Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration
"> Figure 1
<p>(<b>A</b>) Canopy spectral reflectance under four N rates at booting for Yumai 34 in Experiment 3; (<b>B</b>) Correlation of the LNC with the original and first derivative spectra.</p> "> Figure 2
<p>(<b>A</b>) The original spectrum, continuum line, and continuum-removed spectrum of Yumai 34 at the booting stage at an N rate of 150 kg/ha in Experiment 3. (<b>B</b>) Correlation coefficients between the band depth (BD), the band depth ratio (BDR), and the normalized band depth index (NBDI) and the LNC in the range of 550–750 nm.</p> "> Figure 3
<p>Calibration (<b>A</b>) and validation (<b>B</b>) of the model based on BD<sub>709</sub> from the original canopy spectra.</p> "> Figure 4
<p>Contour maps of the coefficients of determination (R<sup>2</sup> > 0.5) between the normalized difference vegetation index (NDVI), ratio vegetation index (RVI), and soil-adjusted vegetation index (SAVI) and the canopy LNC based on the original and first derivative canopy spectra.</p> "> Figure 5
<p>The relationship between SAVI(R<sub>1200</sub>, R<sub>705</sub>) and the wheat LNC (<b>A</b>); and the 1:1 relationship between the measured LNC and those estimated values based on SAVI(R<sub>1200</sub>, R<sub>705</sub>) (<b>B</b>).</p> "> Figure 6
<p>Changes in the variance explained by the latent variables (LVs) based on the original and first derivative canopy spectra.</p> "> Figure 7
<p>The 1:1 relationship between the measured LNC and those estimated values using the PLSR analysis on the first derivative canopy spectra (PLSR-FDS) model for the calibration (<b>A</b>) and validation (<b>B</b>) sets.</p> "> Figure 8
<p>Changes in RMSE<sub>P</sub> as a function of the number of hidden layer neurons (HLNs) for the original and first derivative canopy spectra.</p> "> Figure 9
<p>The 1:1 relationship between the measured LNC and those estimated using the SVM-FDS model for the calibration (<b>A</b>) and validation (<b>B</b>) sets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Field Experiments
Experi-ment(Exp.) | Year | Ecological Site | Wheat Cultivar | N Application Rates (kg·ha−1) | Sampling Dates | Number of Samples | Data Function |
---|---|---|---|---|---|---|---|
Exp. 1 | 04–05 | Nanjing | Ningmai 9, Yangmai 12, Yumai 34 | 0, 75, 150, 225 | 19 March, 13/26 April, 3/6/12/24 May, 1 July | 102 | Validation |
Exp. 2 | 05–06 | Nanjing | Ningmai 9, Yumai 34 Yangmai 12 | 0, 75, 150, 225 | 19 March, 13/26 April, 3/6/12/24 May, 1 July | 110 | Calibration |
Exp. 3 | 06–07 | Yancheng | Yanmai 4110 | 0, 75, 150, 225 300 | 23 April, 17 May | 103 | Calibration |
