Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification
"> Figure 1
<p>(<b>a</b>) DMSP/OLS stable NTL data of China in 2006; (<b>b</b>) Terra MODIS NDVI maximum value composition of China in 2006; (<b>c</b>) Terra MODIS LST yearly mean image of China in 2006. The DMSP/OLS NTL data are digital values of lighted pixels. The white background pixels, recorded as zero in DMSP/OLS NTL data, were considered non-urban land. The unit of LST is Kelvin temperature.</p> "> Figure 1 Cont.
<p>(<b>a</b>) DMSP/OLS stable NTL data of China in 2006; (<b>b</b>) Terra MODIS NDVI maximum value composition of China in 2006; (<b>c</b>) Terra MODIS LST yearly mean image of China in 2006. The DMSP/OLS NTL data are digital values of lighted pixels. The white background pixels, recorded as zero in DMSP/OLS NTL data, were considered non-urban land. The unit of LST is Kelvin temperature.</p> "> Figure 2
<p>Chinese cities selected for result validation and their urban populations in 2006 [<a href="#B69-remotesensing-07-07671" class="html-bibr">69</a>].</p> "> Figure 3
<p>The color composite images (DMSP/OLS NTL, MODIS NDVI and LST as R, G and B) and their latitudinal transects of DMSP/OLS NTL (blue), MODIS NDVI (green), and MODIS LST (red) data for Beijing (<b>a</b>), Suzhou (<b>b</b>) and Xuchang (<b>c</b>).</p> "> Figure 3 Cont.
<p>The color composite images (DMSP/OLS NTL, MODIS NDVI and LST as R, G and B) and their latitudinal transects of DMSP/OLS NTL (blue), MODIS NDVI (green), and MODIS LST (red) data for Beijing (<b>a</b>), Suzhou (<b>b</b>) and Xuchang (<b>c</b>).</p> "> Figure 4
<p>Training samples selected using different data combinations for Shanghai (<b>a</b>) and Wuhan (<b>b</b>). The left images are NTL data. The right images are Landsat TM images (band 7, 4, 3 as R, G, B). The green points represent the training samples selected from three datasets (also from the NTL data and NDVI data), and the red ones represent the samples selected only from the NTL data and NDVI data. The red points include the pixels of river.</p> "> Figure 5
<p>Urban area extraction results from different methods. (<b>a</b>) DMSP/OLS NTL images of selected cities; (<b>b</b>) The reference data from Landsat ETM+ classification; (<b>c</b>) Local-optimized threshold method; (<b>d</b>) OCSVM result with combination of DMSP/OLS NTL data and MODIS NDVI data; (<b>e</b>) OCSVM result with the combination of DMSP/OLS NTL data and MODIS LST data; (<b>f</b>) OCSVM result with combination of DMSP/OLS NTL data, MODIS NDVI and LST data.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Data Analysis
3.2. Extraction of Urban Areas Using Multiple Sensor Data
3.3. Validation
4. Results
Local-Optimized Threshold Method | OCSVM Classification with NTL + NDVI | OCSVM Classification with NTL + LST | OCSVM Classification with NTL + NDVI + LST | |
