]
- Dewitte, O.; Jones, A.; Elbelrhiti, H.; Horion, S.; Montanarella, L. Satellite remote sensing for soil mapping in Africa: An overview. Prog. Phys. Geogr. 2012, 36, 514–538. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Etzelmüller, B. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. CATENA 2009, 77, 8–18. [Google Scholar] [CrossRef]
- Frazier, B.E.; Cheng, Y. Remote sensing of soils in the Eastern Palouse region with landsat thematic mapper. Remote Sens. Environ. 1989, 28, 317–325. [Google Scholar] [CrossRef]
- Mulders, M.A.; Girard, M.C. Remote sensing of soils in warm arid and semi-arid lands. Remote Sens. Rev. 1993, 7, 341–363. [Google Scholar] [CrossRef]
- Madeira, J.; Bedidi, A.; Cervelle, B.; Pouget, M.; Flay, N. Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. Int. J. Remote Sens. 1997, 18, 2835–2852. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Ben Dor, E.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil spectroscopy: an alternative to wet chemistry for soil monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar]
- Rizzo, R.; Demattê, J.A.M.; Terra, F.S. Using numerical classification of profiles based on Vis-NIR spectra to distinguish soils from the Piracicaba Region, Brazil. Rev. Bras. Ciênc. Solo 2014, 38, 372–385. [Google Scholar] [CrossRef]
- Vasques, G.M.; Demattê, J.A.M.; Viscarra Rossel, R.A.; Ramírez López, L.; Terra, F.S.; Rizzo, R.; De Souza Filho, C.R. Integrating geospatial and multi-depth laboratory spectral data for mapping soil classes in a geologically complex area in southeastern Brazil. Eur. J. Soil Sci. 2015, 66, 767–779. [Google Scholar] [CrossRef]
- Zeng, R.; Zhang, G.-L.; Li, D.-C.; Rossiter, D.G.; Zhao, Y.-G. How Well Can VNIR Spectroscopy Distinguish Soil Classes? Available online: http://www.sciencedirect.com/science/article/pii/S1537511015304001 (accessed on 29 September 2016).
- Lepsch, I.F. As necessidades de efetuarmos levantamentos pedológicos detalhados no Brasil e de estabelecermos as séries de solos. Rev. Tamoios 2013, 9, 3–15. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Instituto de Pesquisas Tecnológicas. Mapa Geomorfológico do Estado de São Paulo; IPT: Pennsylvania, PA, USA, 1981. [Google Scholar]
- Raij, B.V.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação de Solos Tropicais; IAC: Campinas, Brazil, 2001. [Google Scholar]
- Klute, A.; Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analisys: Part 1—Physical and Mineralogical Methods, SSSA Book Ser. 5.1; Klute, A., Ed.; SSSA, ASA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Camargo, O.A.; Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas; Boletim té.: Campinas, Brazil, 2009. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, T.J.F.; Oliveira, J.B. Sistema Brasileiro de Classificação de Solos; 3 rev. amp.; Embrapa: Brasília, Brazil, 2013. [Google Scholar]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.Natural Resources Conservation Service, U.S. Department of Agriculture Handbook: Washington, DC, USA, 1999.