Exp. 4 | 07–08 | Nanjing | Ningmai 9 | 90, 180, 270 | 8/23 April, 17 May | 88 | Validation |
Exp. 5 | 08–09 | Rugao | Yangmai 13 | 225, 275, 325 | 6/22 April, 6 May | 120 | Calibration |
Exp. 6 | 09–10 | Hai’an | Ningmai 13 | 0, 75, 150, 225 | 6/22 April, 6 May | 122 | Calibration |
Exp. 7 | 10–11 | Nanjing | Yangmai 18 | 150, 300 | 2/14/26 April, 5/17 May | 93 | Validation |
Exp. 8 | 12–13 | Rugao | Yangmai 18, Shengxuan 6 | 0, 100, 300 | 14/26 April, 3 May | 83 | Validation |
2.2. Measurements of Hyperspectral Reflectance
2.3. Determination of Leaf N Concentration
2.4. Data Analysis
2.4.1. Continuum Removal (CR)
2.4.2. Vegetation Indices (VIs)
2.4.3. Stepwise Multiple Linear Regression (SMLR)
2.4.4. Partial Least-Squares Regression (PLSR)
2.4.5. Artificial Neural Networks (ANNs)
2.4.6. Support Vector Machines (SVMs)
2.4.7. Calibration and Validation
Dataset | Number of Samples | Names of Cultivars | Ecological Sites | Minimum (%) | Maximum (%) | Mean (%) | SD | CV |
---|---|---|---|---|---|---|---|---|
Calibration (Exp. 2, 3, 5, 6) | 456 | Ningmai 9, Yumai 34, Yangmai 12, Yanmai 4110, Yangmai 13, Ningmai 13 | Nanjing, Yancheng, Rugao, Hai’an Nanjing, Rugao | 0.45 | 4.52 | 2.66 | 0.98 | 0.37 |
Validation (Exp. 1, 4, 7, 8) | 366 | Ningmai 9, Yangmai 12, Yumai 34,Yangmai 18, Shengxuan 6 | 0.98 | 4.29 | 2.92 | 0.77 | 0.26 | |
All data | 822 | All of the above | 0.45 | 4.52 | 2.78 | 0.87 | 0.32 |
3. Results
3.1. Changes in the Canopy Spectral Reflectance and Its Relationship with the LNC for Wheat
3.2. Models for Estimating the LNC Based on Six Algorithms Using Different Numbers of Wavelengths
3.2.1. CR with One Wavelength
Band Range | Input Parameter | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|
Equation | R2C | RMSEC | R2V | RMSEP | RPD | CE (min) | CL | ||
550–750 | BD709 | y = 0.823 × e2.056x | 0.78 | 0.46 | 0.78 | 0.42 | 1.84 | 0.07 min | Low |
BDR713 | y = 0.536 × e2.588x | 0.78 | 0.48 | 0.74 | 0.45 | 1.72 | 0.08 min | Low | |
NBDI727 | y = 9.147 × e2.51x | 0.76 | 0.54 | 0.71 | 0.49 | 1.56 | 0.07 min | Low |
3.2.2. VI with Two Wavelengths
VI | λ1 (nm) | λ2 (nm) | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Equation | R2C | RMSEC | R2V | RMSEP | RPD | CE (min) | CL | |||
NDVI | 1340 | 700 | y = 5.58x − 0.02 | 0.83 | 0.39 | 0.76 | 0.41 | 1.86 | 0.11 | Low |
RVI | 700 | 1335 | y = −5.63x + 4.69 | 0.83 | 0.39 | 0.76 | 0.40 | 1.95 | 0.10 | Low |
SAVI | 1200 | 705 | y = 8.72x + 0.10 | 0.84 | 0.38 | 0.80 | 0.38 | 2.01 | 0.10 | Low |
NDVI * | 710 | 690 | y = 3.59x + 1.38 | 0.86 | 0.36 | 0.72 | 0.51 | 1.53 | 0.11 | Low |
RVI * | 700 | 695 | y = 3.19x − 1.38 | 0.86 | 0.36 | 0.68 | 0.57 | 1.35 | 0.11 | Low |