---|---|---|---|---|
Beijing | 0.1642 | 0.1312 | 0.1460 | 0.1183 |
Shenyang | 0.2458 | 0.2190 | 0.1734 | 0.1972 |
Hefei | 0.1910 | 0.1169 | 0.0820 | 0.1712 |
Changsha | 0.3620 | 0.2023 | 0.2611 | 0.2193 |
Xuchang | 0.1846 | 0.0815 | 0.1963 | 0.0785 |
Hengshui | 0.1725 | 0.2196 | 0.2087 | 0.1196 |
City | Population (Thousand) | Local-Optimized Threshold | OCSVM NTL + NDVI | OCSVM NTL + LST | OCSVM NTL + NDVI + LST | |||||
---|---|---|---|---|---|---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | |||
The first group: Big cities | Shanghai | 11,511.9 | 89.01 | 0.6222 | 88.16 | 0.6357 | 77.22 | 0.4623 | 87.31 | 0.6286 |
Beijing | 8792.8 | 94.89 | 0.6521 | 94.48 | 0.6665 | 88.58 | 0.5062 | 93.94 | 0.6531 | |
Hong Kong | 6857.1 | 79.95 | 0.5119 | 82.22 | 0.5842 | 71.31 | 0.4058 | 84.1 | 0.6106 | |
Chongqing | 5966.9 | 87.08 | 0.6018 | 90.22 | 0.6529 | 80.59 | 0.5239 | 89.46 | 0.6469 | |
Tianjin | 5400.2 | 90.68 | 0.5548 | 91.74 | 0.6002 | 86.69 | 0.5174 | 91.87 | 0.6176 | |
Guangzhou | 4909.5 | 78.54 | 0.5155 | 68.94 | 0.4188 | 54.06 | 0.2345 | 65.95 | 0.3812 | |
Nanjing | 4470.4 | 87.73 | 0.6466 | 89.17 | 0.7011 | 76.48 | 0.4891 | 88.56 | 0.6969 | |
Wuhan | 4446.4 | 91.85 | 0.5495 | 92.15 | 0.5668 | 86.79 | 0.4642 | 91.55 | 0.5646 | |
Shenyang | 4441.8 | 90.31 | 0.7006 | 90.56 | 0.6908 | 85.71 | 0.6314 | 90.96 | 0.7237 | |
Chengdu | 3802.8 | 91.99 | 0.7787 | 90.63 | 0.6748 | 85.76 | 0.658 | 92.91 | 0.7682 | |
Harbin | 3413 | 94.86 | 0.6095 | 92.52 | 0.5925 | 84.72 | 0.4095 | 91.82 | 0.5697 | |
Xi’an | 3182 | 85.52 | 0.619 | 75.67 | 0.4947 | 55.05 | 0.2445 | 73.4 | 0.4615 | |
Jinan | 2770.2 | 95.23 | 0.7222 | 90.74 | 0.599 | 78.92 | 0.3701 | 89.36 | 0.5619 | |
Taipei | 2632.242 | 90.85 | 0.5528 | 90.51 | 0.6239 | 78.23 | 0.4038 | 89.16 | 0.5982 | |
Hangzhou | 2564.2 | 86.61 | 0.5726 | 84.68 | 0.3835 | 84.32 | 0.5739 | 85.71 | 0.4558 | |
Changchun | 2508.5 | 93.96 | 0.783 | 94.68 | 0.8154 | 90.69 | 0.7164 | 94.18 | 0.8048 | |
Shijiazhuang | 2313.5 | 94.88 | 0.6859 | 95.12 | 0.713 | 86.87 | 0.5031 | 94.92 | 0.72 | |
Taiyuan | 2276.9 | 89.04 | 0.564 | 89.44 | 0.5606 | 88.19 | 0.5883 | 89.44 | 0.5797 | |
Wuxi | 2186.3 | 88.11 | 0.5963 | 86.21 | 0.5946 | 61.31 | 0.2774 | 83.4 | 0.5544 | |
The second group:Medium cities | Shenzhen | 1968.3 | 79.04 | 0.4444 | 81.23 | 0.5768 | 69.73 | 0.3966 | 79.92 | 0.5523 |
Zhengzhou | 1932.6 | 92.43 | 0.5903 | 92.78 | 0.6312 | 85.38 | 0.472 | 92.7 | 0.6426 | |
Fuzhou | 1817.2 | 91.07 | 0.5376 | 90.57 | 0.457 | 91.45 | 0.584 | 91.23 | 0.5151 | |
Changsha | 1798.9 | 92.72 | 0.7256 | 93.65 | 0.7475 | 88.68 | 0.6533 | 94.16 | 0.7758 | |
Nanchang | 1737.5 | 87.59 | 0.6183 | 88.11 | 0.6532 | 80.73 | 0.5221 | 85.59 | 0.6035 | |
Lanzhou | 1723.1 | 94.88 | 0.5889 | 85.93 | 0.4071 | 85.12 | 0.3912 | 85.32 | 0.3951 | |
