Fuzzy Classification for Shoreline Change Monitoring in a Part of the Northern Coastal Area of Java, Indonesia
"> Figure 1
<p>The study area in Sayung sub-district, Central Java Province covering four coastal villages. The RGB 532 of Landsat image 2015 is displayed as the background. A severe coastal inundation was reported leading to a large shoreline change.</p> "> Figure 2
<p>Some examples of the impact of coastal inundation: (<b>a</b>) daily floods at the house yard; (<b>b</b>) an abandoned fish landing facility (the red dashed line shows the previous shoreline), (<b>c</b>) permanent inundation of several houses.</p> "> Figure 3
<p>(<b>a</b>–<b>d</b>) The comparison of normal (<b>a</b>,<b>c</b>) and flooded (<b>b</b>,<b>d</b>) situations due to coastal inundation at two locations at Sayung sub-district. Over a longer period, this cyclic flood leads to a permanent inundation.</p> "> Figure 4
<p>Trapezoidal membership function. Area between <span class="html-italic">b</span> and <span class="html-italic">c</span> is a core zone which has a membership value equal to 1 to the <span class="html-italic">water</span> class. Area <span class="html-italic">a-b</span> and <span class="html-italic">c-d</span> are transition zones or boundaries which have value between 0 and 1 to the <span class="html-italic">water</span> class, while the pixels with 0 memberships do not belong to the <span class="html-italic">water</span> class.</p> "> Figure 5
<p>(<b>a</b>–<b>h</b>) Topological relationships between two sub-areas. Green polygons represent sub-area <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>T</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics> </math> and blue polygons represent sub-area <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>T</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics> </math>.</p> "> Figure 6
<p>(<b>a</b>) Shoreline at time <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </semantics> </math>; (<b>b</b>) Shoreline at time <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> ; (<b>c</b>) Shoreline change estimation considering two categories of changed areas, namely: (A) <span class="html-italic">water</span> to <span class="html-italic">non-water</span>, and (B) <span class="html-italic">non-water</span> to <span class="html-italic">water</span>. Solid lines represent shoreline at <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> whereas dashed lines refer to shoreline at <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> .</p> "> Figure 7
<p>(<b>a</b>) <span class="html-italic">Shoreline</span> margin at time <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </semantics> </math>; (<b>b</b>) <span class="html-italic">Shoreline</span> margin at time <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> ; (<b>c</b>) Shoreline change estimation considering six changed areas, namely: (A) <span class="html-italic">shoreline</span> to <span class="html-italic">non-water</span>, (B) <span class="html-italic">water</span> to <span class="html-italic">shoreline</span>, (C) <span class="html-italic">water</span> to <span class="html-italic">non-water</span>, (D) <span class="html-italic">non-water</span> to <span class="html-italic">shoreline</span>, (E) <span class="html-italic">shoreline</span> to <span class="html-italic">water</span>, and (F) <span class="html-italic">non-water</span> to <span class="html-italic">water</span>. Solid lines represent <span class="html-italic">shoreline</span> margins at <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> </mrow> </semantics> </math> whereas dashed lines refer to <span class="html-italic">shoreline</span> margins at <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </semantics> </math> .</p> "> Figure 8
<p>The accuracy assessment results of water class images, generated by applying FCM classification followed by thresholding on the water membership image. The highest kappa (<span class="html-italic">κ</span>) values were obtained from <span class="html-italic">t =</span> 0.5 for all images, and <span class="html-italic">t =</span> 0.3 and 0.7 gave a nearly constant <span class="html-italic">κ</span> value.</p> "> Figure 9
