Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe
"> Figure 1
<p>Internal design of the enhanced PROMET agroecological land surface model. The extended model components relevant for this study are highlighted in green.</p> "> Figure 2
<p>PROMET ensemble consisting of 20 scenarios (only 10 selected for display). Seasonal development of greenLAI is shown for an exemplary location within a winter wheat field in northern Germany (year 2010). Each scenario is based on different assumptions on nitrogen supply (<span class="html-italic">N<sub>status</sub></span>).</p> "> Figure 3
<p>Concept of using the distributed crop growth model PROMET for the generation of model ensembles and selecting the most likely scenario for each pixel by comparing modelled greenLAI with greenLAI values retrieved from remote sensing. The concept is designed for multi-sensoral use. The number of selections during the growing season depends on the number of available observations.</p> "> Figure 4
<p>Validation of winter wheat green Leaf Area Index retrieval from RapidEye data.</p> "> Figure 5
<p>Validation of structural canopy variables of winter wheat in southern Germany: Modelled values <span class="html-italic">vs</span>. <span class="html-italic">in situ</span> measurements: (<b>a</b>) leaf area index, (<b>b</b>) canopy height, (<b>c</b>) phenology.</p> "> Figure 6
<p>Validation of aboveground dry biomass accumulation of winter wheat in southern Germany: Modelled values <span class="html-italic">vs. in situ</span> measurements: (<b>a</b>) leaf biomass, (<b>b</b>) stem biomass, (<b>c</b>) fruit biomass.</p> "> Figure 7
<p>Spatial comparison of measured (<b>a</b>) and modelled (<b>b</b>) yield of winter wheat fields from the harvesting season of 2010 in northern Germany. Both maps are calculated for a spatial resolution of 20 × 20 m. The surface area of the displayed winter wheat fields amounts to >180 ha. A quantitative comparison is given in <a href="#remotesensing-07-03934-f008" class="html-fig">Figure 8</a> and <a href="#remotesensing-07-03934-t006" class="html-table">Table 6</a>.</p> "> Figure 8
<p>X-Y-Plots showing the correlation of modelled <span class="html-italic">vs</span>. measured yield of all winter wheat pixels for the two consecutive seasons of 2010 (<b>a</b>) and 2011 (<b>b</b>). The corresponding statistics are given in <a href="#remotesensing-07-03934-t006" class="html-table">Table 6</a>.</p> "> Figure 9
<p>(<b>a</b>) Zoom image from <a href="#remotesensing-07-03934-f007" class="html-fig">Figure 7</a>, showing spatially measured (<b>a</b>) and modelled (<b>b</b>) yield of winter wheat on test field 33 for the harvesting season of 2010, including an X-Y-plot of the correlation of the two spatial datasets (<b>c</b>) as well as the modelled and EO-measured seasonal course of LAI-development for high (yellow pixel) and low (blue pixel) yielding sections of the field (<b>d</b>). A quantitative comparison is given in <a href="#remotesensing-07-03934-t007" class="html-table">Table 7</a>.</p> "> Figure 10
<p>Spatially measured (<b>a</b>) and modelled (<b>b</b>) yield of winter wheat on test field 33 for the harvesting season of 2011, including an X-Y-plot of the correlation of the two spatial datasets (<b>c</b>) as well as the modelled and EO-measured seasonal course of LAI-development for high (yellow pixel) and low (blue pixel) yielding sections of the field (<b>d</b>). A quantitative comparison is given in <a href="#remotesensing-07-03934-t007" class="html-table">Table 7</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Hydro-Agroecological Land Surface Model PROMET
2.2.1. Model Parameterization