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Hengl, T.; Gruber, S.; Shrestha, D.P. Reduction of errors in digital terrain parameters used in soil-landscape modelling. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 97–112. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Garcia, G.J. Avaliação de atributos de Latossolo Bruno e de Terra Bruna Estruturada da região de Guarapuava, Paraná, por meio de sua energia refletida. Rev. Bras. Ciênc. Solo 1999, 23, 343–355. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A. ParLeS: Software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 2008, 90, 72–83. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Jeon, Y.S.; Odeh, I.O.A.; McBratney, A.B. Using a legacy soil sample to develop a mid-IR spectral library. Aust. J. Soil Res. 2008, 46, 1–16. [Google Scholar] [CrossRef]
- Fernández Pierna, J.A.; Dardenne, P. Soil parameter quantification by NIRS as a Chemometric challenge at “Chimiométrie 2006”. Chemom. Intell. Lab. Syst. 2008, 91, 94–98. [Google Scholar] [CrossRef]
- Ribeiro Junior, P.J.; Diggle, P.J. GeoR: A package for geostatistical analysis. R News 2001, 1, 15–18. [Google Scholar]
- Liu, J.; Pattey, E.; Nolin, M.C.; Miller, J.R.; Ka, O. Mapping within-field soil drainage using remote sensing, DEM and apparent soil electrical conductivity. Geoderma 2008, 143, 261–272. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Madeira Netto, J.D.S. Spectral reflectance properties of soils. Photo Interpret. 1996, 34, 59–76. [Google Scholar]
- Demattê, J.A.M.; Bellinaso, H.; Romero, D.J.; Fongaro, C.T. Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking towards soil classification. Sci. Agric. 2014, 71, 509–520. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J.A.M.; Fiorio, P.R. Análise discriminante dos solos por meio da resposta espectral no nível terrestre. Pesqui. Agropecu. Bras. 2004, 39, 995–1006. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J.A.M. Comportamento da linha do solo obtida por espectrorradiometria laboratorial para diferentes classes de solo. Rev. Bras. Ciênc. Solo 2006, 30, 1031–1038. [Google Scholar] [CrossRef]
- Whiting, M.L.; Li, L.; Ustin, S.L. Predicting water content using Gaussian model on soil spectra. Remote Sens. Environ. 2004, 89, 535–552. [Google Scholar] [CrossRef]
- Nanni, M.R.; Demattê, J.A.M.; Chicati, M.L.; Fiorio, P.R.; Cézar, E.; Oliveira, R.B. Soil surface spectral data from Landsat imagery for soil class discrimination. Acta Sci. Agron. 2012, 34, 103–112. [Google Scholar] [CrossRef]
