The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities
"> Figure 1
<p>InSAeS4 Noise Equivalent Sigma Zero (NESZ) as a function of the incidence angle for the 400 MHz (<b>left</b>) and the 50 MHz (<b>right</b>) operational modes and for different flight altitudes.</p> "> Figure 2
<p>Interferometric layout of the InSAeS4 System. (<b>a</b>) Vertical (<span class="html-italic">i.e.</span>, across track) plane; (<b>b</b>) Horizontal plane. Note that the x-axis points ahead and z-axis points downward.</p> "> Figure 3
<p>(<b>a</b>) Multi-look amplitude SAR images relevant to the acquired data. The frame n.1 (red) is relevant to the 50 MHz mode; the frame n.2 (continuous green) and the frame n.3 (dashed green) are relevant to the 400 MHz mode. The images are geocoded on a 5 × 5 m (50 MHz mode) and 1 × 1 m (400 MHz mode) geographic grid, and superimposed on a Google Earth image. The green and red arrows indicate the flight directions; (<b>b</b>) Amplitude SAR image (in the SAR coordinates grid) relevant to the frame n.3. A 4 range × 16 azimuth pixel averaging window has been applied, obtaining a 1.5 m × 1.85 m pixel spacing. The CRs deployed over the area are highlighted with yellow circles.</p> "> Figure 4
<p>Coherence map and interferogram relevant to the frame 1 of <a href="#remotesensing-08-00040-f003" class="html-fig">Figure 3</a>a (50 MHz mode, single-baseline configuration). The applied pixel averaging is described in the body of the paper.</p> "> Figure 5
<p>Two interferograms and the corresponding coherence maps relevant to the frame 2 of <a href="#remotesensing-08-00040-f003" class="html-fig">Figure 3</a>a (400 MHz mode, multi-baseline configuration). Left panels refer to the data pair acquired with the largest XT baseline (height of ambiguity ranging from 44 m to 124 m). Right panels refer to the data pair acquired with the smallest XT baseline (height of ambiguity ranging from 87 m to 196 m). The applied pixel averaging is described in the body of the paper.</p> "> Figure 6
<p>(<b>a</b>) Zoom of the frame 2 of <a href="#remotesensing-08-00040-f003" class="html-fig">Figure 3</a>a. The lava flow erupted from the Somma Vesuvio volcanic complex in 1944 covered by the laser scanner DEM is highlighted in yellow; (<b>b</b>) Histogram of the vertical difference between the InSAeS4 DEM and the laser scanner DEM in the yellow area of <a href="#remotesensing-08-00040-f006" class="html-fig">Figure 6</a>a.</p> ">
Abstract
:1. Introduction
2. System Description
Model | LearJet 35A |
Propulsion | 2 Turbofan Garret T731 |
Velocity | up to 800 km/h |
Autonomy | 4000 km |
Altitude | up to 8.4 km |
2.1. Navigation Unit
Position | 0.05 m |
Velocity | 0.005 m/s |
Roll & Pitch | 0.005° |
True Heading | 0.008° |
2.2. Antennas
2.3. Radar
Peak Transmit Power | 2600 W |
Duty cycle | up to 6% |
Carrier frequency | 9.55 GHz |
Carrier wavelength | 0.0314 m |
Bandwidth | 50–400 MHz |
PRF | 0.2–16 kHz |
Recording data rate | up to 32 MB/s |
Number of antennas | 3 |
Polarization | HH |
2.4. Interferometric Layout
XT-Baseline | Height of Ambiguity 400 MHz Mode * | Height of Ambiguity 50 MHz Mode * |
---|---|---|
0.76 m | From 109 m to 208 m | From 109 m to 853 m |
0.93 m | From 101 m to 251 m | From 101 m to 2151 m |
1.59 m | From 52 m to 114 m | From 52 m to 611 m |
3. Experimental Results
Frame 1 | Frame 2 | Frame 3 | |
---|---|---|---|
Bandwidth | 50 MHz | 400 MHz | 400 MHz |
