Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography
"> Figure 1
<p>Etna summit craters and the July 2012 activity. (<b>a</b>) Summit map showing the four active craters, NE Crater, SE Crater, Bocca Nuova and Voragine, along with the scan site and location of the active vent within Bocca Nuova. Coordinates are in UTM Zone 33N. The top left inset gives the location of Mount Etna. The top right inset shows the TLS instrument at the crater rim. The lower left inset illustrates the twin-crater nature of the Bocca Nuova and the approximately southeast-looking TLS/camera view (dotted lines) of the active vent shown in the photograph (<b>b</b>). The photograph (taken from the scan site, 21 July, 15:00, with a 28-mm lens) shows the scoria cone topped by the active vent and surrounded by associated deposits, represented by the dark region covering the central ~50% of the image. The dashed box outlines the scan window used to capture the 10-minute interval lava flow TLS datasets.</p> "> Figure 2
<p>Elevation change in the full-cone DEMs for (<b>a</b>) 17–19 July, (<b>b</b>) 19–21 July and (<b>c</b>) 17–21 July. The perspective view is aligned looking southeast (as <a href="#remotesensing-07-14967-f001" class="html-fig">Figure 1</a>b), with the lava flows in the foreground, effusing from a breach in the scoria cone. Sections of steep static topography in the background represent the lowest regions of the Bocca Nuova crater walls. In (c), the dashed outline illustrates the area of the DEM difference maps in <a href="#remotesensing-07-14967-f003" class="html-fig">Figure 3</a>a.</p> "> Figure 3
<p>Elevation changes for the lava flow region from 10-minute repeat-interval TLS scans. (<b>a</b>) Difference maps with the active flow region delineated by the dashed lines (the region covered by the maps is illustrated by the dashed box in <a href="#remotesensing-07-14967-f002" class="html-fig">Figure 2</a>c). The time marked on each panel denotes the time in-between the acquisitions of the differenced scans. In the panel labelled 15:37, the labelled sections are those in (b) (X-Y) and in <a href="#sec4dot3-remotesensing-07-14967" class="html-sec">Section 4.3</a> (X'-Y'). (<b>b</b>) Along-flow cross-sections between the points X and Y in (a), with the times given representing the midpoint times for each scan.</p> "> Figure 4
<p>Volumetric flux estimates for the breakout lobe. Time-averaged discharge rate (TADR) values are calculated from the elevation difference maps, with each line bracketing the entire start-to-end duration of the each scan pair used in the calculation. The estimated error in TADR is approximately the line thickness. The local effusion rate for the breakout flow lobe, <span class="html-italic">Q<sub>lob</sub></span><sub>e</sub> (<a href="#sec4dot3-remotesensing-07-14967" class="html-sec">Section 4.3</a>), is shown with the error bars illustrating the estimated minima and maxima bounds.</p> "> Figure 5
<p>Time-lapse images of the active flow. (<b>a</b>) A near-full image showing the areas used to determine flow velocity for the breakout flow (Box 1) and main channel (Box 2). (<b>b</b>) The results of automated pixel displacement analysis using a particle image velocimetry (PIV) approach (covering the area shown in (a) for the 15:22:12–15:22:42 image pair, analysed using PIVlab v1.4 [<a href="#B57-remotesensing-07-14967" class="html-bibr">57</a>,<a href="#B58-remotesensing-07-14967" class="html-bibr">58</a>]), split into <span class="html-italic">x</span>- and <span class="html-italic">y</span>-displacement components. Regions of smooth colour represent successful image matching; speckled areas indicate regions of noise where the matching has failed to track the flow surface movement. Extracts from the image sequence are shown for (<b>c</b>) the Region 1 and (<b>d</b>) the Region 2 areas displayed in (a), with the red boxes highlighting typical surface features that can be tracked with interactive techniques. Approximate scales are given for reference.</p> "> Figure 6
<p>Flow feature displacements and mean surface velocities. Planimetric views of the re-projected point tracks on (<b>a</b>) the breakout flow and (<b>b</b>) the main channel (Regions 1 and 2 in <a href="#remotesensing-07-14967-f005" class="html-fig">Figure 5</a>a). (<b>c</b>) The calculated mean velocities from the point displacements.</p> "> Figure 7
