Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China
"> Figure 1
<p>Flowchart of the LAI retrieval algorithm from the 30 m resolution multi-sensor dataset.</p> "> Figure 2
<p>(<b>a</b>) Land cover map of the study area in the middle reach of the Heihe River Basin in July 2013. The major vegetation types are corn (green), grassland (light green), forest (dark green) and urban lands (red). (<b>b</b>) False color composite of HJ1/CCD image for the study area on 3 June 2013.</p> "> Figure 3
<p>Land cover maps and the LAI field measurements of the study area in July 2012 (<b>a</b>) and July 2013 (<b>b</b>). The red point is the LAI field measurement, the green area is covered by corn crops, and the light green area is covered by other crops.</p> "> Figure 4
<p>(<b>a</b>) Temporal profiles of mean MODIS NDVI for all of the selected LAI sample plots in the study area from the 153rd to the 241st day of 2012 (blue line) and 2013 (red line). (<b>b</b>) Comparison of the six corn sample measurements with similar observation times in 2012 and 2013.</p> "> Figure 5
<p>Statistical distributions of the multi-sensor observations in a 10-day period.</p> "> Figure 6
<p>Statistical distributions of valid observations during three special observation periods: (<b>a</b>) 1 June 2013; (<b>b</b>) 11 June 2013; and (<b>c</b>) 10 August 2013.</p> "> Figure 7
<p>Distributions of the observation angles for three typical observation periods. (<b>a</b>) 1 June 2013; (<b>b</b>) 11 July 2013; and (<b>c</b>) 31 July 2013.</p> "> Figure 7 Cont.
<p>Distributions of the observation angles for three typical observation periods. (<b>a</b>) 1 June 2013; (<b>b</b>) 11 July 2013; and (<b>c</b>) 31 July 2013.</p> "> Figure 8
<p>Density scatter plot of the reflectance in red and NIR bands between the HJ1/CCD and Landsat8/OLI dataset for bare soil (<b>a</b>), crop (<b>b</b>) and forest (<b>c</b>) on the 186th day.</p> "> Figure 9
<p>Variation between different sensor observations for crops (<b>a</b>) and forests (<b>b</b>) from 21 to 30 June 2013.</p> "> Figure 10
<p>Maps of LAI inversion over three 10-day observation periods from HJ1/CCD and Landsat8/OLI. (<b>a</b>) 1 June 2013; (<b>b</b>) 11 July 2013; and (<b>c</b>) 20 August 2013.</p> "> Figure 11
<p>Distribution of valid LAI inversions during the period of 1 to 10 June 2013.</p> "> Figure 12
<p>Comparison of the LAI inversions with the field measurements by WSN and LAI-2200 for crops from July to August 2013. (<b>a</b>) LAI inversions of HJ1/CCD data; (<b>b</b>) LAI inversions of Landsat8/OLI data; (<b>c</b>) LAI inversions of the combining HJ1/CCD and Landsat8/OLI dataset.</p> "> Figure 13
<p>Comparison of the LAI multi-temporal inversion with 12 field measurements (<b>1</b>–<b>12</b>) by the WSN and LAI-2200 for corn.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Analysis Method of the Multi-Sensor Dataset Characteristics
2.2. Algorithm of LAI Inversion based on the Multi-Sensor Dataset
2.2.1 Data Quality Control
- (1)
- When the NDVI difference for all of the observations in a period was greater than 0.3, the observation with the lower NDVI will be eliminated.
- (2)
- When the reflectance difference at the same or similar observation angles was greater than 15% of reflectance, the observation with the lower NDVI will be eliminated.