Kunming | 1720.7 | 93.7 | 0.6385 | 94.64 | 0.6804 | 91.25 | 0.572 | 94.35 | 0.673 | |
Hefei | 1605.4 | 94.2 | 0.7135 | 94.97 | 0.7358 | 91.15 | 0.6403 | 94.9 | 0.7466 | |
Urumchi | 1576.6 | 97.5 | 0.6572 | 94.65 | 0.5205 | 93.58 | 0.4735 | 94.36 | 0.5084 | |
Zibo | 1557.4 | 91.19 | 0.3173 | 90.6 | 0.4199 | 79.94 | 0.28 | 89.48 | 0.4092 | |
Guiyang | 1513 | 93.02 | 0.6505 | 93.75 | 0.535 | 92.69 | 0.6752 | 93.94 | 0.5994 | |
Suzhou | 1501.4 | 88.02 | 0.5665 | 83.95 | 0.5585 | 64.15 | 0.3053 | 81.2 | 0.5207 | |
Nanning | 1308.1 | 97.5 | 0.7443 | 98.37 | 0.8138 | 96.14 | 0.6618 | 98.18 | 0.8044 | |
Fushun | 1260.2 | 89.15 | 0.4947 | 90.93 | 0.5456 | 84.42 | 0.4758 | 90.73 | 0.5856 | |
Ningbo | 1257.6 | 89.76 | 0.5356 | 88.54 | 0.583 | 66.46 | 0.2804 | 85.67 | 0.5402 | |
Handan | 1245.8 | 89.23 | 0.5867 | 90.46 | 0.6425 | 84.15 | 0.5556 | 91.69 | 0.6979 | |
Changzhou | 1115.9 | 89.71 | 0.5398 | 88.24 | 0.5656 | 65.02 | 0.2553 | 85.35 | 0.5208 | |
Xiamen | 1092.4 | 79.6 | 0.3562 | 81.44 | 0.4724 | 72.24 | 0.3222 | 81.17 | 0.4622 | |
The third group: Small cities | Hengyang | 966 | 91.15 | 0.5698 | 92.8 | 0.573 | 90.74 | 0.5691 | 93.42 | 0.6331 |
Xiangfan | 953.4 | 94.14 | 0.6961 | 94.14 | 0.6642 | 92.03 | 0.6474 | 94.41 | 0.7005 | |
Baoding | 927.5 | 93.24 | 0.4964 | 93.38 | 0.5385 | 89.32 | 0.4671 | 93.48 | 0.5598 | |
Xining | 909.8 | 98.99 | 0.2606 | 98.53 | 0.3442 | 98.14 | 0.3033 | 98.38 | 0.3338 | |
Haikou | 897.7 | 84.88 | 0.4432 | 88.37 | 0.5052 | 86.21 | 0.5187 | 88.27 | 0.5168 | |
Hohhot | 842.3 | 94.64 | 0.7457 | 77.74 | 0.4046 | 68.45 | 0.2963 | 74.64 | 0.3679 | |
Yinchuan | 711.9 | 95.39 | 0.5424 | 94.99 | 0.5603 | 92.01 | 0.4401 | 94.3 | 0.5324 | |
Xinxiang | 711.9 | 90.48 | 0.649 | 91.1 | 0.6999 | 69.77 | 0.3438 | 89.65 | 0.6675 | |
Yichang | 702.2 | 96.8 | 0.5568 | 97.22 | 0.5484 | 95.75 | 0.5455 | 97.22 | 0.5813 | |
Anyang | 688 | 87.93 | 0.6567 | 91.33 | 0.7547 | 80.5 | 0.5586 | 91.33 | 0.7594 | |
Guilin | 629.1 | 98.47 | 0.5378 | 98.27 | 0.2551 | 98.49 | 0.5896 | 98.3 | 0.2897 | |
Kaifeng | 592.4 | 87.2 | 0.3727 | 90.13 | 0.4768 | 85.6 | 0.4206 | 89.73 | 0.4896 | |
Xianyang | 545.3 | 75 | 0.3226 | 78.1 | 0.4604 | 55.48 | 0.2367 | 79.52 | 0.5127 | |
Macau | 513.4 | 59.62 | 0.1817 | 66.35 | 0.3142 | 75.96 | 0.5138 | 74.04 | 0.467 | |
Cangzhou | 492.6 | 89.38 | 0.3986 | 91.72 | 0.5396 | 85.52 | 0.4302 | 91.59 | 0.5649 | |
Xuchang | 401.5 | 89.18 | 0.4927 | 92.69 | 0.6573 | 81.58 | 0.4654 | 93.57 | 0.7239 | |
Hengshui | 298.1 | 97.28 | 0.5485 | 97.5 | 0.5776 | 96.03 | 0.5578 | 97.61 | 0.6275 | |
Lhasa | 211.4 | 96.74 | 0.6312 | 96.78 | 0.6617 | 96.34 | 0.6306 | 96.6 | 0.6489 |
Local-Optimized Threshold | OCSVM NTL + NDVI + LST | OCSVM NTL + NDVI | OCSVM NTL + LST | |
---|---|---|---|---|
Big cities | 0.7700 | 0.8190 | 0.8127 | 0.8128 |
Medium cities | 0.9321 | 0.9175 | 0.9269 | 0.8763 |
