Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images
"> Figure 1
<p>Location of the test sites within Lake Ostträsket (<b>a</b>) and exemplification using test site I: Orthoimage (<b>b</b>); Manual mapping (<b>c</b>); Reference Map (<b>d</b>); Water-versus-vegetation classification using thresholding (<b>e</b>); Growth-form classification using thresholding (<b>f</b>); Growth-form classification using Random Forest (<b>g</b>); Dominant-taxon classification using Random Forest (<b>h</b>).</p> "> Figure 2
<p>Orthoimage of test sites II (<b>a</b>); III (<b>c</b>); IV (<b>e</b>); and V (<b>g</b>) and corresponding dominant-taxon classification using Random Forest at test sites II (<b>b</b>); III (<b>d</b>); IV (<b>f</b>); and V (<b>h</b>).</p> "> Figure 3
<p>Overall accuracy for sites I–IV for (<b>a</b>) water-versus-vegetation classification using thresholding; (<b>b</b>) growth-form classification using thresholding; (<b>c</b>) growth-form classification using Random Forest; and (<b>d</b>) dominant-taxon classification using Random Forest. Seg: assessment based on number of validation segments, area: assessment based on area of validation segments.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Acquisition
2.3. Plant Species Inventory and Image Interpreter Training
2.4. Test Sites and Manual Mapping
2.5. Object-Based Image Analysis of Test Sites
2.6. Accuracy Assessment
2.7. Time Measurement
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
LiDAR | Light detection and ranging |
NDI | Normalised difference index |
GLCM | Grey-level co-occurrence matrix |
GLCV | Grey-level difference vector |
GPS | Global positioning system |
OBIA | Object-based image analysis |
PAMS | Personal Aerial Mapping System |
RGB | Red green blue |
UAS | Unmanned aircraft system |
References
- Strayer, D. Ecology of freshwater shore zones. Aquat. Sci. 2010, 72, 127–163. [Google Scholar] [CrossRef]
- Pieczynska, E. Detritus and nutrient dynamics in the shore zone of lakes—A review. Hydrobiologia 1993, 251, 49–58. [Google Scholar] [CrossRef]
- Smith, C.S.; Adams, M.S. Phosphorus Transfer from Sediments by Myriophyllum-Spicatum. Limnol. Oceanogr. 1986, 31, 1312–1321. [Google Scholar] [CrossRef]
- Moller, C.L.; Sand-Jensen, K. Rapid oxygen exchange across the leaves of Littorella uniflora provides tolerance to sediment anoxia. Freshw. Biol. 2012, 57, 1875–1883. [Google Scholar] [CrossRef]
- Wetzel, R. Limnology, 3rd ed.; Elsevier: San Diego, CA, USA, 2001; p. 1006. [Google Scholar]
- EU. Directive 2000/60/ec of the European parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy (rule number L 327). In Official Journal of the European Communities; EU (European Union): Brussels, Belgium, 2000; Volume 43. [Google Scholar]
- EPA. Lake and Reservoir Bioassessment and Biocriteria: Technical Guidance Document; United States Environmental Protection Agency: Washington, DC, USA, 1998.