<p>(<b>a</b>–<b>n</b>) FCM results show the membership of water class (<b>a</b>,c,<b>e</b>,<b>g</b>,<b>i</b>,<b>k</b>,<b>m</b>), and classified images of water class by setting <span class="html-italic">t =</span> 0.5 (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>,<b>l</b>,<b>n</b>). The shrinking of <span class="html-italic">non-water</span> sub-areas over two decades can be identified by the change of the shape of the <span class="html-italic">non-water</span> class from wide strips to the thin elongated shapes over the series of images (see (<b>a</b>–<b>n</b>); e.g., grid cells C3). Whereas <span class="html-italic">non-water</span> sub-areas emerged when mangroves were planted (see (i) grid cells C2), and in coastal reclamation areas (see (<b>a</b>,<b>c</b>) grid cells A5).</p> "> Figure 10
<p>(<b>a</b>–<b>d</b>) The illustration of shoreline as a line; (<b>a</b>) Shorelines (in red colour) created by setting t = 0.5; (<b>b</b>) the uncertainty of pixels classified as <span class="html-italic">water</span> at the uncertainty level ≤0.5. Generally, pixels closer to the shoreline have a higher uncertainty value (see (<b>d</b>) grid cells C2 and D2).</p> "> Figure 11
<p>The illustration of shoreline as a margin; (<b>a</b>) <span class="html-italic">Shoreline</span> margin (blue polygons) generated by giving <span class="html-italic">t =</span> 0.3 and 0.7<math display="inline"> <semantics> <mo>;</mo> </semantics> </math> (<b>b</b>) the uncertainty of <span class="html-italic">shoreline</span> margin from Equation (12); (<b>c</b>) zooming in sub-areas in yellow rectangle based on <a href="#remotesensing-08-00190-f011" class="html-fig">Figure 11</a>a. <span class="html-italic">Shoreline</span> margin was assessed through different levels of uncertainty (<math display="inline"> <semantics> <mrow> <msub> <mi>U</mi> <mi>C</mi> </msub> </mrow> </semantics> </math> ): (<b>d</b>) ≤0.1; (<b>e</b>) ≤0.2; (<b>f</b>) ≤0.3; and (<b>g</b>) ≤0.4.</p> "> Figure 12
<p>(<b>a</b>–<b>f</b>) Shoreline change analysis at <span class="html-italic">t =</span> 0.5. Two changes were identified, namely <span class="html-italic">non-water</span> to <span class="html-italic">water</span> and <span class="html-italic">water</span> to <span class="html-italic">non-water</span>. Large areas changed from <span class="html-italic">non-water</span> to <span class="html-italic">water</span> such as due to inundation and erosion which were indicated between 1994 and 2000 (<b>a</b>). Whereas large areas changed from <span class="html-italic">water</span> to <span class="html-italic">non-water</span> and were distinguished between 2000 and 2002 (<b>b</b>).</p> "> Figure 13
<p>(<b>a</b>) Shoreline change uncertainty at <span class="html-italic">t =</span> 0.5; (<b>b</b>–<b>f</b>) Change uncertainty is highlighted at different levels for the period 1994–2000 for the yellow rectangle site. The number of red pixels indicates that the change uncertainty from <span class="html-italic">water</span> to <span class="html-italic">non-water</span> increase with the increase of uncertainty values, as also can be seen for the blue pixels.</p> "> Figure 14
<p>(<b>a</b>–<b>f</b>) Shoreline change uncertainty at <span class="html-italic">t =</span> 0.5 and <span class="html-italic">CU ≤</span> 0.1 for the period 1994–2015. The extensive inundation has been indicated from 1994 to 2000 (<b>a</b>) and the largest change to <span class="html-italic">non-water</span> occurred in the period 2000–2002 (<b>b</b>).</p> "> Figure 15
<p>(<b>a</b>–<b>f</b>) The changes of <span class="html-italic">shoreline</span> margin, <span class="html-italic">water</span> and <span class="html-italic">non-water</span>. Six changes were identified including abrupt and gradual changes. An extensive inundation has been indicated from 1994 to 2000 (<b>a</b>), while the large change to <span class="html-italic">non-water</span> occurred in the period 2000–2002 (<b>b</b>).</p> "> Figure 16