<p>Vertical profiles through two DEMs demonstrating the topographic change due to the advance of the breakout flow lobe down an existing channel. The section is perpendicular to the planimetric direction of flow (<a href="#remotesensing-07-14967-f003" class="html-fig">Figure 3</a>a) and labelled with the width and height values used to derive viscosity. Grey bars represent the inferred measurement uncertainty, but are too small to be visible in the vertical direction.</p> "> Figure 8
<p>MODIS-derived TADR and cumulative erupted volume estimates. The dashed vertical lines indicate the acquisition start times of the TLS cone scans, and the grey bar represents the range of the TLS-derived TADR values (<a href="#remotesensing-07-14967-f004" class="html-fig">Figure 4</a>).</p> ">
Abstract
:1. Introduction
2. The 2012 Bocca Nuova Activity, Mount Etna
3. Data Acquisition and Processing
3.1. TLS Data Processing
3.2. Time-Lapse Photography Processing
3.3. Measurement Error
4. Results
4.1. Cone Growth Rates 17–21 July
4.2. TLS-Based Time-Averaged Lava Discharge Rates, 21 July
4.3. Image-Based Lava Viscosity and Instantaneous Effusion Rates
Breakout Flow | Main Channel | |
---|---|---|
Flow width, w (m) | 6.0 ± 0.6 | 10.0 ± 0.6 |
Flow thickness, h (m) | 1.24 ± 0.05 | 1.48 (1.42–1.54) a |
Maximum flow velocity, Vmax (m·s−1) | 0.0096 | 0.014 |
Slope angle, α (degrees) | 28 | 28 |
Newtonian viscosity, μ (Pa·s) b | 7.4 (6.8–8.1) × 105 | |
Instantaneous discharge rate, Q (m3·s−1) | 0.036 (0.030–0.042) b | 0.11 (0.10–0.13) a |
5. Discussion
5.1. Scoria Cone Growth
5.2. Lava Emplacement and Rheology
5.3. Comparisons with Satellite-Derived Results
5.4. Use of TLS and Time-Lapse Photography during Future and Larger Eruptions
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blong, R.J. Volcanic Hazards; Academic Press Australia: North Ryde, NSW, Australia, 1984. [Google Scholar]
- Walker, G.P.L.; Huntingdon, A.T.; Sanders, A.T.; Dinsdale, J.L. Lengths of lava flows. Phil. Trans. R. Soc. Lond. A. 1973, 274, 107–118. [Google Scholar] [CrossRef]
- Harris, A.; Steffke, A.; Calvari, S.; Spampinato, L. Thirty years of satellite-derived lava discharge rates at Etna: Implications for steady volumetric output. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S. Major effusive eruptions and recent lava fountains: Balance between expected and erupted magma volumes at Etna volcano. Geophys. Res. Lett. 2013, 40, 6069–6073. [Google Scholar] [CrossRef]
- Coppola, D.; Piscopo, D.; Staudacher, T.; Cigolini, C. Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data. J. Volcanol. Geotherm. Res. 2009, 184, 174–192. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Butterworth, A.L.; Carlton, R.W.; Downey, I.; Miller, P.; Navarro, P.; Rothery, D.A. Low-cost volcano surveillance from space: Case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull. Volcanol. 1997, 59, 49–64. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Baloga, S.M. Lava discharge rates from satellite-measured heat flux. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Wright, R.; Blake, S.; Harris, A.J.L.; Rothery, D.A. A simple explanation for the space-based calculation of lava eruption rates. Earth Planet. Sci. Lett. 2001, 192, 223–233. [Google Scholar] [CrossRef]
- Ganci, G.; James, M.R.; Calvari, S.; Del Negro, C. Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys. Res. Lett. 2013, 40, 5058–5063. [Google Scholar] [CrossRef]
- Coppola, D.; James, M.R.; Staudacher, T.; Cigolini, C. A comparison of field- and satellite-derived thermal flux at Piton de la Fournaise: Implications for the calculation of lava discharge rate. Bull. Volcanol. 2010, 72, 341–356. [Google Scholar] [CrossRef]
- Lipman, P.W.; Banks, N.G. 'A'ā flow dynamics, Mauna Loa 1984. In Volcanism in Hawaii; Decker, R.W., Wright, T.L., Stauffer, P.H., Eds.; U.S. Geological Survey: Reston, VA, USA, 1987; pp. 1527–1567. [Google Scholar]
- Harris, A.J.L.; Murray, J.B.; Aries, S.E.; Davies, M.A.; Flynn, L.P.; Wooster, M.J.; Wright, R.; Rothery, D.A. Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J. Volcanol. Geotherm. Res. 2000, 102, 237–270. [Google Scholar] [CrossRef]