- Hart, B.T.; Cambell, I.C.; Angehrn-Bettinazzi, C.; Jones, M.J. Australian water quality guidelines: A new approach for protecting ecosystem health. J. Aquat. Ecosyst. Stress Recov. 1993, 2, 151–163. [Google Scholar] [CrossRef]
- Markovic, D.; Carrizo, S.; Freyhof, J.; Cid, N.; Lengyel, S.; Scholz, M.; Kasperdius, H.; Darwall, W. Europe’s freshwater biodiversity under climate change: Distribution shifts and conservation needs. Divers. Distrib. 2014, 20, 1097–1107. [Google Scholar] [CrossRef]
- Davis, J.; O’Grady, A.P.; Dale, A.; Arthington, A.H.; Gell, P.A.; Driver, P.D.; Bond, N.; Casanova, M.; Finlayson, M.; Watts, R.J.; et al. When trends intersect: The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci. Total Environ. 2015, 534, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Vitousek, P.M.; Dantonio, C.M.; Loope, L.L.; Rejmanek, M.; Westbrooks, R. Introduced species: A significant component of human-caused global change. N. Z. J. Ecol. 1997, 21, 1–16. [Google Scholar]
- Silva, T.S.F.; Costa, M.P.F.; Melack, J.M.; Novo, E. Remote sensing of aquatic vegetation: Theory and applications. Environ. Monit. Assess. 2008, 140, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Miler, O.; Ostendorp, W.; Brauns, M.; Porst, G.; Pusch, M.T. Ecological assessment of morphological shore degradation at whole lake level aided by aerial photo analysis. Fundam. Appl. Limnol. 2015, 186, 353–369. [Google Scholar] [CrossRef]
- Husson, E.; Lindgren, F.; Ecke, F. Assessing biomass and metal contents in riparian vegetation along a pollution gradient using an unmanned aircraft system. Water Air Soil Pollut. 2014, 225. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef]
- Husson, E.; Hagner, O.; Ecke, F. Unmanned aircraft systems help to map aquatic vegetation. Appl. Veg. Sci. 2014, 17, 567–577. [Google Scholar] [CrossRef]
- Penning, W.E.; Mjelde, M.; Dudley, B.; Hellsten, S.; Hanganu, J.; Kolada, A.; van den Berg, M.; Poikane, S.; Phillips, G.; Willby, N.; et al. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquat. Ecol. 2008, 42, 237–251. [Google Scholar] [CrossRef]
- Alahuhta, J.; Kanninen, A.; Hellsten, S.; Vuori, K.M.; Kuoppala, M.; Hamalainen, H. Variable response of functional macrophyte groups to lake characteristics, land use, and space: Implications for bioassessment. Hydrobiologia 2014, 737, 201–214. [Google Scholar] [CrossRef]
- Alahuhta, J.; Kanninen, A.; Vuori, K.-M. Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquat. Bot. 2012, 103, 106–114. [Google Scholar] [CrossRef]
- Birk, S.; Ecke, F. The potential of remote sensing in ecological status assessment of coloured lakes using aquatic plants. Ecol. Indic. 2014, 46, 398–406. [Google Scholar] [CrossRef]
- CEN. Water Quality—Guidance Standard for the Surveying of Macrophytes in Lakes; Standard Number EN 15460:2007; CEN (European Committee for Standardisation): Brussels, Belgium, 2007. [Google Scholar]
- EPA. 2012 National Lakes Assessment: Field Operations Manual; United States Environmental Protection Agency: Washington, DC, USA, 2012.
- Björk, S. The evolution of lakes and wetlands. In Restoration of Lakes, Streams, Floodplains, and Bogs in Europe: Principles and Case Studies; Eiseltova, M., Ed.; Springer: Dordrecht, The Netherlands, 2010; Volume 3, pp. 25–35. [Google Scholar]
- Walker, P.D.; Wijnhoven, S.; van der Velde, G. Macrophyte presence and growth form influence macroinvertebrate community structure. Aquat. Bot. 2013, 104, 80–87. [Google Scholar] [CrossRef]
- Kuczynska-Kippen, N.; Wisniewska, M. Environmental predictors of rotifer community structure in two types of small water bodies. Int. Rev. Hydrobiol. 2011, 96, 397–404. [Google Scholar] [CrossRef]
- Holopainen, S.; Arzel, C.; Dessborn, L.; Elmberg, J.; Gunnarsson, G.; Nummi, P.; Poysa, H.; Sjoberg, K. Habitat use in ducks breeding in boreal freshwater wetlands: A review. Eur. J. Wildl. Res. 2015, 61, 339–363. [Google Scholar] [CrossRef]
- Ecke, F.; Henry, A.; Danell, K. Landscape-based prediction of the occurrence of the invasive muskrat (Ondatra zibethicus). Ann. Zool. Fenn. 2014, 51, 325–334. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Herrick, J.E.; Rango, A.; Winters, C. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogramm. Eng. Remote Sens. 2010, 76, 661–672. [Google Scholar] [CrossRef]
- Halabisky, M.; Moskal, L.M.; Hall, S.A. Object-based classification of semi-arid wetlands. J. Appl. Remote Sens. 2011, 5. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Dronova, I. Object-based image analysis in wetland research: A review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sjörs, H. The background: Geology, climate and zonation. In Swedish Plant Geography; Rydin, H., Snoeijs, P., Diekmann, M., Eds.; Svenska Växtgeografiska Sällskapet: Uppsala, Sweden, 1999; pp. 5–14. [Google Scholar]
- VISS—Water Information System Sweden. Available online: http://www.viss.lansstyrelsen.se/Waters.aspx?waterEUID=SE721083-174843 (accessed on 4 April 2016).