Small cities | 0.5439 | 0.7267 | 0.7139 | 0.6914 |
5. General Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Grimmond, S.U.E. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Johnson, M.P. Environmental impacts of urban sprawl: A survey of the literature and proposed research agenda. Environ. Plan. A 2001, 33, 717–735. [Google Scholar] [CrossRef]
- Shukla, V.; Parikh, K. The environmental consequences of urban growth: Cross national perspectives on economic development, air pollution, and city size. Urban Geogr. 1992, 13, 422–449. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar]
- Kasimu, A.; Tateishi, R.; Hoan, N.T. Global urban characterization using population density, DMSP and MODIS data. In Proceedings of the Urban Remote Sensing Event, 2009 Joint, Shanghai, China, 20–22 May 2009; pp. 1–7.
- McKinney, M. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 2008, 11, 161–176. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Meyer, W.B.; Turner, B.L. Human population growth and global land-use/cover change. Annu. Rev. Ecol. Syst. 1992, 23, 39–61. [Google Scholar] [CrossRef]
- Ewing, R.; Rong, F. The impact of urban form on U.S. residential energy use. Hous. Policy Debate 2008, 19, 1–30. [Google Scholar] [CrossRef]
- Jensen, J.R.; Cowen, D.C. Remote sensing of urban/suburban infrastructure and socio-economic attributes. Photogram. Eng. Remote Sens. 1999, 65, 611–622. [Google Scholar]
- Tian, G.; Liu, J.; Xie, Y.; Yang, Z.; Zhuang, D.; Niu, Z. Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS. Cities 2005, 22, 400–410. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. D Earth Sci. 2003, 46, 373–384. [Google Scholar]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Lu, D.; Tian, H.; Zhou, G.; Ge, H. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens. Environ. 2008, 112, 3668–3679. [Google Scholar] [CrossRef]
- Elvidge, C.; Baugh, K.; Hobson, V.; Kihn, E.; Kroehl, H.; Davis, E.; Cocero, D. Satellite inventory of human settlements using nocturnal radiation emissions: A contribution for the global toolchest. Glob. Chang. Biol. 1997, 3, 387–395. [Google Scholar] [CrossRef]
- Sudhira, H.S.; Ramachandra, T.V.; Jagadish, K.S. Urban sprawl: Metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 29–39. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Gamba, P.; Herold, M. Global Mapping of Human Settlement: Experiences, Datasets, and Prospects; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500 m data: New methods and datasets based on “urban ecoregions”. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Bourg, L.; Bicheron, P.; Latham, J.; di Gregorio, A.; Brockman, C.; Leroy, M.; Witt, R.; et al. Globcover: ESA Service for global land cover from MERIS. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415.