2.2.2. Hydrological Core Model
2.2.3. Leaf Photosynthesis
Parameter | Symbol | Winter Wheat (C3) | Physical Unit |
---|---|---|---|
Light Use Efficiency | α | 0.045 | [mol CO2 mol photons−1] |
CO2 Compensation Point | Γ* | variable | [μl∙l−1] |
CO2 Concentration in the Leaf | Ci | variable | [ppm] |
Harvest Date | Dhar | 206−237 | [DOY] |
Day Light Effect (Photoperiodism) | DLE | long-day | [–] |
Entropy Factor | Δs | 660.0 | [–] |
Sowing Date | Dsow | 278–304 | [DOY] |
Activation Energy for C Kinetics | EaVcmax | 79430.0 | [J∙mol−1] |
Deactivation Energy for C Kinetics | EdVcmax | 198,000.0 | [J∙mol−1] |
Stomatal Sensitivity Parameter | gfac | 10.6 | [–] |
Max. Rate of Electron Transport at 25 °C | Jmax25 | 32.3 | [µmol∙e−1∙m−2 leaf area∙s−1] |
Michaelis-Menten-Constant for C at 25 °C | Kc25 | 404.9 | [ml∙l−1] |
Michaelis-Menten-Constant for O at 25 °C | Ko25 | 278.4 | [ml∙l−1] |
Relation LAI to Canopy Height | LHrel | 0.178 | [m∙m−2 leaf area] |
Leaf Mass Area | LMA | 0.0704 | [kg∙m−2 leaf area] |
Leaf Width | Lw | 0.015 | [m] |
Minimum Light Period (Min. Day Length) | MLP | 8.25 | [h] |
Rate of Net Leaf Photosynthesis | np | variable | [μmol∙m−2∙leaf area∙s−1] |
Nitrogen Status | Nstatus | 0.1–1.0 | [–] |
Leaf Concentration of Oxygen | O2 | 210 | [ml∙l−1] |
Light-Dependent Rate of Photosynthesis | Pm | variable | [μmol∙m−2 leaf area∙s−1] |
Photoperiod Sensitivity | psen | 0.3 | [1/h] |
BBCH-Threshold 00–50 | PTthres 00–50 | 0.01/0.20/0.30/0.60/0.67 | [–] |
BBCH-Threshold 60–90 | PTthres 60–90 | 0.80 / 1.00 / 1.60 / 1.90 | [–] |
Gas Constant | R | 8.31 | [J K−1 mol−1] |
Rate of Dark Respiration | rd | variable | [μmol∙m−2 leaf area∙s−1] |
Respiration Capacity at 25 °C | rd25 | 0.93 | [µmol∙m−2 leaf area∙s−1] |
Maximum Root Depth | Rmax | 150 | [cm] |
Cardinal Temp. (vegetative) | Tb / To / Tc 1 | 0 / 19 / 30 | [°C] |
Cardinal Temp. (generative) | Tb / To / Tc 2 | 4 / 24 / 35 | [°C] |
Cardinal Temp. (maturity) | Tb / To / Tc 3 | 8 / 24 / 35 | [°C] |
Leaf Temperature | Tl | variable | [K] |
Maximum Carboxylation Capacity | Vcmax | variable | [µmol∙m−2 leaf area∙s−1] |
Carboxylation Capacity at 25 °C | Vcmax25 | 68.1 | [µmol∙m−2 leaf area∙s−1] |
Vernalisation Temperatures | VnTb / VnTo / VnTc | −1.3 / 4.9 / 15.7 | [°C] |
Assimilation Rate at Low CO2 | wc | variable | [μmol∙m−2 leaf area∙s−1] |
Assimilation Rate at Saturated CO2 | wj | variable | [μmol∙m−2 leaf area∙s−1] |
Yield Factor | YF | 0.73 | [fraction] |
Max. Dev. Rate (veg., gen., mat.) | ωmax | 0.06 / 0.0285 / 0.03 | [–] |
2.2.4. Canopy Development
2.2.5. Crop Phenology and Biomass Allocation
BBCH: | 00−09 | 10−19 | 20−29 | 30−39 | 41−49 | 51−59 | 61−69 | 71−77 | 83−89 | 92−99 |
---|---|---|---|---|---|---|---|---|---|---|
Fruit: | 0.000 | 0.000 | 0.000 | 0.000 | 0.075 | 0.100 | 0.500 | 1.000 | 1.000 | 1.000 |
Leaf: | 0.000 | 0.425 | 0.425 | 0.400 | 0.150 | 0.100 | 0.000 | 0.000 | 0.000 | 0.000 |
Stem: | 0.000 | 0.000 | 0.000 | 0.275 | 0.675 | 0.700 | 0.400 | 0.000 | 0.000 | 0.000 |
Root: | 1.000 | 0.575 | 0.575 | 0.325 | 0.100 | 0.100 | 0.100 | 0.000 | 0.000 | 0.000 |
2.2.6. Agricultural Management
2.3. Assimilation of Earth Observation Data
- Agricultural management: farmers’ decisions on land use, sowing date, fertilization events, harvest date
- Dynamic environmental driver variables: temperature, precipitation, radiation, wind, atmospheric carbon dioxide concentration
- Static environmental parameters: location, terrain, soil properties
2.4. Parameter Retrieval from Earth Observation Data
- (1):
- Observational parameters: solar and sensor geometry as well as the spectral response function of each sensor band are provided inputs.