2.2.2. LAI Retrieval Method
3. Study Area and Data
3.1. Study Area
3.2. Satellite Data
Sensor | HJ1/CCD | Landsat8/OLI | ||
---|---|---|---|---|
Spectral characteristics | Band | Spectral range (µm) | Band | Spectral range (µm) |
1 | 0.43–0.52 | 2 | 0.45–0.515 | |
2 | 0.52–0.60 | 3 | 0.525–0.60 | |
3 | 0.63–0.69 | 4 | 0.63–0.68 | |
4 | 0.76–0.90 | 5 | 0.845–0.885 | |
Spatial resolution (m) | 30 | 30 | ||
Swath width (km) | 360 (single), 700 (two) | 170 × 185 | ||
Revisit time (days) | 4 | 16 |
3.3. LAI Field Measurements
Lat (°) | Lon (°) | LAI Measurements in 2012 | |||||||
---|---|---|---|---|---|---|---|---|---|
11th Jun. | 21st Jun. | 1st Jul. | 11th Jul. | 21st Jul. | 31st Jul. | 10th Aug. | 20th Aug. | ||
100°21′11.16″E | 38°51′31.28″N | -- | 1.97 | 3.14 | 3.09 | 3.03 | 3.33 | 2.69 | 3.00 |
100°21′37.08″E | 38°52′14.92″N | 1.01 | 2.58 | -- | 3.82 | -- | 2.91 | 2.71 | -- |
100°21′55.08″E | 38°52′34.79″N | 1.14 | -- | 3.33 | 3.31 | 3.52 | 3.02 | -- | 3.14 |
100°21′03.96″E | 38°52′31.80″N | 1.13 | -- | -- | 3.89 | 3.73 | 3.51 | 4.07 | 3.09 |
100°21′37.08″E | 38°53′11.69″N | 0.94 | 2.79 | 3.76 | 3.50 | -- | 3.64 | -- | -- |
100°22′36.84″E | 38°53′23.32″N | 1.12 | -- | 3.44 | -- | 4.13 | 3.28 | -- | 3.02 |
100°23′45.60″E | 38°52′30.68″N | 1.41 | 2.21 | 3.47 | 2.87 | 3.27 | 2.99 | 2.41 | 3.20 |
100°22′22.44″E | 38°51′16.99″N | 0.87 | 1.93 | 3.45 | -- | 3.33 | 3.86 | 3.42 | 2.53 |
100°21′50.76″E | 38°50′53.09″N | 1.14 | 2.92 | -- | 3.03 | 3.38 | -- | -- | 3.23 |
100°22′11.28″E | 38°51′16.96″N | -- | -- | 2.82 | 3.42 | 3.83 | 3.79 | 3.45 | 2.65 |
100°21′24.48″E | 38°51′35.39″N | -- | 2.98 | -- | 3.06 | 3.35 | 3.05 | 3.33 | 3.30 |
100°22′46.56″E | 38°51′09.25″N | -- | -- | -- | 2.99 | 2.94 | 2.59 | 2.64 | 1.89 |
Lat. | Lon. | LAI Measured on 11th–18th June 2013 | Lat. | Lon. | LAI Measured on 4th–10th July 2013 |
---|---|---|---|---|---|
100°23′09.96″E | 38°52′56.99″N | 0.96 | 100°22′16.32″E | 38°51′16.34″N | 3.39 |
100°22′38.28″E | 38°52′11.21″N | 1.17 | 100°22′49.80″E | 38°51′28.12″N | 2.78 |
100°21′24.48″E | 38°52′20.32″N | 1.37 | 100°22′37.56″E | 38°51′28.40″N | 2.35 |
100°21′35.28″E | 38°52′27.80″N | 1.60 | 100°21′41.40″E | 38°52′41.12″N | 3.87 |
100°21′45.00″E | 38°52′38.10″N | 1.53 | 100°21′20.52″E | 38°52′36.16″N | 3.56 |
100°20′57.48″E | 38°52′54.52″N | 1.70 | 100°21′38.16″E | 38°52′25.54″N | 3.07 |
100°20′55.32″E | 38°52′23.59″N | 1.92 | 100°21′05.04″E | 38°52′11.21″N | 3.16 |
100°21′54.72″E | 38°53′06.20″N | 1.91 | 100°24′43.20″E | 38°51′16.09″N | 3.08 |
100°23′02.76″E | 38°52′07.40″N | 1.13 | 100°22′30.36″E | 38°45′30.64″N | 3.24 |
100°23′13.92″E | 38°52′37.99″N | 1.06 | 100°23′11.40″E | 38°47′40.63″N | 4.50 |
100°22′16.32″E | 38°52′36.98″N | 1.66 | 100°22′41.88″E | 38°47′47.62″N | 4.12 |
100°22′04.80″E | 38°51′30.40″N | 1.24 | 100°24′05.04″E | 38°48′50.80″N | 2.31 |
100°22′55.20″E | 38°51′39.89″N | 1.16 | |||
100°20′57.84″E | 38°51′47.81″N | 1.28 | |||
100°21′45.72″E | 38°51′46.01″N | 1.41 | |||
100°22′15.60″E | 38°51′46.40″N | 1.89 | |||
100°20′52.08″E | 38°20′02.05″N | 1.10 |
4. Results and Discussion
4.1. Analysis Results of the Multi-Sensor Dataset Characteristics