- Thanachit, S.; Suddhiprakarn, A.; Kheoruenromne, I.; Gilkes, R.J. The geochemistry of soils on a catena on basalt at Khon Buri, northeast Thailand. Geoderma 2006, 135, 81–96. [Google Scholar] [CrossRef]
- Saldanha, D.L.; Lima E Cunha, M.C.; Haertel, V. Spectral analysis of soils from mafic/ultramafic rocks of Cerro Mantiqueira, south-west of Rio Grande do Sul, Brazil. Int. J. Remote Sens. 2004, 25, 4381–4393. [Google Scholar] [CrossRef]
- Beckett, P.H.T.; Burrough, P.A. The relation between cost and utility in soil survey. J. Soil Sci. 1971, 22, 466–480. [Google Scholar] [CrossRef]
- Arruda, G.P.D.; Demattê, J.A.M.; Chagas, C.D.S.; Fiorio, P.R.; Souza, A.B.E.; Fongaro, C.T. Digital soil mapping using reference area and artificial neural networks. Sci. Agric. 2016, 73, 266–273. [Google Scholar] [CrossRef]
- Nanni, M.R.; Dematte, J.A.M.; Junior, C.A.D.S.; Romagnoli, F.; Silva, A.A.D.; Cezar, E.; Gasparotto, A.D.C. Soil Mapping by laboratory and orbital spectral sensing compared with a traditional method in a detailed level. J. Agron. 2014, 13, 100–109. [Google Scholar]
- Demattê, J.A.M.; Genú, A.M.; Fiorio, P.R.; Ortiz, J.L.; Mazza, J.A.; Leonardo, H.C.L. Comparação entre mapas de solos obtidos por sensoriamento remoto espectral e pelo método convencional. Pesqui. Agropecu. Bras. 2004, 39, 1219–1229. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Demattê, J.A.M.; Ballester, M.V.R.; Martinelli, L.A.; Victoria, R.L.; Roose, E. GIS erosion risk assessment of the Piracicaba River Basin, southeastern Brazil. Mapp. Sci. Remote Sens. 2013, 38, 157–171. [Google Scholar]
- Dobos, E.; Carré, F.; Hengl, T.; Reuter, H.I.; Tóth, G. Digital Soil Mapping as a Support for Production of Functional Maps, 1st ed.; Official Publications of the European Communities: Luxembourg, 2006. [Google Scholar]
N 1 | Layer 2 | OM 3 | K | Ca | Mg | Al | H | BS | T | V | m | Sand | Silt | Clay | Wet Color 4 | Fe2O3 | Ki 5 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g·kg−1 | mmolc·kg−1 | % | % | Hue | Value | Chroma | g·kg−1 | ||||||||||||
Typic Hapludox 1 (THud1) | |||||||||||||||||||
252 | A | 14.8 | 2.4 | 14.6 | 5.8 | 1.6 | 24.7 | 22.9 | 47.6 | 49.4 | 7.8 | 70.8 | 5.7 | 23.5 | 2.5 | 3.5 | 1.9 | 57.7 | 1.9 |
B | 12.3 | 0.8 | 6.1 | 2.3 | 8.2 | 25.4 | 9.3 | 34.6 | 26 | 45.7 | 64.3 | 4.8 | 30.9 | 1.8 | 3.6 | 2.4 | 66.3 | 1.8 | |
Typic Hapludox 2 (THud2) | |||||||||||||||||||
34 | A | 16.8 | 2.9 | 23.6 | 7.8 | 1.2 | 20.8 | 34.2 | 55.1 | 61.9 | 4.3 | 66 | 8 | 26 | 3 | 3.6 | 2.1 | 57.3 | 2.1 |
B | 9.9 | 1.3 | 24.3 | 4.7 | 2.4 | 15.9 | 30.2 | 46.1 | 61.3 | 16 | 61.8 | 6.6 | 31.6 | 3.1 | 3.7 | 2 | 70 | 1.7 | |