SAVI * | 710 | 695 | y = 283.2x + 1.8 | 0.85 | 0.37 | 0.76 | 0.40 | 1.92 | 0.10 | Low |
3.2.3. SMLR with Multiple Wavelengths
- SMLR-OS model:y = 1.941 − 92.315 * b384 + 122.732 * b492 − 55.338 * b695 + 8.591 * b1339 − 0.321 * b1369
- SMLR-FDS model:y = 2.189 − 980.699 * bFD508 − 1034.799 * bFD681 + 303.223 * bFD722 + 195.538 * bFD960 + 451.419 * bFD1264
Model | Selected Wavelengths (nm) | Calibration | Validation | |||||
---|---|---|---|---|---|---|---|---|
R2c | RMSEC | R2v | RMSEP | RDP | CE (min) | CL | ||
SMLR-OS | 695, 1339, 492, 384, 1369 | 0.87 | 0.35 | 0.78 | 0.39 | 1.97 | 32.15 | Middle |
SMLR-FDS | 722, 681, 1264, 508, 960 | 0.86 | 0.37 | 0.76 | 0.39 | 1.95 | 33.16 | Middle |
3.2.4. PLSR with All Wavelengths
Model | Input Variables | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|
LVs | R2c | RMSEC | R2v | RMSEP | RDP | CE (min) | CL | ||
PLSR-OS | all wavelengths | 5 | 0.85 | 0.37 | 0.81 | 0.35 | 2.22 | 6.10 | High |
PLSR-FDS | all wavelengths | 7 | 0.91 | 0.30 | 0.815 | 0.39 | 2.00 | 5.50 | High |
3.2.5. ANN with All Wavelengths
Inputs | Optimal Numbers of Neurons | Calibration | Validation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Input | Hidden | Output | R2C | RMSEC | R2V | RMSEP | RDP | CE (min) | CL | |
ANN-OS | 1451 | 12 | 1 | 0.95 | 0.22 | 0.76 | 0.45 | 1.72 | 71.50 | High |
ANN-FDS | 1451 | 12 | 1 | 0.99 | 0.18 | 0.73 | 0.51 | 1.50 | 67.20 | High |
ANN-PCA-OS | 9 | 4 | 1 | 0.94 | 0.25 | 0.796 | 0.35 | 1.44 | 15.60 | High |
ANN-PCA-FDS | 11 | 5 | 1 | 0.95 | 0.22 | 0.72 | 0.41 | 1.48 | 14.80 | High |
3.2.6. SVM with All Wavelengths
Model | Input Variables | Calibration | Validation | |||||
---|---|---|---|---|---|---|---|---|
R2C | RMSEC | R2V | RMSEV | RDP | CE (min) | CL | ||
SVM-OS | All wavelengths | 0.96 | 0.21 | 0.80 | 0.38 | 2.05 | 20.34 | High |
SVM-FDS | All wavelengths | 0.96 | 0.19 | 0.78 | 0.37 | 2.02 | 21.17 | High |
ANN-PCA-OS | 9PCA | 0.94 | 0.20 | 0.67 | 0.47 | 1.64 | 5.64 | High |
ANN-PCA-FDS | 11PCA | 0.92 | 0.27 | 0.55 | 0.57 | 1.36 | 5.76 | High |
3.3. Evaluation and Comparison of the Robustness of the Six Algorithms
Method | Wavelengths (nm) | Calibration | Validation | |||||
---|---|---|---|---|---|---|---|---|
R2C | RMSEC | R2V | RMSEP | RDP | CE (min) | CL | ||
BD709 | 709 | 0.78 | 0.46 | 0.78 | 0.42 | 1.84 | 0.07 | Low |
SAVI(R1200, R705) | 1200, 705 | 0.84 | 0.38 | 0.80 | 0.38 | 2.01 | 0.10 | Low |
SMLR-OS | 695, 1339,492,384,1369 | 0.87 | 0.35 | 0.78 | 0.39 | 1.97 | 33.16 | Middle |
PLSR-FDS | All wavelengths | 0.91 | 0.30 | 0.82 | 0.39 | 2.00 | 5.50 | High |