Chirp pulses | 1 | 4 | 4 |
Pulse duration | 16.2 µs | 2.6 µs | 2.6 µs |
Azimuth pixel spacing * | 0.08 m | 0.09 m | 0.11 m |
Azimuth resolution † | 0.12 m | 0.12 m | 0.12 m |
Range pixel spacing * | 2.99 m | 0.37 m | 0.37 m |
Range resolution † | 3.84 m | 0.48 m | 0.48 m |
Range lines | 4096 | 4096 | 4096 |
Flight altitude | 5001 m | 3962 m | 3962 m |
Mean platform velocity | 139 m/s | 103 m/s | 126 m/s |
Look angle | 30°–74° | 30°–50° | 30°–50° |
Azimuth Resolution [m] | Range Resolution [m] | Azimuth Misalignment [m] | Range Misalignment [m] | Height Error [m] | |
---|---|---|---|---|---|
CR 1 | 0.14 | 0.49 | 0.09 | 0.17 | 0.51 |
CR 2 | 0.21 | 0.50 | 0.02 | 0.16 | 0.47 |
CR 3 | 0.13 | 0.50 | 0.12 | 0.01 | 0.38 |
CR 4 | 0.13 | 0.50 | 0.08 | 0.09 | 0.28 |
CR 5 | 0.13 | 0.49 | 0.03 | 0.05 | −0.20 |
CR 6 | 0.15 | 0.49 | 0.15 | −0.03 | −0.13 |
CR 7 | 0.14 | 0.52 | 0.13 | 0.01 | −0.72 |
CR 8 | 0.12 | 0.48 | 0.14 | −0.03 | −0.78 |
CR 9 | 0.12 | 0.48 | −0.07 | −0.07 | −0.53 |
μ | 0.14 | 0.49 | 0.08 | 0.04 | −0.08 |
σ | 0.02 | 0.01 | 0.07 | 0.08 | 0.51 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing, 1st ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. In Inverse Problems; IOP Publishing: Bristowl, UK, 1998; pp. R1–R54. [Google Scholar]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef]
- Fornaro, G.; Franceschetti, G.; Perna, S. Motion Compensation errors: Effects on the accuracy of airborne SAR images. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1338–1352. [Google Scholar] [CrossRef]
- Fornaro, G. Trajectory Deviations in Airborne SAR: Analysis and Compensation. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 997–1009. [Google Scholar] [CrossRef]
- Moreira, A.; Huang, Y. Airborne SAR Processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Trans. Geosci. Remote Sens. 1994, 32, 1029–1040. [Google Scholar] [CrossRef]
- Fornaro, G.; Franceschetti, G.; Perna, S. On Center Beam Approximation in SAR Motion Compensation. IEEE Geosci. Remote Sens. Lett. 2006, 3, 276–280. [Google Scholar] [CrossRef]
- Perna, S.; Wimmer, C.; Moreira, J.; Fornaro, G. X-Band Airborne Differential Interferometry: Results of the OrbiSAR Campaign over the Perugia Area. IEEE Trans. Geosci. Remote Sens. 2008, 46, 489–503. [Google Scholar] [CrossRef]
- Shiroma, G.H.X.; de Macedo, K.A.C.; Wimmer, C.; Fernandes, D.; Barreto, T.L.M. Combining dual-band capability and polinsar technique for forest ground and canopy estimation. In Proceedings of the International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014.
- Hensley, S.; Chapin, E.; Freedman, A.; Le, C.; Madsen, S.; Michel, T.; Rodriguez, E.; Siqueira, P.; Wheeler, K. First P-band results using the Geosar mapping system. In Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001.
- Horn, R.; Nottensteiner, A.; Reigber, A.; Fischer, J.; Scheiber, R. F-SAR—DLR’s new multifrequency polarimetric airborne SAR. In Proceedings of the International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009.
- Brenner, A.R.; Roessing, L. Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2971–2982. [Google Scholar] [CrossRef]
- Dubois-Fernandez, P.; du Plessis, O.R.; le Coz, D.; Dupas, J.; Vaizan, B.; Dupuis, X.; Cantalloube, H.; Coloumbeix, C.; Titin-Schnaider, C.; Dreuillet, P.; et al. The ONERA RAMSES SAR System. In Proceedings of the International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002.