Typic Hapludalf 1 (THa1) | |||||||||||||||||||
18 | A | 29.4 | 4.4 | 39.7 | 14.9 | 0.9 | 47.9 | 59 | 107 | 54.1 | 1.9 | 22 | 18.6 | 59.4 | 2.3 | 3.4 | 1.8 | 202 | 1.53 |
B | 12.1 | 0.8 | 37.7 | 12 | 0.2 | 15.8 | 50.6 | 66.3 | 75.6 | 0.6 | 19.9 | 11.6 | 68.6 | 1.9 | 3.5 | 1.8 | 178 | 1.66 | |
Typic Hapludalf 2 (THa2) | |||||||||||||||||||
16 | A | 24.2 | 4.2 | 42.4 | 15 | 1 | 37.2 | 61.6 | 98.8 | 61.3 | 1.9 | 21.3 | 17.9 | 60.8 | 3 | 4.2 | 1.5 | 171 | 1.58 |
B | 15.8 | 1.5 | 37.1 | 10.9 | 0 | 13.1 | 49.5 | 62.6 | 78.9 | 0 | 18.7 | 11.8 | 69.5 | 1.7 | 3.5 | 1.9 | 140 | 1.72 | |
Typic Hapludult 1 (THu1) | |||||||||||||||||||
22 | A | 16.5 | 1.7 | 20.3 | 7.8 | 2.2 | 17.8 | 29.8 | 47.6 | 59.1 | 11.8 | 74.2 | 6.7 | 19.2 | 2.4 | 3.5 | 1.7 | 95.5 | 2 |
B | 9.6 | 0.9 | 19.7 | 6.8 | 3.4 | 20.6 | 27.4 | 48 | 48.8 | 19.8 | 55.3 | 4.9 | 39.8 | 3.3 | 3.7 | 2.2 | 113 | 1.7 | |
Typic Hapludult 2 (THu2) | |||||||||||||||||||
64 | A | 18 | 2.7 | 38.1 | 18.2 | 1.6 | 29.3 | 59 | 88.2 | 50.3 | 8.4 | 71.1 | 9.6 | 19.3 | 3 | 3.6 | 2 | 43.7 | 2 |
B | 10.1 | 1 | 21.2 | 5.5 | 3 | 20.6 | 27.7 | 48.3 | 52.3 | 16.1 | 55.9 | 5.1 | 39 | 1.8 | 3.6 | 2.3 | 67.3 | 1.6 | |
Typic Eutrudepts 1 (TE1) | |||||||||||||||||||
10 | A | 18.7 | 3.5 | 40.3 | 12.7 | 0.7 | 32.3 | 56.5 | 88.8 | 64 | 1.3 | 28.7 | 20 | 51.3 | 4.2 | 3.6 | 1.7 | 144 | 1.75 |
B | 9.3 | 0.5 | 32.3 | 18.3 | 0 | 7.3 | 51.1 | 58.5 | 86.7 | 0 | 40 | 14 | 46 | 2.7 | 3.6 | 2.2 | 149 | 1.52 | |
Typic Eutrudepts 2 (TE2) | |||||||||||||||||||
7 | A | 32 | 6.7 | 97 | 38 | 1 | 58 | 141.7 | 199.7 | 71 | 1 | 33 | 25 | 42 | 2.8 | 3.6 | 2 | 153 | 1.52 |
B | 4.5 | 8.2 | 66 | 62.5 | 0 | 33.5 | 136.7 | 170.2 | 80.5 | 0 | 52.5 | 26.5 | 21 | 7.6 | 4.1 | 2.4 | 216 | 1.44 | |
Typic Quartzipsamment (TQ) | |||||||||||||||||||
50 | A | 11 | 1.6 | 10.9 | 4.3 | 1.5 | 16.9 | 16.8 | 33.8 | 52 | 9.6 | 84 | 3.4 | 12.6 | 3.1 | 3.6 | 2 | 17 | 2.2 |
B | 8.8 | 1.1 | 4.3 | 1.8 | 6.5 | 17.3 | 7.2 | 24.5 | 29.9 | 50.3 | 84.7 | 3.1 | 12.2 | 2.9 | 3.7 | 2.3 | 19 | 2.1 |
Soil Attribute | Minimum | Maximum | Mean | SD 1 | Skewness |
---|---|---|---|---|---|
Layer A (n = 103) 2 | |||||
Fe2O3 g·kg−1 | 10 | 252 | 47.7 | 55.8 | 2 |
Al2O3 g·kg−1 | 15 | 158 | 49 | 34.6 | 1.9 |
SiO2 g·kg−1 | 24 | 156 | 53 | 29.4 | 2 |
TiO2 g·kg−1 | 4.8 | 59 | 14.9 | 14.8 | 1.7 |
Clay % | 8 | 67 | 21.9 | 14.8 | 1.7 |
3 BS mmolc·kg−1 | 2.7 | 76.9 | 23.7 | 14.1 | 1.4 |
Layer B (n = 102) 2 | |||||
Fe2O3 g·kg−1 | 9 | 216 | 55.4 | 55.1 | 1.7 |
Al2O3 g·kg−1 | 25 | 170 | 72.4 | 38.6 | 1.5 |
SiO2 g·kg−1 | 32 | 166 | 71.5 | 32.4 | 1.6 |
TiO2 g·kg−1 | 5.9 | 56 | 16 | 13.5 | 1.6 |
Clay % | 12 | 76 | 27.4 | 16.7 | 1.5 |