- (2):
- Soil reflectance information: soil reflectance is extracted from bare pixels in the scene.
- (3):
- Leaf optical properties: fixed, preselected values for wheat are used (Table 3)
- (4):
- Canopy properties: some are used as fixed, preselected values (see Table 3), the total leaf area, fraction of brown leaves, and leaf angle distribution function are inverted.
Parameter | Description | Unit | Value |
---|---|---|---|
Cab_green | Chlorophyll content green leaves | [μg∙cm−2] | 35.00 |
Cw_green | Water content green leaves | [g∙cm−2] | 0.02 |
Cdm_green | Dry matter content green leaves | [g∙cm−2] | 0.00 |
Cs_green | Brown pigment content green leaves | [–] | 0.00 |
N_green | Mesophyll structure parameter green leaves | [–] | 1.80 |
Cab_brown | Chlorophyll content brown leaves | [μg∙cm−2] | 0.00 |
Cw_brown | Water content brown leaves | [g∙cm−2] | 0.00 |
Cdm_brown | Dry matter content brown leaves | [g∙cm−2] | 0.01 |
Cs_brown | Brown pigment content brown leaves | [–] | 0.55 |
N_brown | Mesophyll structure parameter brown leaves | [–] | 3.00 |
Hot | Hot spot parameter | [–] | 0.01 |
D | Layer dissociation factor | [–] | 0.30 |
Cv | Vertical crown cover fraction | [–] | 1.00 |
zeta | Tree shadow factor | [–] | 0.00 |
2.5. Acquisition of Validation Data
3. Results and Discussion
3.1. Validation of GreenLAI Retrieval from EO
3.2. Validation of Temporal Dynamics
3.3. Validation of Spatial Dynamics
Data Set | Data Source | Year | Resolution |
---|---|---|---|
Soil Map | Harmonized World Soil Database (HWSD, [69]) | 2009 | 30 arcsec |
Digital Terrain Model | Shuttle Radar Topography Mission (SRTM, [70]) | 2008 | 90 m |
Farm Mask | Farm Management Information System (FMIS) | 2010/2011 | 20 m |
Meteorology | met-service | 2009–2011 | 10 stations (1 hour) |
Sensor | RE | RE | TM | TM | RE | ||||||
OZA [°] | 10.33 | 6.96 | Nadir | Nadir | −12.04 | ||||||
GSD [m] | 5 | 5 | 30 | 30 | 5 | ||||||
Date 2011 | Mar 3rd | Apr 2nd | Apr 18th | May 5th | Jun 2nd | Jun 29th | Jul 27th | ||||
Sensor | RE | RE | RE | RE | RE | RE | TM | ||||
OZA [°] | −19.55 | 3.60 | 6.73 | 6.99 | 0.34 | −6.18 | Nadir | ||||
GSD [m] | 5 | 5 | 5 | 5 | 5 | 5 | 30 |
Indicator | Symbol | 2010 | 2011 |
---|---|---|---|
Population: | N [pixels] | 4560 | 13135 |
Area: | A [ha] | 182.4 | 525.4 |
Coefficient of Determination: | R² [–] | 0.58 | 0.70 |
Slope of linear regression: | α [–] | 0.90 | 1.22 |
Intercept of linear regression: | β [t∙ha-1] | 0.27 | −1.81 |
Root Mean Square Error: | RMSE [t∙ha−1] | 1.29 | 1.59 |
Nash−Sutcliffe Coefficient of Model Efficiency: | NSE [–] | 0.50 | 0.67 |
Average Measured Yield: | Ø Meas. [t∙ha−1] | 8.12 | 7.42 |
Average Modelled Yield: | Ø Mod. [t∙ha−1] | 7.61 | 7.23 |
Standard Deviation Measured Yield: | σ Meas. [t∙ha−1] | 1.53 | 1.92 |
Standard Deviation Modelled Yield: | σ Mod. [t∙ha−1] | 1.81 | 2.79 |
Minimum Measured Yield: | Min. Meas. [t∙ha−1] | 3.83 | 0.90 |
Minimum Modelled Yield: | Min. Mod. [t∙ha−1] | 2.39 | 1.11 |