4.1.1. Percentage of Valid Observations
4.1.2. Distribution of Observation Angles
4.1.3. Variation between Different Sensor Observations
Types | Bands | Samples | R2 | RMSE | Std. | Confidence Interval * | Homoscedasticity |
---|---|---|---|---|---|---|---|
Bare soil | Red | 120,700 | 0.88 | 0.01 | 0.01 | 94%–96% | No |
NIR | 120,700 | 0.89 | 0.01 | 0.01 | 88%–91% | No | |
Crop | Red | 14,550 | 0.79 | 0.04 | 0.02 | 33%–35% | No |
NIR | 14,534 | 0.86 | 0.02 | 0.02 | 66%–70% | No | |
Forest | Red | 1529 | 0.50 | 0.03 | 0.02 | 26%–32% | No |
NIR | 1518 | 0.59 | 0.06 | 0.03 | 55%–67% | No |
4.2. LAI Inversion Results and Validation
4.2.1. Improvement of the Valid LAI Inversion from the Multi-Sensor Dataset
4.2.2. Validation
4.2.3. Comparison of LAI Inversions with Existing Studies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, J.M.; Black, T.A. Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 1991, 57, 1–12. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Kuusk, A. Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model. Remote Sens. Environ. 2003, 85, 257–270. [Google Scholar] [CrossRef]
- Chen, J.M.; Pavlic, G.; Brown, L.; Cihlar, J.; Leblanc, S.; White, H.; Hall, R.; Peddle, D.; King, D.; Trofymow, J. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sens. Environ. 2002, 80, 165–184. [Google Scholar] [CrossRef]
- Wan, H.; Wang, J.; Xiao, Z.; Li, L. Generating the high spatial and temporal resolution LAI by fusing MODIS and ASTER. J. Beijing Norm. Univ. (Nat. Sci.) 2007, 43, 303–308. (In Chinese) [Google Scholar]
- Weiss, M.; Baret, F. Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote Sens. Environ. 1999, 70, 293–306. [Google Scholar] [CrossRef]
- Fassnacht, K.S.; Gower, S.T.; MacKenzie, M.D.; Nordheim, E.V.; Lillesand, T.M. Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper. Remote Sens. Environ. 1997, 61, 229–245. [Google Scholar] [CrossRef]
- Fernandes, R.; Butson, C.; Leblanc, S.; Latifovic, R. Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data. Can. J. Remote Sens. 2003, 29, 241–258. [Google Scholar] [CrossRef]
- Tian, Q.J.; Jin, Z.Y. Research on calculation and spatial scaling of forest leaf area index from remote sensing image. Remote Sens. Inf. 2006, 5–11. [Google Scholar]
- Zhu, G.L.; Ju, W.M.; Chen, J.M.; Fan, W.Y.; Zhou, Y.L.; Li, X.F.; Li, M.Z. Forest canopy leaf area index in Maoershan Mountain: Groundmeasurement and remote sensing retrieval. Chin. J. Appl. Ecol. 2010, 21, 2117–2124. [Google Scholar]
- Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2219–2229. [Google Scholar] [CrossRef]
- Masson, V.; Champeaux, J.-L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A global database of land surface parameters at 1-km resolution in meteorological and climate models. J. Clim. 2003, 16, 1261–1282. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Glassy, J.; Privette, J.; Tian, Y.; Lotsch, A.; Zhang, Y.; Wang, Y.; Morisette, J.; Votava, P.; Myneni, R. Modis Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (Mod15) Algorithm Theoretical Basis Document; Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MA, USA, 1999.