- Calvari, S.; Neri, M.; Pinkerton, H. Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J. Volcanol. Geotherm. Res. 2002, 119, 107–123. [Google Scholar] [CrossRef]
- Bailey, J.E.; Harris, A.J.L.; Dehn, J.; Calvari, S.; Rowland, S.K. The changing morphology of an open lava channel on Mt. Etna. Bull. Volcanol. 2006, 68, 497–515. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Pinkerton, H.; Robson, S. Image-based measurement of flux variation in distal regions of active lava flows. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.; Dehn, J.; Patrick, M.; Calvari, S.; Ripepe, M.; Lodato, L. Lava effusion rates from hand-held thermal infrared imagery: An example from the June 2003 effusive activity at Stromboli. Bull. Volcanol. 2005, 68, 107–117. [Google Scholar] [CrossRef]
- Lautze, N.C.; Harris, A.J.L.; Bailey, J.E.; Ripepe, M.; Calvari, S.; Dehn, J.; Rowland, S.K.; Evans-Jones, K. Pulsed lava effusion at Mount Etna during 2001. J. Volcanol. Geotherm. Res. 2004, 137, 231–246. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Pinkerton, H.; Ball, M. Oblique photogrammetry with visible and thermal images of active lava flows. Bull. Volcanol. 2006, 69, 105–108. [Google Scholar] [CrossRef]
- Hamilton, C.W.; Glaze, L.S.; James, M.R.; Baloga, S. Topographic and stochastic influences on pāhoehoe lava lobe emplacement. J. Volcanol. Geotherm. Res. 2013, 75. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Sequential digital elevation models of active lava flows from ground-based stereo time-lapse imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 160–170. [Google Scholar] [CrossRef]
- Macfarlane, D.G.; Wadge, G.; Robertson, D.A.; James, M.R.; Pinkerton, H. Use of a portable topographic mapping millimetre wave radar at an active lava flow. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Wadge, G.; Saunders, S.; Itikarai, I. Pulsatory andesite lava flow at Bagana Volcano. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Poland, M.P. Time-averaged discharge rate of subaerial lava at Kilauea Volcano, Hawai’i, measured from TanDEM-X interferometry: Implications for magma supply and storage during 2011–2013. J. Geophys. Res. 2014, 119, 5464–5481. [Google Scholar] [CrossRef]
- James, M.R.; Pinkerton, H.; Applegarth, L.J. Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Rabatel, A.; Deline, P.; Jaillet, S.; Ravanel, L. Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements: A case study in the Mont Blanc area. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Abellan, A.; Vilaplana, J.M.; Calvet, J.; Garcia-Selles, D.; Asensio, E. Rockfall monitoring by Terrestrial Laser Scanning—Case study of the basaltic rock face at Castellfollit de la Roca (Catalonia, Spain). Nat. Hazards Earth Syst. Sci. 2011, 11, 829–841. [Google Scholar] [CrossRef]
- Oppikofer, T.; Jaboyedoff, M.; Blikra, L.; Derron, M.H.; Metzger, R. Characterization and monitoring of the Aknes rockslide using Terrestrial Laser Scanning. Nat. Hazards Earth Syst. Sci. 2009, 9, 1003–1019. [Google Scholar] [CrossRef]
- Teza, G.; Pesci, A.; Genevois, R.; Galgaro, A. Characterization of landslide ground surface kinematics from Terrestrial Laser Scanning and strain field computation. Geomorphology 2008, 97, 424–437. [Google Scholar] [CrossRef]
- Prokop, A.; Panholzer, H. Assessing the capability of Terrestrial Laser Scanning for monitoring slow moving landslides. Nat. Hazards Earth Syst. Sci. 2009, 9, 1921–1928. [Google Scholar] [CrossRef]
- Aryal, A.; Brooks, B.A.; Reid, M.E.; Bawden, G.W.; Pawlak, G.R. Displacement fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Gigli, G.; Morelli, S.; Fornera, S.; Casagli, N. Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides 2014, 11, 1–14. [Google Scholar] [CrossRef]
- Bauer, A.; Paar, G.; Kaufmann, V. Terrestrial laser scanning for rock glacier monitoring. In Proceedings of the 8th Infernational Conference on Permafrost, Zurich, Switzerland, 20–25 July 2003.
- Schwalbe, E.; Maas, H.-G. Motion analysis of fast flowing glaciers from multi-temporal Terrestrial Laser Scanning. Photogramm. Fernerkund. Geoinf. 2009, 1, 91–98. [Google Scholar] [CrossRef]
- Schwalbe, E.; Maas, H.-G.; Dietrich, R.; Ewert, H. Glacier velocity determination from multi-temporal long range laser scanner point clouds. In Proceedings of XXIst ISPRS Congress, Beijing, China, 3–11 July 2008.