<p>(<b>a</b>) Shoreline change uncertainty for the period 1994–2000; (<b>b</b>–<b>f</b>) Change uncertainty was measured at different levels for yellow rectangle site. A number of pixels (red, green, and blue) increase with the increase in the level of uncertainty. Changes from <span class="html-italic">non-water</span> to <span class="html-italic">shoreline</span> and from <span class="html-italic">water</span> to <span class="html-italic">shoreline</span> were grouped under one label and are presented in shades of green, while changes from <span class="html-italic">shoreline</span> and <span class="html-italic">water</span> to <span class="html-italic">non-water</span> are presented in shades of red. Changes from <span class="html-italic">non-water</span> and <span class="html-italic">shoreline</span> to <span class="html-italic">water</span> are represented as shades of blue.</p> "> Figure 17
<p>(<b>a</b>–<b>f</b>) Change uncertainty of <span class="html-italic">shoreline</span> margins and their associated sub-areas at <span class="html-italic">CU</span> level ≤ 0.1 in the period 1994–2015. (<b>a</b>) The largest coastal inundation occurred in the period 1994–2000. It was dominated by light blue pixels indicated low change uncertainty values to <span class="html-italic">water</span>; (<b>b</b>) The largest increase in <span class="html-italic">non-water</span> occurred in the period 2000–2002 represented by light red pixels indicated low change uncertainty to <span class="html-italic">non-water</span>.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Satellite Images and Data Pre-Processing
2.3. Fuzzy C-Means (FCM) Classification and Parameter Estimation
2.4. Deriving Water Class Images
2.5. Accuracy Assessment
2.6. Shoreline Generation
2.6.1. Shoreline as a Single Line
2.6.2. Shoreline as a Margin
2.7. Uncertainty Estimation
2.8. Shoreline Change Detection
2.8.1. Shoreline as a Single Line
2.8.2. Shoreline as a Margin
2.9. Change Uncertainty and Change Area Estimation
2.9.1. Change Area of Shoreline as a Single Line
2.9.2. Change Area of the Shoreline as a Margin
3. Results
3.1. Parameter Estimation
3.2. FCM Classification, Thresholding and Accuracy Assessment
3.3. Shoreline and Uncertainty Estimation
3.3.1. The Results of Shoreline as a Single Line
3.3.2. The Results of Shoreline as a Margin
3.4. Shoreline Change Detection Results and Change Uncertainty
3.4.1. The Results of Change for Shoreline as a Single Line
3.4.2. The Results of Change for Shoreline as a Margin
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vaidya, A.M.; Kori, S.K.; Kudale, M.D. Shoreline response to coastal structures. Aquat. Procedia 2015, 4, 333–340. [Google Scholar] [CrossRef]
- Ali, T.A. Analysis of shoreline-changes based on the geometric representation of the shorelines in the GIS database. J. Geogr. Geospat. Inf. Sci. 2010, 1, 1–16. [Google Scholar]
- Li, R.; Ma, R.; Di, K. Digital tide-coordinated shoreline. Mar. Geod. 2002, 25, 27–36. [Google Scholar] [CrossRef]
- Klemas, V. Beach profiling and LiDAR bathymetry: An overview with case studies. J. Coast. Res. 2011, 27, 1019–1028. [Google Scholar] [CrossRef]
- Dolan, R.; Fenster, M.S.; Holme, S.J. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 1991, 31, 1819–1836. [Google Scholar]
- Dean, R.G.; Dalrymple, R.A. Coastal Processes: With Engineering Applications; Cambridge University Press: Cambridge, UK, 2002; p. 473. [Google Scholar]
- Bird, E.C.F. Coastline Changes: A Global Review; John Wiley and Sons: Hoboken, NJ, USA, 1985; p. 219. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Davidson-Arnott, R. An Introduction to Coastal Processes and Geomorphology; Cambridge University Press: Cambridge, UK, 2010; p. 442. [Google Scholar]
- Oertel, G.F. Coasts, coastlines, shores, and shorelines. In Encyclopedia of Coastal Science; Schwartz, M.L., Ed.; Springer: Berlin, Germany; Heidelberg, Germany, 2005; pp. 323–327. [Google Scholar]