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Tuttle, B.T.; Ghosh, T.; Baugh, K.E. Global urban mapping based on nighttime lights. In Global Mapping of Human Settlement; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Milesi, C.; Elvidge, C.D.; Nemani, R.R.; Running, S.W. Assessing the environmental impacts of human settlements using satellite data. Manag. Environ. Qual. 2003, 14, 99–107. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-time lights of the world: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Sutton, P.C. A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Comput. Environ. Urban Syst. 2005, 29, 179–195. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Owen, T.W. Using DMSP-OLS light frequency data to categorize urban environments associated with US climate observing stations. Int. J. Remote Sens. 1998, 19, 3451–3456. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Pandey, B.; Joshi, P.K.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Zhang, Q.; Han, L.; Du, S. Timely and accurate national-scale mapping of urban land in China using defense meteorological satellite program’s operational linescan system nighttime stable light data. J. Appl. Remote Sens. 2013, 7, 073535. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Gallo, K.P.; Tarpley, J.D.; McNab, A.L.; Karl, T.R. Assessment of urban heat islands: A satellite perspective. Atmos. Res. 1995, 37, 37–43. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Michael, Y.; Helman, D.; Lensky, I.M. The role of local land-use on the urban heat island effect of Tel AVIV as assessed from satellite remote sensing. Appl. Geogr. 2015, 56, 145–153. [Google Scholar] [CrossRef]
- Dewan, A.M.; Corner, R.J. Impact of land use and land cover changes on urban land surface temperature. In Dhaka Megacity; Springer: Berlin, Germany, 2014; pp. 219–238. [Google Scholar]
- Gallo, K.P.; McNab, A.L.; Karl, T.R.; Brown, J.F.; Hood, J.J.; Tarpley, J.D. The use of NOAA AVHRR data for assessment of the urban heat island effect. J. Appl. Meteorol. 1993, 32, 899–908. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Yang, W.; Fukushima, T. Mapping the human footprint from satellite measurements in Japan. ISPRS J. Photogramm. Remote Sens. 2014, 88, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Melesse, A.M.; Graham, W.D.; Jordan, J.D. Spatially distributed watershed mapping and modeling: Thermal maps and vegetation indices to enhance land cover and surface microclimate mapping (part 1). J. Spat. Hydrol. 2003, 3, 1–29. [Google Scholar]
- Julien, Y.; Sobrino, J.A.; Jiménez-Muñoz, J.C. Land use classification from multitemporal landsat imagery using the yearly land cover dynamics (YLCD) method. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 711–720. [Google Scholar] [CrossRef]
- Sobrino, J.; Raissouni, N.; Lobo, A. Monitoring the Iberian peninsula land cover using NOAA-AVHRR data. Phys. Meas. Signat. Remote Sens. 1997, 787–794. [Google Scholar]
- Lambin, E.; Ehrlich, D. Combining vegetation indices and surface temperature for land-cover mapping at broad spatial scales. Remote Sens. 1995, 16, 573–579. [Google Scholar] [CrossRef]
- Lambin, E.; Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens. 1996, 17, 463–487. [Google Scholar] [CrossRef]
- Hao, R.; Yu, D.; Sun, Y.; Cao, Q.; Liu, Y.; Liu, Y. Integrating multiple source data to enhance variation and weaken the blooming effect of DMSP-OLS light. Remote Sens. 2015, 7, 1422–1440. [Google Scholar] [CrossRef]
- Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef] [PubMed]
- Tax, D.M.J. One-Class Classification; Delft University of Technology: Delft, The Netherlands, 2001. [Google Scholar]