ANN-OS | All wavelengths | 0.95 | 0.22 | 0.76 | 0.45 | 1.72 | 71.50 | High |
SVM-FDS | All wavelengths | 0.96 | 0.19 | 0.78 | 0.37 | 2.02 | 21.17 | High |
Grouping Variable | Algorithm | Sub-Group | Validation | R2V–RMSEP | |||
---|---|---|---|---|---|---|---|
R2V | RMSEP | CE (min) | CL | ||||
Variety | BD709 | Ningmai 9 | 0.84 | 0.37 | 0.07 | Low | 0.47 |
Yangmai 12 | 0.73 | 0.38 | 0.07 | Low | 0.36 | ||
Yumai 34 | 0.80 | 0.28 | 0.07 | Low | 0.52 | ||
Yangmai 18 | 0.71 | 0.48 | 0.07 | Low | 0.23 | ||
Shengxuan 6 | 0.76 | 0.43 | 0.07 | Low | 0.33 | ||
SAVI(R1200, R705) | Ningmai 9 | 0.80 | 0.43 | 0.10 | Low | 0.37 | |
Yangmai 12 | 0.75 | 0.41 | 0.10 | Low | 0.34 | ||
Yumai 34 | 0.75 | 0.36 | 0.10 | Low | 0.40 | ||
Yangmai 18 | 0.86 | 0.31 | 0.10 | Low | 0.55 | ||
Shengxuan 6 | 0.77 | 0.36 | 0.10 | Low | 0.41 | ||
SMLR-OS | Ningmai 9 | 0.83 | 0.47 | 16.23 | Middle | 0.36 | |
Yangmai 12 | 0.67 | 0.40 | 15.21 | Middle | 0.27 | ||
Yumai 34 | 0.67 | 0.35 | 17.32 | Middle | 0.32 | ||
Yangmai 18 | 0.81 | 0.36 | 16.46 | Middle | 0.45 | ||
Shengxuan 6 | 0.77 | 0.38 | 15.35 | Middle | 0.39 | ||
PLSR-FDS | Ningmai 9 | 0.86 | 0.38 | 5.21 | High | 0.48 | |
Yangmai 12 | 0.76 | 0.34 | 5.74 | High | 0.42 | ||
Yumai 34 | 0.67 | 0.32 | 5.32 | High | 0.35 | ||
Yangmai 18 | 0.81 | 0.36 | 5.21 | High | 0.45 | ||
Shengxuan 6 | 0.88 | 0.35 | 5.56 | High | 0.53 | ||
ANN-OS | Ningmai 9 | 0.85 | 0.44 | 65.23 | High | 0.41 | |
Yangmai 12 | 0.78 | 0.44 | 64.32 | High | 0.34 | ||
Yumai 34 | 0.65 | 0.36 | 65.45 | High | 0.30 | ||
Yangmai 18 | 0.76 | 0.42 | 63.23 | High | 0.34 | ||
Shengxuan 6 | 0.77 | 0.55 | 62.89 | High | 0.22 | ||
SVM-FDS | Ningmai 9 | 0.84 | 0.40 | 19.21 | High | 0.44 | |
Yangmai 12 | 0.79 | 0.36 | 18.32 | High | 0.43 | ||
Yumai 34 | 0.67 | 0.42 | 18.21 | High | 0.25 | ||
Yangmai 18 | 0.79 | 0.36 | 19.72 | High | 0.43 | ||
Shengxuan 6 | 0.87 | 0.35 | 19.32 | High | 0.52 | ||
Ecological site | BD709 | Nanjing | 0.76 | 0.42 | 0.08 | Low | 0.34 |
Rugao | 0.80 | 0.41 | 0.08 | Low | 0.39 | ||
SAVI(R1200, R705) | Nanjing | 0.78 | 0.40 | 0.11 | Low | 0.38 | |
Rugao | 0.85 | 0.34 | 0.11 | Low | 0.51 | ||
SMLR-OS | Nanjing | 0.77 | 0.42 | 28.22 | Middle | 0.35 | |
Rugao | 0.86 | 0.37 | 12.32 | Middle | 0.49 | ||
PLSR-FDS | Nanjing | 0.80 | 0.38 | 5.86 | High | 0.42 | |
Rugao | 0.90 | 0.31 | 5.30 | High | 0.59 | ||
ANN-OS | Nanjing | 0.76 | 0.45 | 68.21 | High | 0.31 | |
Rugao | 0.83 | 0.45 | 62.20 | High | 0.39 | ||
SVM-FDS | Nanjing | 0.77 | 0.41 | 19.98 | High | 0.36 | |
Rugao | 0.90 | 0.33 | 18.32 | High | 0.57 | ||
Growth stage | BD709 | Jointing, Booting | 0.73 | 0.40 | 0.08 | Low | 0.33 |
Heading, Anthesis | 0.78 | 0.42 | 0.08 | Low | 0.36 | ||