- Baatz, M.; Schäpe, A. Multiresolution segmentation—An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII; Strobl, J., Ed.; Wichmann: Heidelberg, Germany, 2000; pp. 12–23. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 192. [Google Scholar]
- Lang, M.W.; Bourgeau-Chavez, L.L.; Tiner, R.W.; Klemas, V.V. Chapter 5: Advances in remotely sensed data and techniques for wetland mapping and monitoring. In Remote Sensing of Wetlands: Applications and Advances; Tiner, R.W., Lang, M.W., Klemas, V.V., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Stefanski, J.; Mack, B.; Waske, B. Optimization of object-based image analysis with random forests for land cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2492–2504. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Laliberte, A.; Rango, A. Incorporation of texture, intensity, hue, and saturation for rangeland monitoring with unmanned aircraft imagery. In Proceedings of the GEOBIA 2008, Calgary, AB, Canada, 5–8 August 2008.
- Kim, M.; Warner, T.A.; Madden, M.; Atkinson, D.S. Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: Scale, texture and image objects. Int. J. Remote Sens. 2011, 32, 2825–2850. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A. Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. Giscience Remote Sens. 2011, 48, 4–23. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; McMurtrey, J.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Radoux, J.; Bogaert, P.; Fasbender, D.; Defourny, P. Thematic accuracy assessment of geographic object-based image classification. Int. J. Geogr. Inf. Sci. 2011, 25, 895–911. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Gopal, S. Fuzzy set theory and thematic maps: Accuracy assessment and area estimation. Int. J. Geogr. Inf. Sci. 2000, 14, 153–172. [Google Scholar] [CrossRef]
- Liu, D.S.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, L.; Li, M.C.; Liu, Y.X.; Ma, X.X. Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens. 2015, 102, 14–27. [Google Scholar] [CrossRef]
- Casado, M.R.; Gonzalez, R.B.; Kriechbaumer, T.; Veal, A. Automated identification of river hydromorphological features using UAV high resolution aerial imagery. Sensors 2015, 15, 27969–27989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valta-Hulkkonen, K.; Kanninen, A.; Pellikka, P. Remote sensing and GIS for detecting changes in the aquatic vegetation of a rehabilitated lake. Int. J. Remote Sens. 2004, 25, 5745–5758. [Google Scholar] [CrossRef]
- Valta-Hulkkonen, K.; Kanninen, A.; Iivonen, R.; Leka, J. Assessment of aerial photography as a method for monitoring aquatic vegetation in lakes of varying trophic status. Boreal Environ. Res. 2005, 10, 57–66. [Google Scholar]
- Likens, G. Lake Ecosystem Ecology: A Global Perspective; Acadenic Press: San Diego, CA, USA, 2010; p. 480. [Google Scholar]
- Sondergaard, M.; Phillips, G.; Hellsten, S.; Kolada, A.; Ecke, F.; Maeemets, H.; Mjelde, M.; Azzella, M.M.; Oggioni, A. Maximum growing depth of submerged macrophytes in European lakes. Hydrobiologia 2013, 704, 165–177. [Google Scholar] [CrossRef]
- Zweig, C.L.; Burgess, M.A.; Percival, H.F.; Kitchens, W.M. Use of unmanned aircraft systems to delineate fine-scale wetland vegetation communities. Wetlands 2015, 35, 303–309. [Google Scholar] [CrossRef]
- Transportstyrelsen. Transportstyrelsens Föreskrifter om Verksamhet med Obemannade Luftfartyg (UAS); Regulation Number TSFS 2009:88; Transportstyrelsen (Swedish Transport Agency): Norrköping, Sweden, 2009. [Google Scholar]
- SmartPlanes. Available online: http://smartplanes.se/launch-of-new-products/ (accessed on 14 April 2016).