- Sanchez-Hernandez, C.; Boyd, D.S.; Foody, G.M. One-class classification for mapping a specific land-cover class: SVDD classification of fenland. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1061–1073. [Google Scholar] [CrossRef]
- Munoz-Mari, J.; Bruzzone, L.; Camps-Valls, G. A support vector domain description approach to supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2683–2692. [Google Scholar] [CrossRef]
- Li, P.; Xu, H. Land-cover change detection using one-class support vector machine. Photogramm. Eng. Remote Sens. 2010, 76, 255–263. [Google Scholar] [CrossRef]
- Guo, Q.; Kelly, M.; Graham, C.H. Support vector machines for predicting distribution of sudden Oak death in California. Ecol. Model. 2005, 182, 75–90. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Lands. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Uchida, E. Growth, population and industrialization, and urban land expansion of China. J. Urban Econ. 2008, 63, 96–115. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 1991; China Statistics Press: Beijing, China, 1991.
- National Bureau of Statistics of China. China Statistical Yearbook 2013; China Statistics Press: Beijing, China, 2013.
- Song, Y.; Ding, C. Urbanization in China: Critical Issues in An Era of Rapid Growth; Lincoln Institute of Land Policy: Cambridge, MA, USA, 2007. [Google Scholar]
- Maimaitiming, A.; Xiaolei, Z.; Huhua, C. Urbanization in western China. Chin. J. Popul. Res. Environ. 2013, 11, 79–86. [Google Scholar] [CrossRef]
- Gu, J.; Li, X.; Huang, C.; Okin, G.S. A simplified data assimilation method for reconstructing time-series MODIS NDVI data. Adv. Space Res. 2009, 44, 501–509. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [Google Scholar]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Breon, F.M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook 2007; China Statistics Press: Beijing, China, 2007.
- Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted ntl urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Gallo, K.P.; McNab, A.L.; Karl, T.R.; Brown, J.F.; Hood, J.J.; Tarpley, J.D. The use of a vegetation index for assessment of the urban heat island effect. Int. J. Remote Sens. 1993, 14, 2223–2230. [Google Scholar] [CrossRef]
- Landsberg, H.E. The Urban Climate; Academic Press: New York, NY, USA, 1981; Volume 28. [Google Scholar]
- He, C.; Shi, P.; Li, J.; Chen, J.; Pan, Y.; Li, J.; Zhuo, L.; Ichinose, T. Restoring urbanization process in China in the 1990s by using non-radiance-calibrated DMSP/OLS nighttime light imagery and statistical data. Chin. Sci. Bull. 2006, 51, 1614–1620. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the accuracy of remotely sensed data: Principles and practices, second edition. CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Pontius, R.G., Jr.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Neubert, M.; Meinel, G. Evaluation of segmentation programs for high resolution remote sensing applications. In Proceedings of the International ISPRS Workshop “High Resolution Mapping from Space”, Hannover, Germany, 6–8 October 2003.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, P.; Cai, C. Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification. Remote Sens. 2015, 7, 7671-7694. https://doi.org/10.3390/rs70607671
Zhang X, Li P, Cai C. Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification. Remote Sensing. 2015; 7(6):7671-7694. https://doi.org/10.3390/rs70607671
Chicago/Turabian StyleZhang, Xiya, Peijun Li, and Cai Cai. 2015. "Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification" Remote Sensing 7, no. 6: 7671-7694. https://doi.org/10.3390/rs70607671
APA StyleZhang, X., Li, P., & Cai, C. (2015). Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification. Remote Sensing, 7(6), 7671-7694. https://doi.org/10.3390/rs70607671