- Hunter, G.; Pinkerton, H.; Airey, R.; Calvari, S. The application of a long-range laser scanner for monitoring volcanic activity on Mount Etna. J. Volcanol. Geotherm. Res. 2003, 123, 203–210. [Google Scholar] [CrossRef]
- Pesci, A.; Loddo, F.; Confort, D. The first terrestrial laser scanner application over Vesuvius: High resolution model of a volcano crater. Int. J. Remote Sens. 2007, 28, 203–219. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A.; Mazzarini, F.; Harris, A.; Neri, M.; Behncke, B.; Pareschi, M.T.; Tarquini, S.; Boschi, E. Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Jones, L.K.; Kyle, P.R.; Oppenheimer, C.; Frechette, J.D.; Okal, M.H. Terrestrial Laser Scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica. J. Volcanol. Geotherm. Res. 2015, 295, 43–54. [Google Scholar] [CrossRef]
- Scambos, T.A.; Dutkiewicz, M.J.; Wilson, J.C.; Bindschadler, R.A. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Leprince, S.; Ayoub, F.; Klinger, Y.; Avouac, J.-P. Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. In Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007.
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of multi-temporal ground-based optical images for landslide monitoring: Application, potential and limitations. ISPRS J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef]
- James, M.R.; Applegarth, L.J.; Pinkerton, H. Lava channel roofing, overflows, breaches and switching: insights from the 2008–2009 eruption of Mt. Etna. Bull. Volcanol. 2012, 74, 107–117. [Google Scholar] [CrossRef]
- Walter, T.R. Low cost volcano deformation monitoring: Optical strain measurement and application to Mount St. Helens data. Geophys. J. Int. 2011, 186, 699–705. [Google Scholar] [CrossRef]
- Luhr, J.F.; Simkin, T. Paricutin, The volcano born in a Mexican Cornfield; Geoscience Press: Phoenix, AZ, USA, 1993; p. 427. [Google Scholar]
- Yasui, M.; Koyaguchi, T. Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: A case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone. Bull. Volcanol. 2004, 66, 243–262. [Google Scholar] [CrossRef]
- Wolfe, E.W.; Neal, C.A.; Banks, N.G.; Duggan, T.J. Geologic Observations and Chronology of Eruptive Events; U.S. Geological Survey: Reston, VA, USA, 1988.
- Sumner, J.M. Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: The 1986 eruption of Izu-Oshima Volcano, eastern Japan. Bull. Volcanol. 1998, 60, 195–212. [Google Scholar] [CrossRef]
- Calvari, S.; Pinkerton, H. Birth, growth and morphologic cinder cone during the evolution of the “Laghetto” 2001 Etna eruption. J. Volcanol. Geotherm. Res. 2004, 132, 225–239. [Google Scholar] [CrossRef]
- Di Traglia, F.; Cimarelli, C.; de Rita, D.; Gimeno Torrente, D. Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula). J. Volcanol. Geotherm. Res. 2009, 180, 89–109. [Google Scholar] [CrossRef]
- McGetchin, T.R.; Settle, M.; Chouet, B.A. Cinder cone growth modeled after Northeast Crater, Mount-Etna, Sicily. J. Geophys. Res. 1974, 79, 3257–3272. [Google Scholar] [CrossRef]
- Houghton, B.F.; Schmincke, H.U. Rothenberg scoria cone, East Eifel—A complex strombolian and phreatomagmatic volcano. Bull. Volcanol. 1989, 52, 28–48. [Google Scholar] [CrossRef]
- Neri, M.; Mazzarini, F.; Tarquini, S.; Bisson, M.; Isola, I.; Behncke, B.; Pareschi, M.T. The changing face of Mount Etna’s summit area documented with Lidar technology. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Behncke, B.; Branca, S.; Corsaro, R.A.; De Beni, E.; Miraglia, L.; Proietti, C. The 2011–2012 summit activity of Mount Etna: Birth, growth and products of the new SE crater. J. Volcanol. Geotherm. Res. 2014, 270, 10–21. [Google Scholar] [CrossRef]
- Pinkerton, H.; Stevenson, R.J. Methods of determining the rheological properties of magmas at sub-liquidus temperatures. J. Volcanol. Geotherm. Res. 1992, 53, 47–66. [Google Scholar] [CrossRef]