SAVI(R1200, R705) | Jointing, Booting | 0.75 | 0.37 | 0.11 | Low | 0.38 | |
Heading, Anthesis | 0.80 | 0.40 | 0.11 | Low | 0.40 | ||
SMLR-OS | Jointing, Booting | 0.71 | 0.39 | 17.82 | Middle | 0.32 | |
Heading, Anthesis | 0.83 | 0.44 | 17.86 | Middle | 0.39 | ||
PLSR-FDS | Jointing, Booting | 0.73 | 0.37 | 5.78 | High | 0.36 | |
Heading, Anthesis | 0.85 | 0.35 | 5.83 | High | 0.50 | ||
ANN-OS | Jointing, Booting | 0.66 | 0.46 | 68.68 | High | 0.20 | |
Heading, Anthesis | 0.86 | 0.43 | 67.98 | High | 0.43 | ||
SVM-FDS | Jointing, Booting | 0.75 | 0.36 | 18.79 | High | 0.39 | |
Heading, Anthesis | 0.85 | 0.49 | 18.89 | High | 0.36 |
3.4. Performance Comparison of the Best Models Identified in the Present Study with Previous Models
Method | Equation | Calibration | Validation | Source | |||
---|---|---|---|---|---|---|---|
R2C | RMSEC | R2V | RMSEP | RPD | |||
OSAVI | 1.16*(R810 − R680)/ (R810− R680 + 0.16) | 0.74 | 0.49 | 0.66 | 0.73 | 1.06 | Rondeaux et al. (1996) [54] |
ND705 | (R750 − R705)/(R750 + R705) | 0.79 | 0.44 | 0.73 | 0.42 | 1.83 | Gitelson et al. (1994) [55] |
(R924 − R703 + 2*R423)/(R924 + R703 − 2*R423) | 0.79 | 0.42 | 0.72 | 0.45 | 1.71 | Wang et al. (2012) [56] | |
mND705 | (R750 − R705)/(R750 + R705 − 2*R445) | 0.80 | 0.43 | 0.74 | 0.41 | 1.90 | Sims et al. (2002) [57] |
SAVI | 1.5*(R1200 − R705)/(R1200 + R705 − 0.5) | 0.84 | 0.38 | 0.80 | 0.38 | 2.01 | This paper |
SVM | - | 0.96 | 0.19 | 0.78 | 0.37 | 2.02 | This paper |
4. Discussion
4.1. Wavelength Selection for the Six Algorithms
4.2. The Reliability and Practicability of the Six Algorithms
4.3. The Applicability of the Six Algorithms to Different Groups of Samples
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinform. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Thomas, J.R.; Oerther, G.F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron. J. 1972, 64, 11–13. [Google Scholar] [CrossRef]
- Jensen, A.; Lorenzen, B.; Østergaard, H.S.; Hvelplund, E.K. Radiometric estimation of biomass and nitrogen content of barley grown at different nitrogen levels. Int. J. Remote Sens. 1990, 11, 1809–1820. [Google Scholar] [CrossRef]
- Yoder, B.J.; Pettigrew-Crosby, R.E. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sens. Environ. 1995, 53, 199–211. [Google Scholar] [CrossRef]
- Kokaly, R.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; Craig, S.T.; Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 647–664. [Google Scholar] [CrossRef]
- Dobermann, A.; Blackmore, S.; Cook, S.E.; Adamchuk, V.I. Precision Farming: Challenges and Future Directions. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004.