3 BS mmolc·kg−1 | 2.1 | 93.3 | 15.9 | 17 | 2 |
Soil Attribute | PLS Factors | Cross Validation Within the Calibration Set (n = 155) 1 | Cross Validation for Validation Set (n = 50) 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
R2adjusted | RMSE | ME | SDE | R2adjusted | RMSE | ME | SDE | ||
Fe2O3 g·kg−1 | 9 | 0.88 | 18.99 | −1.11 | 1.12 | 0.85 | 23.02 | 3.28 | 0.65 |
Al2O3 g·kg−1 | 6 | 0.81 | 16.58 | 0.37 | −0.38 | 0.77 | 19.05 | 5.28 | −2.55 |
SiO2 g·kg−1 | 4 | 0.77 | 15.07 | 0.87 | 0.12 | 0.71 | 18.72 | −1.94 | 5.02 |
TiO2 g·kg−1 | 9 | 0.91 | 4.14 | −0.22 | 0.22 | 0.87 | 4.93 | 0.69 | −0.32 |
Clay % | 9 | 0.93 | 4.26 | 0.22 | −0.22 | 0.90 | 5.07 | 0.53 | −0.69 |
2 BS mmolc·kg−1 | 6 | 0.76 | 8.24 | −0.35 | 0.35 | 0.76 | 6.81 | −0.63 | −0.03 |
Soil Attribute | Semi-Variogram Characteristics | Leave-One-out Cross Validation of Kriging Interpolations | ||||||
---|---|---|---|---|---|---|---|---|
Model | Nugget (Co) | Sill (Co + C *) | Range (m) | C/(Co + C) | R2adjusted | RMSE | ME | |
Fe2O3 g·kg−1 | Spherical | 241.11 | 998.88 | 868.01 | 0.76 | 0.87 | 20.01 | −0.21 |
Al2O3 g·kg−1 | Spherical | 222.95 | 512.78 | 801.24 | 0.57 | 0.78 | 18.58 | −0.40 |
SiO2 g·kg−1 | Spherical | 102.60 | 205.21 | 895.11 | 0.50 | 0.84 | 10.73 | 0.67 |
TiO2 g·kg−1 | Spherical | 8.31 | 73.91 | 832.78 | 0.89 | 0.87 | 5.08 | −0.03 |
Clay % | Spherical | 17.94 | 89.68 | 801.38 | 0.80 | 0.87 | 5.95 | −0.01 |
1 BS mmolc·kg−1 | Spherical | 7.98 | 90.43 | 898.01 | 0.91 | 0.88 | 5.29 | 0.10 |
Al2O3 | Clay | Ki | Kr | Fe2O3 | SiO2 | TiO2 | BS 1 | Elev 2 | MC 3 | Slope | |
---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | 1 | 0.99 | −0.59 | −0.76 | 0.98 | 0.94 | 0.97 | 0.97 | −0.84 | −0.01 | 0.37 |
Clay | 1 | −0.5 | −0.70 | 0.99 | 0.97 | 0.98 | 0.98 | −0.86 | −0.01 | 0.38 | |
Ki | 1 | 0.93 | −0.53 | −0.32 | −0.48 | −0.41 | 0.29 | −0.01 | −0.12 | ||
Kr | 1 | −0.74 | −0.55 | −0.71 | −0.64 | 0.51 | 0.00 | −0.23 | |||
Fe2O3 | 1 | 0.94 | 0.99 | 0.97 | −0.85 | −0.01 | 0.38 | ||||
SiO2 | 1 | 0.96 | 0.98 | −0.90 | −0.02 | 0.42 | |||||
TiO2 | 1 | 0.98 | −0.88 | −0.02 | 0.41 | ||||||
BS | 1 | −0.89 | −0.02 | 0.42 | |||||||
Elev. | 1 | 0.09 | −0.55 | ||||||||
MC | 1 | 0.00 | |||||||||
Slope | 1 |
DSC | |||
---|---|---|---|
TFS-1 | % | TFS-2 | % |
Typic Hapludox | 76.5 | Typic Hapludox I | 73.9 |
Typic Hapludult | 76.1 | Typic Hapludox II | 40.0 |
Typic Quartzipsamment | 37.8 | Typic Hapludult I | 66.4 |
Typic Hapludalf | 54.9 | Typic Hapludult II | 48.2 |
Typic Eutrudepts | 32.8 | Typic Quartzipsamment | 42.5 |
Typic Hapludalf I | 0.0 | ||
Typic Hapludalf II | 36.3 | ||