Maximum Measured Yield: | Max. Meas. [t∙ha−1] | 11.58 | 12.90 |
Maximum Modelled Yield: | Max. Mod. [t∙ha−1] | 11.74 | 14.58 |
Indicator | 2010 | 2011 | |
---|---|---|---|
N | = | 1019 [Pixels] | 1019 [pixels] |
A | = | 40.76 [ha] | 40.76 [ha] |
R² | = | 0.67 [–] | 0.82 [–] |
α | = | 0.89 [–] | 1.41 [–] |
β | = | 1.39 [t∙ha-1] | −2.3 [t∙ha-1] |
RMSE | = | 0.92 [t∙ha-1] | 1.38 [t∙ha-1] |
NSE | = | 0.53 [–] | 0.34 [–] |
Ø Meas. / Mod. | = | 9.16/9.54 [t∙ha−1] | 6.29/6.59 [t∙ha−1] |
σ Meas. / Mod. | = | 1.30/1.42 [t∙ha−1] | 1.70/2.66 [t∙ha−1] |
Min. Meas. / Mod. | = | 4.70/4.33 [t∙ha−1] | 1.50/1.62 [t∙ha−1] |
Max. Meas. / Mod. | = | 11.21/11.40 [t∙ha−1] | 10.33/13.15 [t∙ha−1] |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Auernhammer, H. Precision farming—The environmental challenge. Comput. Electron. Agr. 2001, 30, 31–43. [Google Scholar] [CrossRef]
- Delgado, J.A.; Khosla, R.; Mueller, T. Recent advances in precision (target) conservation. J. Soil Water Conserv. 2011, 66, 167A–170A. [Google Scholar] [CrossRef]
- Dobermann, A.; Blackmore, S.; Cook, S. E.; Adamchuk, V. I. Precision farming: Challenges and future directions. Available online: http://scholar.google.com.tw/scholar?q=Precision+farming%3A+Challenges+and+future+directions&btnG=&hl=zh-TW&as_sdt=0%2C5 (accessed on 30 September 2014).
- Van Lynden, G.W.J.; Mantel, S. The role of GIS and remote sensing in land degradation assessment and conservation mapping: Some user experiences and expectations. Int. J. Appl. Earth Obs. Geoinf. 2001, 3, 61–68. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sens. Environ. 2003, 87, 23–41. [Google Scholar] [CrossRef]
- Bach, H.; Friese, M.; Spannraft, K.; Migdall, S.; Dotzler, S.; Hank, T.; Mauser, W. Integrative use of multitemporal RapidEye and Terrasar-X data for agricultural monitoring. In Proceedings of IEEE International Geoscience and Remo2te Sensing Symposium IGARSS, Munich, Germany, 22–27 July 2012.
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Foley, J.A. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cy. 1996, 10, 603–628. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Venevsky, S. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Bachelet, D. MC1: A Dynamic Vegetation Model for Estimating The Distribution of Vegetation and Associated Ecosystem Fluxes of Carbon, Nutrients and Water; DIANE Publishing: Darby, PA, USA, 2001. [Google Scholar]
- Jones, J. W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Yin, X.; van Laar, H.H. Crop Systems Dynamics: An Ecophysiological Model of Genotype-by-Environment Interactions (GECROS); Wageningen Academic Publishers: Wageningen, The Netherlands, 2005. [Google Scholar]
- Diepen, C.V.; Wolf, J.; Keulen, H.V.; Rappoldt, C. Wofost—A simulation-model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Storm, B. MIKE SHE. Available online: http://www.cabdirect.org/abstracts/19961904783.html;jsessionid=E6E50730DC54EBDD10C739B063F3E64F (accessed on 30 September 2014).