- Huang, Z.; Turner, B.J.; Dury, S.J.; Wallis, I.R.; Foley, W.J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 2004, 93, 18–29. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Zhu, Y.; Li, Y.X.; Zhou, D.Q.; Tian, Y.C.; Yao, X.; Cao, W.X. Quantitative relationship between leaf nitrogen concentration and canopy reflectance spectra in rice and wheat. Acta Ecol. Sin. 2006, 26, 3463–3469. [Google Scholar]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Tian, Y.C.; Yao, X.; Yang, J.; Cao, W.X.; Hannaway, D.B.; Zhu, Y. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Res. 2011, 120, 299–310. [Google Scholar] [CrossRef]
- Ecarnot, M.; Compan, F.; Roumet, P. Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer. Field Crops Res. 2013, 140, 44–50. [Google Scholar] [CrossRef]
- Yao, X.; Ren, H.; Cao, Z.; Tian, Y.; Cao, W.; Zhu, Y.; Cheng, T. Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds. Int. Appl. Earth Obs. Geoinform. 2014, 32, 114–124. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Peterson, D.L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry. Remote Sens. Environ. 2001, 76, 349–359. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhu, Y.; Tian, Y.C.; Yao, X.; Qin, X.D.; Cao, W.X. Quantitative relationship between leaf nitrogen concentration and canopy reflectance spectra in wheat. Acta Agron. Sin. 2006, 32, 358–362. [Google Scholar]
- Darvishzadeh, R.; Skidmore, A.; Atzberger, C. Estimation of vegetation LAI from hyperspectral reflectance data: Effects of soil type and plant architecture. Int. J. Appl. Earth Obs. Geoinform. 2008, 10, 358–373. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Vigneau, N.; Ecarnot, M.; Rabatel, G.; Roumet, P.; Roumet, P. Potential of field hyperspectral imaging as a non-destructive method to assess leaf nitrogen content in wheat. Field Crops Res. 2011, 122, 25–31. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Kokaly, R.F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens. Environ. 2001, 75, 153–161. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Chen, P.F.; Wang, J.S.; Peng, P. Remote detection of wheat grain protein content using nitrogen nutrition index. Soc. Agric. Eng. 2011, 9, 75–80. [Google Scholar]
- Yao, X.; Zhu, Y.; Tian, Y.C.; Feng, W.; Cao, W.X. Research of optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves. Sci. Agric. Sin. 2009, 42, 2716–2725. [Google Scholar]
- Hatchell, D. (ASD) Technical Guide; Analytical Spectral Devices. Inc.: Boulder, CO, USA, 1999. [Google Scholar]
- Lin, F.F.; Qiu, L.F.; Deng, J.S.; Shi, Y.Y.; Chen, L.S.; Wang, K. Investigation of SPAD meter-based indices for estimating rice nitrogen status. Comput. Electron. Agric. 2010, 71, S60–S65. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R.; et al. Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1632. [Google Scholar] [CrossRef]
- Bolster, K.L.; Martin, M.E.; Aber, J.D. Determination of carbon fraction and nitrogen concentration in tree foliage by near infrared reflectances: A comparison of statistical methods. Can. J. For. Res. 1996, 26, 590–600. [Google Scholar] [CrossRef]
- Grossman, Y.L.; Ustin, S.L.; Jacquemoud, S.; Sanderson, E.W.; Schmuck, G.; Verdebout, J. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens. Environ. 1996, 56, 182–193. [Google Scholar] [CrossRef]
- Yu, K.; Li, F.; Gnyp, M.L.; Miao, Y.; Bareth, G.; Chen, X. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Farifteh, J.; van der Meer, F.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Brown, M.P.; Grundy, W.N.; Lin, D.; Cristianini, N.; Sugnet, C.W.; Furey, T.S.; Ares, M.; Haussler, D. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. USA 2000, 97, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.K.; Asefa, T.; Kemblowski, M.W.; McKee, M. Soil moisture prediction using support vector machines. J. Am. Water Resour. Assoc. 2006, 42, 1033–1046. [Google Scholar] [CrossRef]
- Lin, G.; Chen, G.; Wu, M.; Chou, Y. Effective forecasting of hourly typhoon rainfall using support vector machines. Water Resour. Res. 2009, 45, W08440. [Google Scholar] [CrossRef]
- Kalra, A.; Ahmad, S. Using oceanic-atmospheric oscillations for long lead time streamflow forecasting. Water Resour. Res. 2009, 45, W03413. [Google Scholar] [CrossRef]