- Ruault du Plessis, O.; Nouvel, J.; Baque, R.; Bonin, G.; Dreuillet, P.; Coulombaix, C.; Oriot, H. ONERA SAR facilities. IEEE Aerosp. Electron. Syst. Mag. 2011, 26, 24–30. [Google Scholar] [CrossRef]
- Magnard, C.; Frioud, M.; Small, D.; Brehm, T.; Essen, H.; Meier, E. Processing of MEMPHIS Ka-Band Multibaseline Interferometric SAR Data: From Raw Data to Digital Surface Models. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2927–2941. [Google Scholar] [CrossRef]
- Schmitt, M.; Magnard, C.; Stanko, S.; Ackermann, C.; Stilla, U. Advanced high resolution SAR interferometry of urban areas with airborne millimetrewave radar. Photogramm. Fernerkund. Geoinform. 2013, 6, 603–617. [Google Scholar] [CrossRef]
- Schmitt, M.; Magnard, C.; Brehm, T.; Stilla, U. Towards airborne single pass decimeter resolution SAR interferometry over urban areas. In Photogrammetric Image Analysis; Springer-Verlag Berlin: Heidelberg, Germany, 2011; pp. 197–208. [Google Scholar]
- Magnard, C.; Frioud, M.; Small, D.; Brehm, T.; Meier, E. Analysis of a Maximum Likelihood Phase Estimation Method for Airborne Multibaseline SAR Interferometry. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, in press. [Google Scholar] [CrossRef]
- Schmitt, M.; Stilla, U. Maximum-likelihood based approach for single-pass synthetic aperture radar tomography over urban areas. IET Radar Sonar Navig. 2014, 8, 1145–1153. [Google Scholar] [CrossRef]
- Perna, S.; Berardino, P.; Britti, F.; Cirillo, C.; Esposito, C.; Fornaro, G.; Lubeck, D.; Monaldi, G.; Moreira, J.; Pauciullo, A.; et al. Capabilities of the TELAER Airborne SAR System Upgraded to the Multi-Antenna Mode. In Proceedings of the International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012.
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar]
- Perna, S.; Esposito, C.; Pauciullo, A.; Romano, P.; Gifuni, A. A fast approach for antenna phase center evaluation. In Proceedings of the International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014.
- Richards, M.A.; Scheer, J.A.; Holm, W.A. Principles of Modern Radar: Basic Principles; SciTech Publishing: Raleigh, NC, USA, 2010. [Google Scholar]
- Massonnet, D.; Adragna, F.; Rossi, M. CNES General-Purpose SAR Correlator. IEEE Trans. Geosci. Remote Sens. 1994, 32, 636–643. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Manunta, M.; Serafino, F.; Fornaro, G. Geometrical SAR image registration. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2861–2870. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Perna, S.; Esposito, C.; Berardino, P.; Pauciullo, A.; Wimmer, C.; Lanari, R. Phase Offset Calculation for Airborne InSAR DEM Generation Without Corner Reflectors. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2713–2726. [Google Scholar] [CrossRef]
- Vilardo, G.; Ventura, G. Geomorphological map of the 1944 Vesuvius lava flow (Italy). J. Maps 2008, 4, 225–234. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perna, S.; Esposito, C.; Amaral, T.; Berardino, P.; Jackson, G.; Moreira, J.; Pauciullo, A.; Vaz Junior, E.; Wimmer, C.; Lanari, R. The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities. Remote Sens. 2016, 8, 40. https://doi.org/10.3390/rs8010040
Perna S, Esposito C, Amaral T, Berardino P, Jackson G, Moreira J, Pauciullo A, Vaz Junior E, Wimmer C, Lanari R. The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities. Remote Sensing. 2016; 8(1):40. https://doi.org/10.3390/rs8010040
Chicago/Turabian StylePerna, Stefano, Carmen Esposito, Tiago Amaral, Paolo Berardino, Giuseppe Jackson, João Moreira, Antonio Pauciullo, Eurico Vaz Junior, Christian Wimmer, and Riccardo Lanari. 2016. "The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities" Remote Sensing 8, no. 1: 40. https://doi.org/10.3390/rs8010040
APA StylePerna, S., Esposito, C., Amaral, T., Berardino, P., Jackson, G., Moreira, J., Pauciullo, A., Vaz Junior, E., Wimmer, C., & Lanari, R. (2016). The InSAeS4 Airborne X-Band Interferometric SAR System: A First Assessment on Its Imaging and Topographic Mapping Capabilities. Remote Sensing, 8(1), 40. https://doi.org/10.3390/rs8010040