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, S.; Schull, M.A.; Samanta, A.; Shabanov, N.V.; Milesi, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Generating vegetation leaf area index earth system data record from multiple sensors. Part 1: Theory. Remote Sens. Environ. 2008, 112, 4333–4343. [Google Scholar] [CrossRef]
- Knyazikhin, Y.; Martonchik, J.; Myneni, R.; Diner, D.; Running, S. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef]
- Gascon, F.; Gastellu-Etchegorry, J.P.; Leroy, M. Using multi-directional high-resolution imagery from POLDER sensor to retrieve leaf area index. Int. J. Remote Sens. 2007, 28, 167–181. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth. 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Mousivand, A.; Menenti, M.; Gorte, B.; Verhoef, W. Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral–directional radiometric data. Remote Sens. Environ. 2015, 158, 311–330. [Google Scholar] [CrossRef]
- Wan, H.W. Surface Parameters Inversion from Multi-Source Remote Sensing Data Fusion Study. Ph.D Thesis, Beijing Normal University, Beijing, China, 2007. [Google Scholar]
- Liang, S.; Zhang, X.; Xiao, Z.; Cheng, J.; Liu, Q.; Zhao, X. Global Surface Energy Budget and Ecosystem Variables (Glass) Product Algorithm, Validation and Analysis; Higher Education Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Ganguly, S.; Nemani, R.R.; Zhang, G.; Hashimoto, H.; Milesi, C.; Michaelis, A.; Wang, W.; Votava, P.; Samanta, A.; Melton, F. Generating global leaf area index from landsat: Algorithm formulation and demonstration. Remote Sens. Environ. 2012, 122, 185–202. [Google Scholar] [CrossRef]
- Wan, H.W.; Wang, J.; Liang, S.; Qin, J. Combine MODIS and MISR data to retrieval LAI. Spectrosc. Spectr. Anal. 2009, 29, 3106–3111. [Google Scholar]
- Hagolle, O.; Lobo, A.; Maisongrande, P.; Cabot, F.; Duchemin, B.; De Pereyra, A. Quality assessment and improvement of temporally composited products of remotely sensed imagery by combination of VEGETATION 1 and 2 images. Remote Sens. Environ. 2004, 94, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Morton, D.C.; Nagol, J.; Carabajal, C.C.; Rosette, J.; Palace, M.; Cook, B.D.; Vermote, E.F.; Harding, D.J.; North, P.R. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 2014, 506, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Roy, D.P.; Shuai, Y.; Schaaf, C. Development of an approach for generation of temporally complete daily nadir MODIS reflectance time series. Remote Sens. Environ. 2010, 114, 1–20. [Google Scholar] [CrossRef]
- Zhang, Y.H. HJ1-CCD Cross Radiometric Calibration. Master Themes, Shandong University of Science and Technology, Qingdao, China, 2011. [Google Scholar]
- Leblanc, S.G.; Chen, J.M.; Cihlar, J. NDVI directionality in boreal forests: A model interpretation of measurements. Can. J. Remote Sens. 1997, 23, 369–380. [Google Scholar] [CrossRef]
- Walter, E.; Privette, J.; Cornell, D.; Mesarch, M.A.; Hays, C. Relations between directional spectral vegetation indices and leaf area and absorbed radiation in alfalfa. Remote Sens. Environ. 1997, 61, 162–177. [Google Scholar] [CrossRef]
- Chen, J.; Menges, C.; Leblanc, S. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Yan, B.; Xu, X.; Fan, W. A unified canopy bidirectional reflectance (BRDF) model for row ceops. Sci. China Press. 2012, 42, 411–423. [Google Scholar] [CrossRef]
- Fan, W.; Xu, X.; Liu, X.; Yan, B.; Cui, Y. Accurate LAI retrieval method based on PROBA/CHRIS data. Hydrol. Earth Syst. Sci. 2010, 14, 1499–1507. [Google Scholar] [CrossRef]
- Fan, W.; Yan, B.; Xu, X. Crop area and leaf area index simultaneous retrieval based on spatial scaling transformation. Sci. China Earth Sci. 2010, 53, 1709–1716. [Google Scholar] [CrossRef]
- Li, X.; Li, X.W.; Li, Z.Y.; Ma, M.G.; Wang, J.; Xiao, Q.; Liu, Q.; Che, T.; Chen, E.X.; Yan, G.J.; et al. Watershed allied telemetry experimental research. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.D.; Liu, S.M.; Xiao, Q.; Ma, M.G.; Jin, R.; Che, T.; Liu, Q.H.; Wang, W.Z.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Cheng, G.D.; Li, X.; Zhao, W.Z.; Xu, Z.M.; Feng, Q.; Xiao, S.C.; Xiao, H.L. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- USGS. Earthexplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 18 February 2015).