- Gens, R. Remote sensing of coastlines detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Leatherman, S.P.; Eskandary, L.S. Evaluation of coastal erosion hazards along Delaware’s Atlantic coast. J. Coast. Res. 1999, SI, 43–49. [Google Scholar]
- Gorman, L.; Morang, A.; Larson, R. Monitoring the coastal environment; part IV: Mapping, shoreline changes, and bathymetric analysis. J. Coast. Res. 1998, 14, 61–92. [Google Scholar]
- Chen, W.W.; Chang, H.K. Estimation of shoreline position and change from satellite images considering tidal variation. Estuar. Coast. Shelf Sci. 2009, 84, 54–60. [Google Scholar] [CrossRef]
- Ghosh, M.K.; Kumar, L.; Roy, C. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. 2015, 101, 137–144. [Google Scholar] [CrossRef]
- Wang, Y. Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. Int. J. Remote Sens. 2004, 25, 959–974. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Effect of land cover changes on flooding: Example from greater Dhaka of Bangladesh. Int. J. Geoinform. 2008, 4, 11–19. [Google Scholar]
- Senthilnatha, J.; Shenoy, H.V.; Omkar, S.N.; Mani, V. Spectral-spatial MODIS image analysis using swarm intelligence algorithms and region based segmentation for flood assessment. In Proceedings of the 7th International Conference on Bio-Inspired Computing: Theories and Applications; Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2012. [Google Scholar]
- Martinis, S.; Twele, A.; Strobl, C.; Kersten, J.; Stein, E. A multi-scale flood monitoring system based on fully automatic MODIS and TerraSAR-X processing chains. Remote Sens. 2013, 5, 5598–5619. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Tateishi, R. A water index for rapid mapping of shoreline changes of five East African Rift Valley Lakes: An empirical analysis using Landsat TM and ETM+ Data. Int. J. Remote Sens. 2007, 27, 3153–3181. [Google Scholar] [CrossRef]
- Tamassoki, E.; Amiri, H.; Soleymani, Z. Monitoring of shoreline changes using remote sensing (case study: coastal city of Bandar Abbas). In Proceedings of the 7th IGRSM International Remote Sensing & GIS Conference and Exhibition, Kuala Lumpur, Malaysia, 21–22 April 2014; IOP Publishing: Kuching, Malaysia, 2014; Volume 20. [Google Scholar]
- Li, X.; Damen, M.C.J. Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. J. Mar. Syst. 2010, 82, S54–S61. [Google Scholar] [CrossRef]
- Ford, M. Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Marfai, M.A.; Almohammad, H.; Dey, S.; Susanto, B.; King, L. Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia. Environ. Monit. Assess. 2008, 142, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Muslim, A.M.; Foody, G.M.; Atkinson, P.M. Localized soft classification for super-resolution mapping of the shoreline. Int. J. Remote Sens. 2006, 27, 2271–2285. [Google Scholar] [CrossRef]
- Taha, L.G.E.D.; Elbeih, S.F. Investigation of fusion of SAR and Landsat data for shoreline super resolution mapping: The Northeastern Mediterranean sea coast in Egypt. Appl. Geomat. 2010, 2, 177–186. [Google Scholar] [CrossRef]
- Yao, F.; Parrish, C.E.; Pe’eri, S.; Calder, B.R.; Rzhanov, Y. Modeling uncertainty in photogrammetry-derived national shoreline. Mar. Geod. 2015, 38, 128–145. [Google Scholar] [CrossRef]
- Río, L.D.; Gracia, F.J. Error determination in the photogrammetric assessment of shoreline changes. Nat. Hazards 2013, 65, 2385–2397. [Google Scholar]
- Genz, A.S.; Fletcher, C.H.; Dunn, R.A.; Frazer, L.N.; Rooney, J.J. The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. J. Coast. Res. 2007, 23, 87–105. [Google Scholar] [CrossRef]
- Maiti, S.; Bhattacharya, A.K. Shoreline change analysis and its application to prediction: A remote sensing and statistics based approach. Mar. Geol. 2009, 257, 11–23. [Google Scholar] [CrossRef]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Hartini, S. Flood Risk Modelling on Agricultural Area in the North Coastal Area of Central Java. Ph.D. Dissertation, Gadjah Mada University, Yogyakarta, Indonesia, 2015. [Google Scholar]