- Yang, X.; Huang, J.; Wu, Y.; Wang, J.; Wang, P.; Wang, X.; Huete, A.R. Estimating biophysical parameters of rice with remote sensing data using support vector machines. Sci. China Life Sci. 2011, 54, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, J.F.; Wang, F.M.; Liu, Z.Y. Predicting nitrogen concentrations from hyperspectral reflectance at leaf and canopy for rape. Guang Pu 2008, 28, 273–277. (In Chinese) [Google Scholar] [PubMed]
- Filella, I.; Peñuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Mauser, W.; Bach, H. Imaging spectroscopy in hydrology and agriculture-determination of model parameters. In Imaging Spectrometry––A Tool for Environmental Observations; Hill, J., Megier, J., Eds.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 1995; pp. 261–283. [Google Scholar]
- Johnson, L.F.; Billow, C.R. Spectrometry estimation of total nitrogen concentration in Douglas-fir foliage. Int. J. Remote Sens. 1996, 17, 489–500. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices solve the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 1–16. [Google Scholar] [CrossRef]
- Chatterjee, S.; Price, B. Regression Analysis by Example; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Esbensen, K.H.; Guyot, D.; Westad, F.; Houmøller, L.P. Multivariate Data Analysis—In Practice, 5th ed.; CAMO Software: Oslo, Norway, 2010; pp. 241–293. [Google Scholar]
- Ehsani, M.R.; Upadhyaya, S.K.; Slaughter, D.; Shafii, S.; Pelletier, M. A NIR technique for rapid determination of soil mineral nitrogen. Precis. Agric. 1999, 1, 219–236. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statistical Learning Theory; John Wiley & Sons Inc.: New York, NY, USA, 1998. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chang, C.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near infrared reflectance spectroscopy: Principal components regression analysis of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative estimation of chlorophyll a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J Photochem Photobiol(B). 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Wang, W.; Yao, X.; Yao, X.F.; Tian, Y.C.; Liu, X.J.; Ni, J.; Cao, W.X.; Zhu, Y. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res. 2012, 129, 90–98. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 331–354. [Google Scholar] [CrossRef]
- Lamb, D.W.; Steyn-Ross, M.; Schaare, P.; Hanna, M.M.; Silvester, W.; Steyn-Ross, A. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations. Int. J. Remote Sens. 2002, 23, 3619–3648. [Google Scholar] [CrossRef]
- Jongschaap, R.E.E.; Booij, R. Spectral measurements at different spatial scales in potato: Relating leaf, plant and canopy nitrogen status. Int. J. Appl. Earth Obs. Geoinform. 2004, 5, 205–218. [Google Scholar] [CrossRef]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Pan, W.C.; Li, S.K.; Wang, K.R.; Xiao, H.; Chen, B.; Wang, F.Y.; Su, Y.; Chen, J.L.; Lai, J.C.; Huang, F.D. Monitoring soil nitrogen and plant nitrogen based on hyperspectral of cotton canopy. Cotton Sci. 2010, 22, 70–76. [Google Scholar]
- Qi, X.M.; Zhang, L.D.; Du, X.L.; Song, Z.J.; Zhang, Y.; XU, S.Y. Quantitative analysis using NIR by building PLSR-BP model. Spectrosc. Spectr. Anal. 2003, 23, 870–872. [Google Scholar]
- Vuolo, F.; Neugebauer, N.; Bolognesi, S.; Atzberger, C.; D’Urso, G. Estimation of leaf area index using DEIMOS-1 data: Application and transferability of a semi-empirical relationship between two agricultural areas. Remote Sens. 2013, 5, 1274–1291. [Google Scholar] [CrossRef]
- Rivera, J.; Verrelst, J.; Delegido, J.; Veroustraete, F.; Moreno, J. On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens. 2014, 6, 4927–4951. [Google Scholar] [CrossRef]
- Tian, Y.; Gu, K.; Chu, X.; Yao, X.; Cao, W.; Zhu, Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil 2014, 376, 193–209. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Huang, Y.; Shang, G.; Zhou, C.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sens. 2015, 7, 14939-14966. https://doi.org/10.3390/rs71114939
Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian Y, Cao W, Zhu Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing. 2015; 7(11):14939-14966. https://doi.org/10.3390/rs71114939
Chicago/Turabian StyleYao, Xia, Yu Huang, Guiyan Shang, Chen Zhou, Tao Cheng, Yongchao Tian, Weixing Cao, and Yan Zhu. 2015. "Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration" Remote Sensing 7, no. 11: 14939-14966. https://doi.org/10.3390/rs71114939
APA StyleYao, X., Huang, Y., Shang, G., Zhou, C., Cheng, T., Tian, Y., Cao, W., & Zhu, Y. (2015). Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing, 7(11), 14939-14966. https://doi.org/10.3390/rs71114939