- China Centre for Resources Satellite Data and Application. Available online: http://www.cresda.com/n16/index.html (accessed on 18 February 2015).
- Zhong, B.; Li, H.; Shan, X.; Mu, X.; Wu, H.; Chen, X.; Liu, Y. Architecture of Multisource Data Processing System (ADPS); No. 2012AA12A304; Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences: Beijing, China, 2014. [Google Scholar]
- Zhong, B.; Zhang, Y.; Du, T.; Yang, A.; Lv, W.; Liu, Q. Cross-calibration of HJ-1/CCD over a desert site using Landsat ETM imagery and ASTER GDEM product. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7247–7263. [Google Scholar] [CrossRef]
- Shan, X.J.; Tang, P.; Hu, C.M.; Tang, L.; Zheng, K. Automatic geometric precise correction technology and system based on hierarchical image matching for HJ-1A/B CCD images. J. Remote Sens. 2014, 2, 254–266. [Google Scholar]
- Zhong, B. Improved estimation of aerosol optical depth from Landsat TM/ETM+ imagery over land. In Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 3304–3307.
- Zhong, B.; Wu, S.; Yang, A.; Liu, Q. An improved aerosol optical depth retrieval algorithm for moderate to high spatial resolution optical remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2015. (Under Review). [Google Scholar]
- Zeng, Y.; Li, J.; Liu, Q.; Qu, Y.; Huete, A.R.; Xu, B.; Yin, G.; Zhao, J. An optimal sampling design for observing and validating long-term leaf area index with temporal variations in spatial heterogeneities. Remote Sens. 2015, 7, 1300–1319. [Google Scholar] [CrossRef]
- Chen, B.; Coops, N.C.; Fu, D.; Margolis, H.A.; Amiro, B.D.; Black, T.A.; Arain, M.A.; Barr, A.G.; Bourque, C.P.A.; Flanagan, L.B.; et al. Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian Carbon Program Network using remote sensing and footprint analysis. Remote Sens. Environ. 2012, 124, 742–755. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, J.; Dong, J.; Jiang, F. Design and experiment of crop structural parameters automatic measurement system. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–165. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, J.; Liu, Q.; Fan, W.; Zhong, B.; Wu, S.; Yang, L.; Zeng, Y.; Xu, B.; Yin, G. Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China. Remote Sens. 2015, 7, 6862-6885. https://doi.org/10.3390/rs70606862
Zhao J, Li J, Liu Q, Fan W, Zhong B, Wu S, Yang L, Zeng Y, Xu B, Yin G. Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China. Remote Sensing. 2015; 7(6):6862-6885. https://doi.org/10.3390/rs70606862
Chicago/Turabian StyleZhao, Jing, Jing Li, Qinhuo Liu, Wenjie Fan, Bo Zhong, Shanlong Wu, Le Yang, Yelu Zeng, Baodong Xu, and Gaofei Yin. 2015. "Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China" Remote Sensing 7, no. 6: 6862-6885. https://doi.org/10.3390/rs70606862
APA StyleZhao, J., Li, J., Liu, Q., Fan, W., Zhong, B., Wu, S., Yang, L., Zeng, Y., Xu, B., & Yin, G. (2015). Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China. Remote Sensing, 7(6), 6862-6885. https://doi.org/10.3390/rs70606862