- Marfai, M.A. Preliminary assessment of coastal erosion and local community adaptation in Sayung coastal area, Central Java—Indonesia. Quaest. Geogr. 2012, 31, 47–55. [Google Scholar]
- Harwitasari, D.; van Ast, J.A. Climate change adaptation in practice: People’s responses to tidal flooding in Semarang, Indonesia. J. Flood Risk Manag. 2011, 4, 216–233. [Google Scholar] [CrossRef]
- Marfai, M.A.; King, L.; Sartohadi, J.; Sudrajat, S.; Budiani, S.R.; Yulianto, F. The impact of tidal flooding on a coastal community in Semarang, Indonesia. Environmentalist 2008, 28, 237–248. [Google Scholar] [CrossRef]
- Sarbidi. Rob influence on coastal settlements (case study: Semarang city). In Proceedings of the Losses in Buildings and Areas Due Sea-level Rise on Coastal Cities in Indonesia, Bandung, Indonesia, 19–20 March 2001; Research Center for Settlements, Ministry of Public Works: Bandung, Indonesia, 2001. [Google Scholar]
- Kurniawan, L. Tidal flood assessment in Semarang (case: Dadapsari). Alami. 2003, 8, 54–59. Available online: http://ejurnal.bppt.go.id/index.php/alami/article/view/1041 (accessed on 8 June 2015). [Google Scholar]
- Marfai, M.A.; King, L. Tidal inundation mapping under enhanced land subsidence in Semarang, Central Java Indonesia. Nat. Hazards 2008, 44, 93–109. [Google Scholar] [CrossRef]
- Winterwerp, H.; van Wesenbeeck, B.; van Dalfsen, J.; Tonneijck, F.; Astra, A.; Verschure, S.; van Eijk, P. A Sustainable Solution for Massive Coastal Erosion in Central Java; Discussion Paper; Deltares–Wetland International: Wageningen, The Netherlands, 2014; p. 45. Available online: http://www.wetlands.org/LinkClick.aspx?fileticket=rv2jbvHx%2bHw%3d&tabid=56 (accessed on 13 July 2015).
- Hadjimitsis, D.G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.G.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L.; Clayton, C.R.I. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 2010, 10, 89–95. [Google Scholar] [CrossRef]
- Mather, P.M. Computer Processing of Remotely-Sensed Images: An Introduction, 3rd ed.; John Wiley & Sons: Chicester, UK, 2004; p. 352. [Google Scholar]
- Foody, G. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int. J. Remote Sens. 1996, 17, 1317–1340. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Li, M.; Stein, A.; Bijker, W.; Zhan, Q. Region-based urban road extraction from VHR satellite images using binary partition tree. Int. J. Appl. Earth Observ. Geoinf. 2015, 44, 217–225. [Google Scholar]
- Sebari, I.; He, D.C. Automatic fuzzy object-based analysis of VHSR images for urban objects extraction. ISPRS J. Photogramm. 2013, 79, 171–184. [Google Scholar]
- Dubois, D.; Esteva, F.; Godo, L.; Prade, H. Fuzzy-set based logics—An history-oriented presentation of their main developments. In Handbook of the History of Logic; Gabbay, D.M., Woods, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 8, pp. 325–449. [Google Scholar]
- Zadeh, L.A. PRUF a meaning representation language for natural languages. Int. J. Mach. Stud. 1978, 10, 395–460. [Google Scholar]
- Lu, D.; Li, G.; Moran, E. Current situation and needs of change detection techniques. Int. J. Image Data Fusion 2014, 5, 13–38. [Google Scholar] [CrossRef]
- Egenhofer, M.J.; Al-Taha, K.K. Reasoning about gradual changes of topological relationships. In Theories and Methods of Spatio-Temporal Reasoning in Geographic Space; Frank, A.U., Campari, I., Formentini, U., Eds.; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Ardila, J.P.; Bijker, W.; Tolpekin, V.A.; Stein, A. Quantification of crown changes and change uncertainty of trees in an urban environment. ISPRS J. Photogramm. 2012, 74, 41–55. [Google Scholar]
- Cheng, T. A Process-Oriented Data Model for Fuzzy Spatial Objects. Ph.D. Dissertation, ITC-Wageningen University, Wageningen, The Netherlands, 1999. [Google Scholar]
- Bijker, W.; Hamm, N.A.; Ijumulana, J.; Wole, M.K. Monitoring a fuzzy object: The case of Lake Naivasha. In Proceedings of the 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), Trento, Italy, 12–14 July 2011.