Typic Eutrudepts I | 25.1 | ||
Typic Eutrudepts II | 0.0 |
Traditional Map | ||||||
---|---|---|---|---|---|---|
THud | THu | TQ | THa | TE | ||
Digital map | THud | 76.5 | 19.2 | 35.3 | 0 | 10.8 |
THu | 11.0 | 76.0 | 26.9 | 23.7 | 32.8 | |
TQ | 9.7 | 0.1 | 37.8 | 0 | 0 | |
THa | 2.5 | 3.8 | 0 | 54.8 | 23.6 | |
TE | 0.3 | 0.1 | 0 | 21.5 | 32.8 |
Traditional Map | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
THud-I | THud-II | THu-I | THu-II | TQ | THa-I | THa-II | TE-I | TE-II | ||
Digital map | THud-I | 73.7 | 35.8 | 21.0 | 20.9 | 42.9 | 0 | 0 | 17.3 | 0 |
THud-II | 4.1 | 31.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
THu-I | 6.2 | 25.3 | 76.3 | 46.6 | 12.2 | 20.8 | 49.2 | 42.1 | 99.2 | |
THu-II | 0.1 | 0 | 0.2 | 32.5 | 0 | 0 | 0 | 0 | 0 | |
TQ | 13.5 | 2.5 | 0.2 | 0 | 44.9 | 0 | 0 | 0 | 0 | |
THa-I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
THa-II | 1.4 | 4.8 | 2.1 | 0 | 0 | 44.5 | 39.4 | 0 | 0 | |
TE-I | 1.1 | 0 | 0.1 | 0 | 0 | 34.7 | 11.4 | 33.7 | 0.8 | |
TE-II | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.0 | 0 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demattê, J.A.M.; Ramirez-Lopez, L.; Rizzo, R.; Nanni, M.R.; Fiorio, P.R.; Fongaro, C.T.; Medeiros Neto, L.G.; Safanelli, J.L.; Da S. Barros, P.P. Remote Sensing from Ground to Space Platforms Associated with Terrain Attributes as a Hybrid Strategy on the Development of a Pedological Map. Remote Sens. 2016, 8, 826. https://doi.org/10.3390/rs8100826
Demattê JAM, Ramirez-Lopez L, Rizzo R, Nanni MR, Fiorio PR, Fongaro CT, Medeiros Neto LG, Safanelli JL, Da S. Barros PP. Remote Sensing from Ground to Space Platforms Associated with Terrain Attributes as a Hybrid Strategy on the Development of a Pedological Map. Remote Sensing. 2016; 8(10):826. https://doi.org/10.3390/rs8100826
Chicago/Turabian StyleDemattê, José A. M., Leonardo Ramirez-Lopez, Rodnei Rizzo, Marcos R. Nanni, Peterson R. Fiorio, Caio T. Fongaro, Luiz G. Medeiros Neto, José L. Safanelli, and Pedro Paulo Da S. Barros. 2016. "Remote Sensing from Ground to Space Platforms Associated with Terrain Attributes as a Hybrid Strategy on the Development of a Pedological Map" Remote Sensing 8, no. 10: 826. https://doi.org/10.3390/rs8100826
APA StyleDemattê, J. A. M., Ramirez-Lopez, L., Rizzo, R., Nanni, M. R., Fiorio, P. R., Fongaro, C. T., Medeiros Neto, L. G., Safanelli, J. L., & Da S. Barros, P. P. (2016). Remote Sensing from Ground to Space Platforms Associated with Terrain Attributes as a Hybrid Strategy on the Development of a Pedological Map. Remote Sensing, 8(10), 826. https://doi.org/10.3390/rs8100826