- Madden, M.; Jordan, T.; Bernardes, S.; Cotten, D.L.; O’Hare, N.; Pasqua, A. Unmanned aerial systems and structure from motion revolutionize wetlands mapping. In Wetlands: Applications and Advances; Tiner, R.W., Lang, M.W., Klemas, V.V., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 195–219. [Google Scholar]
Species | NO |
---|---|
Helophytes | |
Equisetum fluviatile | 13 |
Schoenoplectus lacustris | 13 |
Phragmites australis | 3 |
Carex rostrata | 1 |
Nymphaeids | |
Nuphar lutea | 18 |
Potamogeton natans | 15 |
Sparganium spp. | 7 |
Nymphaea alba ssp. candida | 4 |
Nuphar pumila | 2 |
Site | Taxa | Vegetation Classes (in Order of Decreasing Area) | Vegetated Area (%) | Mixed Vegetation (% of Vegetated Area) |
---|---|---|---|---|
I | ef, ny, pn, sl, sp | water, sl, ny, ef_d, ef_s, pn, sp, ef_d & sl, sl & ef, sl & ny, ny & sl, ny & ef | 36 | 2 |
II | ef, ny, pn, sl, sp | sl, water, ny, sp, pn, ef_d, ef_s, ny & sl, pn & ef, ny & ef, sl & ny, ny & pn, pn & ny, sl & pn | 61 | 4 |
III | ef, ny, pn, sp | water, ny, ef_s, ny & ef, ef_d, ny & pn, pn, ef_d & ny, sp, ef_s & ny, pn & ef, sp & ny, pn & ny, ny & sp | 55 | 26 |
IV | ef, ny, pa, pn, sl | sl, pa, pa & sl, pn, ny, sl & pa, water, sl & ny, ny & pn, ef_d, pn & sl, ny & sl, ef_s, ny & ef, ef_d & sl, pn & ny, pa & ny, ef_d & ny, sl & pn, ef_s & ny & pn | 96 | 26 |
V | ny, pa, pn, sl | sl, pn, pa, water, ny & pn, ny, pn & sl, sl & pn, sl & pa, pa & sl, sl & ny, pn & ny, pa & pn, pa & ny, pa & pn & ny, ny & sl, pn & pa | 86 | 21 |
OBIA | Level of Detail | Classes | Classification Method | Applied to |
---|---|---|---|---|
(a) | water versus vegetation | water, vegetation | threshold | entire test site |
(b) | growth form | nymphaeid, helophyte | threshold | vegetated area |
(c) | growth form | water, nymphaeid, helophyte | Random Forest | entire test site |
(d) | dominant taxon | ef_d, ef_s, ny, pa, pn, sl, sp | Random Forest | vegetated area |
Spectral Features | “HSI Transformation” 1 | “Texture after Haralick” 1,2 | Normalised Difference Index | |
---|---|---|---|---|
Individual for each band: | • Hue | derived from GLCM: | derived from GLCV: | • NDI Green–Blue |
• Mean | • Saturation | • Ang. 2nd moment | • Ang. 2nd moment | • NDI Green–Red |
• Mode (median) | • Intensity | • Contrast | • Contrast | • NDI Red−Blue |
• Quantile (50%) | • Correlation | • Entropy | ||
• Standard deviation | • Dissimilarity | • Mean | ||
• Ratio | • Entropy | |||
• Max. pixel value | • Homogeneity | |||
For all bands combined: | • Mean | |||
• Brightness | • Standard deviation | |||
• Max. difference |
Site I | Site II | Site III | Site IV | |||||
---|---|---|---|---|---|---|---|---|
W | V | W | V | W | V | W | V | |
Segment-based | ||||||||
No. of validation segments | 106 | 244 | 59 | 291 | 53 | 297 | 10 | 343 |
Producer’s accuracy | 79 | 99 | 75 | 100 | 66 | 97 | 50 | 100 |
User’s accuracy | 98 | 92 | 100 | 95 | 81 | 94 | 100 | 99 |
Area-based | ||||||||
Total area of validation segments (m2) | 443 | 212 | 167 | 211 | 152 | 189 | 14 | 241 |
Producer’s accuracy | 97 | 99 | 92 | 100 | 91 | 88 | 59 | 100 |
User’s accuracy | 99 | 93 | 100 | 94 | 85 | 92 | 100 | 99 |
Site I | Site II | Site III | Site IV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W | N | H | W | N | H | W | N | H | W | N | H | |
Threshold classification: Segment-based | ||||||||||||