- Zarandi, M.H.F.; Faraji, M.R.; Karbasian, M. An exponential cluster validity index for fuzzy clustering with crisp and fuzzy data. Sci. Iran. Trans. E Ind. Eng. 2010, 17, 95–110. [Google Scholar]
- Tso, B.; Mather, P. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2009; p. 347. [Google Scholar]
- Fisher, P.F.; Pathirana, S. The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sens. Environ. 1990, 34, 121–132. [Google Scholar] [CrossRef]
- Roubens, M. Fuzzy clustering algorithms and their cluster validity. Eur. J. Oper. Res. 1982, 10, 294–301. [Google Scholar] [CrossRef]
- Molenaar, M.; Cheng, T. Fuzzy spatial objects and their dynamics. ISPRS J. Photogramm. 2000, 55, 164–175. [Google Scholar] [CrossRef]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S.H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Putranto, T.T.; Rüde, T.R. Groundwater Problem in Semarang Demak Urban Area, Java/Indonesia. Available online: http://geostat-course.org/node/857 (accessed on 18 July 2015).
- Lubis, A.M.; Sato, T.; Tomiyama, N.; Isezaki, N.; Yamanokuchi, T. Ground subsidence in Semarang-Indonesia investigated by ALOS–PALSAR satellite SAR interferometry. J. Asian Earth Sci. 2011, 40, 1079–1088. [Google Scholar] [CrossRef]
- Sofian, I. Scientific Basis: Analysis and Projection of Sea Level Rise and Extreme Event; National Development Planning Agency: Bappenas, Indonesia, 2010; p. 70. [Google Scholar]
- Office of the Mayor of Semarang City. The Master Plan of Drainage System of Semarang; Office of the Mayor of Semarang City: City of Semarang, Indonesia, 2014; Volume 7, p. 45. [Google Scholar]
- Astra, A.S.; Sabarini, E.K.; Harjo, A.M.; Maulana, M.B. Mangrove-based and community-based coastal protection in Timbulsloko village, Demak. In Wetland Conservation Magazine; Wetlands International Indonesia: Bogor, Indonesia, 2014; pp. 4–5. [Google Scholar]
Acquisition Date | Acquisition Time (GMT) | Sensor | Astronomical Tide Level (m) | Reference Data |
---|---|---|---|---|
11 November 1994 | 02:02 | TM | −0.321 | Topographic map, 1994 (published on 2000) |
5 December 2000 | 02:41 | ETM | −0.215 | QuickBird image acquired on 3 May 2003 |
11 December 2002 | 02:36 | ETM | −0.364 | QuickBird image acquired on 3 May 2003 |
2 April 2003 | 02:36 | ETM | −0.118 | QuickBird image acquired on 3 May 2003 |
27 August 2013 | 02:50 | OLI/TIRS | −0.054 | Pleiades image acquired on 27 February 2013 |
8 April 2014 | 02:48 | OLI/TIRS | −0.025 | Image via Google Earth acquired on 1 July 2014 |
26 March 2015 | 02:47 | OLI/TIRS | −0.109 | Field measurement (2015) |
Subset | Mean Vector of the Cluste | r in the Infrared Bands ( | Total (Band5 + Band6 + Band7) | |
---|---|---|---|---|
Band5 | Band6 | Band7 | ||
c1 | 2085.711 | 925.3242 | 591.7152 | 3602.75 |
c2 | 8824.05 | 7427.402 | 5240.535 | 21,491.99 |