- Tallarico, A.; Dragoni, M. Viscous Newtonian laminar flow in a rectangular channel: Application to Etna lava flows. Bull. Volcanol. 1999, 61, 40–47. [Google Scholar] [CrossRef]
- Thielicke, W. The Flapping Flight of Birds—Analysis and Application. PhD Thesis, Rijksuniversiteit Groningen, Groningen, Netherlands, 2014. [Google Scholar]
- Thielicke, W.; Stamhuis, E.J. PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Software 2014, 2. [Google Scholar] [CrossRef]
- Gaonach, H.; Stix, J.; Lovejoy, S. Scaling effects on vesicle shape, size and heterogeneity of lavas from Mount Etna. J. Volcanol. Geotherm. Res. 1996, 74, 131–153. [Google Scholar] [CrossRef]
- Herd, R.A.; Pinkerton, H. Bubble coalescence in basaltic lava: Its impact on the evolution of bubble populations. J. Volcanol. Geotherm. Res. 1997, 75, 137–157. [Google Scholar] [CrossRef]
- Lev, E.; James, M.R. The influence of cross-sectional channel geometry on rheology and flux estimates for active lava flows. Bull. Volcanol. 2014, 76. [Google Scholar] [CrossRef]
- Di Traglia, F.; Pistolesi, M.; Rosi, M.; Bonadonna, C.; Fusillo, R.; Roverato, M. Growth and erosion: The volcanic geology and morphological evolution of La Fossa (Island of Vulcano, Southern Italy) in the last 1000 years. Geomorphology 2013, 194, 94–107. [Google Scholar] [CrossRef]
- Hobden, B.J.; Houghton, B.F.; Nairn, I.A. Growth of a young, frequently active composite cone: Ngauruhoe Volcano, New Zealand. Bull. Volcanol. 2002, 64, 392–409. [Google Scholar] [CrossRef]
- Pinkerton, H.; Norton, G. Rheological properties of basaltic lavas at sub-liquidus temperatures: Laboratory and field-measurements on lavas from Mount Etna. J. Volcanol. Geotherm. Res. 1995, 68, 307–323. [Google Scholar] [CrossRef]
- Ganci, G.; Vicari, A.; Fortuna, L.; Del Negro, C. The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann. Geophys. 2011, 54, 544–550. [Google Scholar]
- Roberts, G.; Wooster, M.J.; Perry, G.L.W.; Drake, N.; Rebelo, L.M.; Dipotso, F. Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. J. Geophys. Res. 2005, 110, D21111. [Google Scholar] [CrossRef]
- Garel, F.; Kaminski, E.; Tait, S.; Limare, A. An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents: Implications for thermal monitoring of lava flows and domes. J. Geophys. Res. 2012, 117, B02205. [Google Scholar] [CrossRef]
- Harris, A.; Favalli, M.; Steffke, A.; Fornaciai, A.; Boschi, E. A relation between lava discharge rate, thermal insulation, and flow area set using lidar data. Geophys. Res. Lett. 2010, 37, L20308. [Google Scholar] [CrossRef]
- Coppola, D.; Piscopo, D.; Laiolo, M.; Cigolini, C.; Delle Donne, D.; Ripepe, M. Radiative heat power at Stromboli volcano during 2000–2011: Twelve years of MODIS observations. J. Volcanol. Geotherm. Res. 2012, 215, 48–60. [Google Scholar] [CrossRef]
- Slatcher, N. Application and Optimisation of Terrestrial Laser Scanners for Geohazard Assessment. PhD Thesis, Lancaster University, Lancaster, UK, 2015. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slatcher, N.; James, M.R.; Calvari, S.; Ganci, G.; Browning, J. Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography. Remote Sens. 2015, 7, 14967-14987. https://doi.org/10.3390/rs71114967
Slatcher N, James MR, Calvari S, Ganci G, Browning J. Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography. Remote Sensing. 2015; 7(11):14967-14987. https://doi.org/10.3390/rs71114967
Chicago/Turabian StyleSlatcher, Neil, Mike R. James, Sonia Calvari, Gaetana Ganci, and John Browning. 2015. "Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography" Remote Sensing 7, no. 11: 14967-14987. https://doi.org/10.3390/rs71114967
APA StyleSlatcher, N., James, M. R., Calvari, S., Ganci, G., & Browning, J. (2015). Quantifying Effusion Rates at Active Volcanoes through Integrated Time-Lapse Laser Scanning and Photography. Remote Sensing, 7(11), 14967-14987. https://doi.org/10.3390/rs71114967