No. of validation segments | 102 | 248 | 108 | 242 | 287 | 63 | 74 | 276 | ||||
Producer’s accuracy | 37 | 98 | 45 | 99 | 90 | 33 | 59 | 63 | ||||
User’s accuracy | 90 | 79 | 94 | 80 | 86 | 41 | 30 | 85 | ||||
Threshold classification: Area-based | ||||||||||||
Total area of validation segments (m2) | 59 | 247 | 49 | 210 | 144 | 84 | 44 | 202 | ||||
Producer’s accuracy | 52 | 99 | 44 | 100 | 81 | 52 | 56 | 74 | ||||
User’s accuracy | 93 | 90 | 97 | 88 | 74 | 61 | 32 | 88 | ||||
Random Forest: Segment-based | ||||||||||||
No. of validation segments | 106 | 68 | 176 | 57 | 87 | 206 | 52 | 246 | 52 | 10 | 71 | 274 |
Producer’s accuracy | 81 | 82 | 79 | 89 | 59 | 92 | 63 | 78 | 69 | 90 | 82 | 49 |
User’s accuracy | 97 | 58 | 84 | 89 | 84 | 82 | 85 | 92 | 35 | 25 | 33 | 92 |
Random Forest: Area-based | ||||||||||||
Total area of validation segments (m2) | 458 | 37 | 177 | 162 | 39 | 176 | 145 | 121 | 66 | 18 | 42 | 201 |
Producer’s accuracy | 97 | 83 | 87 | 96 | 54 | 96 | 89 | 70 | 68 | 92 | 77 | 49 |
User’s accuracy | 99 | 59 | 89 | 97 | 89 | 88 | 87 | 92 | 49 | 35 | 30 | 92 |
Segment-Based | Area-Based | |||||
---|---|---|---|---|---|---|
N | Producer’s Accuracy | User’s Accuracy | A (m2) | Producer’s Accuracy | User’s Accuracy | |
Site I | ||||||
Sparse Equisetum fluviatile | 15 | 60 | 41 | 12 | 76 | 33 |
Dense Equisetum fluviatile | 27 | 48 | 33 | 24 | 41 | 33 |
Nymphaea/Nuphar spp. | 95 | 79 | 78 | 50 | 83 | 71 |
Potamogeton natans | 10 | 80 | 47 | 10 | 91 | 66 |
Schoenoplectus lacustris | 206 | 68 | 92 | 214 | 74 | 95 |
Sparganium spp. | 10 | 40 | 11 | 5 | 31 | 8 |
Site II | ||||||
Sparse Equisetum fluviatile | 10 | 50 | 12 | 7 | 63 | 15 |
Dense Equisetum fluviatile | 10 | 70 | 29 | 4 | 59 | 18 |
Nymphaea/Nuphar spp. | 90 | 70 | 84 | 40 | 71 | 81 |
Potamogeton natans | 10 | 20 | 6 | 4 | 13 | 3 |
Schoenoplectus lacustris | 230 | 65 | 92 | 205 | 72 | 96 |
Sparganium spp. | 10 | 70 | 27 | 5 | 72 | 23 |
Site III | ||||||
Sparse Equisetum fluviatile | 40 | 48 | 44 | 61 | 62 | 75 |
Dense Equisetum fluviatile | 22 | 59 | 24 | 22 | 71 | 32 |
Nymphaea/Nuphar spp. | 273 | 66 | 94 | 131 | 57 | 95 |
Potamogeton natans | 12 | 50 | 13 | 11 | 72 | 20 |
Sparganium spp. | 10 | 70 | 32 | 7 | 67 | 38 |
Site IV | ||||||
Sparse Equisetum fluviatile | 10 | 80 | 17 | 9 | 92 | 19 |
Dense Equisetum fluviatile | 10 | 40 | 9 | 12 | 23 | 11 |
Nymphaea/Nuphar spp. | 41 | 61 | 68 | 22 | 56 | 70 |
Phragmites australis | 170 | 48 | 81 | 95 | 43 | 83 |
Potamogeton natans | 33 | 88 | 38 | 22 | 89 | 34 |
Schoenoplectus lacustris | 100 | 43 | 69 | 97 | 51 | 77 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husson, E.; Ecke, F.; Reese, H. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images. Remote Sens. 2016, 8, 724. https://doi.org/10.3390/rs8090724
Husson E, Ecke F, Reese H. Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images. Remote Sensing. 2016; 8(9):724. https://doi.org/10.3390/rs8090724
Chicago/Turabian StyleHusson, Eva, Frauke Ecke, and Heather Reese. 2016. "Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images" Remote Sensing 8, no. 9: 724. https://doi.org/10.3390/rs8090724
APA StyleHusson, E., Ecke, F., & Reese, H. (2016). Comparison of Manual Mapping and Automated Object-Based Image Analysis of Non-Submerged Aquatic Vegetation from Very-High-Resolution UAS Images. Remote Sensing, 8(9), 724. https://doi.org/10.3390/rs8090724