Classified Images | κ Coefficient for Selected t Values | ||
---|---|---|---|
0.3 | 0.5 | 0.7 | |
1994 | 0.95 | 0.96 | 0.96 |
2000 | 0.81 | 0.86 | 0.81 |
2002 | 0.85 | 0.90 | 0.85 |
2003 | 0.87 | 0.93 | 0.89 |
2013 | 0.86 | 0.95 | 0.90 |
2014 | 0.83 | 0.95 | 0.90 |
2015 | 0.90 | 0.95 | 0.92 |
Change Area | Level | ||||
---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
Water to non-water | +9 | +12 | +15 | +20 | +27 |
Non-water to water | −190 | −219 | −235 | −241 | −250 |
Change Area | 1994–2000 | 2000–2002 | 2002–2003 | 2003–2013 | 2013–2014 | 2014–2015 |
---|---|---|---|---|---|---|
Water to non-water | +20.0 | +197.5 | +23.2 | +51.4 | +64.5 | +21.7 |
Non-water to water | −670.1 | −32.0 | −210.1 | −182.8 | −20.3 | −26.8 |
Net change | −650.2 | +165.5 | −186.8 | −131.4 | +44.3 | −5.1 |
Change Area | Level | ||||
---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
Shoreline to non-water | +1 | +2 | +3 | +6 | +10 |
Water to shoreline | +17 | +14 | +12 | +21 | +23 |
Non-water to shoreline | −11 | −20 | −21 | −26 | −34 |
Shoreline to water | −88 | −94 | −101 | −101 | −103 |
Non-water to water | −149 | −175 | −189 | −189 | −190 |
Water to non-water | +6 | +8 | +10 | +11 | +11 |
Change Area | 1994–2000 | 2000–2002 | 2002–2003 | 2003–2013 | 2013–2014 | 2014–2015 |
---|---|---|---|---|---|---|
Shoreline to non- water | +0.3 | +2.4 | +3.4 | +4.1 | +5.6 | +10.4 |
Water to shoreline | +8.3 | +94.9 | +48.5 | +36.8 | +63.7 | +32.8 |
Water to non- water | +5.5 | +167.7 | +8.6 | +38.5 | +39.9 | +11.0 |
Non-water to shoreline | −3.0 | −4.1 | −6.2 | −7.3 | −7.5 | −3.1 |
Shoreline to water | −115.1 | −61.5 | −105.4 | −135.9 | −27.1 | −41.3 |
Non-water to water | −635.3 | −13.1 | −178.3 | −136.0 | −10.0 | −9.7 |
Net change | −739.4 | +186.3 | −229.3 | −199.7 | +64.6 | +0.1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewi, R.S.; Bijker, W.; Stein, A.; Marfai, M.A. Fuzzy Classification for Shoreline Change Monitoring in a Part of the Northern Coastal Area of Java, Indonesia. Remote Sens. 2016, 8, 190. https://doi.org/10.3390/rs8030190
Dewi RS, Bijker W, Stein A, Marfai MA. Fuzzy Classification for Shoreline Change Monitoring in a Part of the Northern Coastal Area of Java, Indonesia. Remote Sensing. 2016; 8(3):190. https://doi.org/10.3390/rs8030190
Chicago/Turabian StyleDewi, Ratna Sari, Wietske Bijker, Alfred Stein, and Muh Aris Marfai. 2016. "Fuzzy Classification for Shoreline Change Monitoring in a Part of the Northern Coastal Area of Java, Indonesia" Remote Sensing 8, no. 3: 190. https://doi.org/10.3390/rs8030190
APA StyleDewi, R. S., Bijker, W., Stein, A., & Marfai, M. A. (2016). Fuzzy Classification for Shoreline Change Monitoring in a Part of the Northern Coastal Area of Java, Indonesia. Remote Sensing, 8(3), 190. https://doi.org/10.3390/rs8030190