- Arnold, J.G.; Allen, P.M.; Bernhardt, G. A comprehensive surface-groundwater flow model. J. Hydrol. 1993, 142, 47–69. [Google Scholar] [CrossRef]
- Beven, K.J.; Quinn, P.; Romanowicz, R.; Freer, J.; Fisher, J.; Lamb, R. TOPMODEL and GRIDATB, A Users Guide to the Distribution Versions (94.01); Technical Report TR110/94; Lancaster University Centre For Research On Environmental Systems and Statistics: Lancaster, England, 1994. [Google Scholar]
- Lohmann, D.; Raschke, E.; Nijssen, B.; Lettenmaier, D.P. Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol.Sci. J. 1998, 43, 131–141. [Google Scholar] [CrossRef]
- Benoit, R.; Pellerin, P.; Kouwen, N.; Ritchie, H.; Donaldson, N.; Joe, P.; Soulis, E.D. Toward the use of coupled atmospheric and hydrologic models at regional scale. Mon. Weather Rev. 2000, 128, 1681–1706. [Google Scholar] [CrossRef]
- Mauser, W.; Bach, H. PROMET—Large scale distributed hydrological modelling to study the impact of climate change on the water flows of mountain watersheds. J. Hydrol. 2009, 376, 362–377. [Google Scholar] [CrossRef]
- Launay, M.; Guerif, M. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agr. Ecosyst. Environ. 2005, 111, 321–339. [Google Scholar] [CrossRef]
- Bouman, B. Crop modelling and remote sensing for yield prediction. NJAS Wageningen J. Life Sci. 1995, 43, 143–161. [Google Scholar]
- Bach, H. Yield estimation of corn based on multitemporal Landsat-TM data as input for an agrometeorological model. J. Eur. Opt. Soc. Part A 1998, 7. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Vazifedoust, M.; van Dam, J.C.; Bastiaanssen, W.G.M.; Feddes, R.A. Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. Int. J. Remote Sens. 2009, 30, 2523–2545. [Google Scholar] [CrossRef]
- De Wit, A.; Duveiller, G.; Defourny, P. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations. Agr. Forest Meteorol. 2012, 164, 39–52. [Google Scholar]
- Dente, L.; Satalino, G.; Mattia, F.; Rinaldi, M. Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens. Environ. 2008, 112, 1395–1407. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Zhou, J.; Zhang, G.; Chen, C.; Wang, J. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecol. Model. 2014, 291, 15–27. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- IUSS-Working-Group-WRB. World Reference Base for Soil Resources 2006. Available online: http://url/?q=ftp://ftp.fao.org/agl/agll/docs/wsrr103e.pdf (accessed on 30 September 2014).
- Farquhar, G.D.; Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-X. Mathematical simulation of C4 grass photosynthesis in ambient and elevated CO2. Ecol. Model. 1994, 73, 63–80. [Google Scholar] [CrossRef]
- Hodges, T.; Ritchie, J.T. The CERES-Wheat phenology model. In Predicting Crop Phenology; CRC Press: Boston, MA, USA, 1991; pp. 133–142. [Google Scholar]
- Jones, C.; Kiniry, J.R. CERES-Maize—A Simulation Model of Maize Growth and Development; Texas A&M University Press: Michigan, MI, USA, 1986. [Google Scholar]
- Hank, T.B. A Biophysically Based Coupled Model Approach for the Assessment of Canopy Processes under Climate Change Conditions. Available online: http://edoc.ub.uni-muenchen.de/8725/ (accessed on 30 September 2014).
- Richards, L.A. Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1931, 1, 318–333. [Google Scholar]
- Mauser, W.; Schädlich, S. Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data. J. Hydrol. 1998, 212–213, 250–267. [Google Scholar] [CrossRef]
- Ludwig, R.; Mauser, W. Modelling catchment hydrology within a GIS based SVAT-model framework. Hydrol. Earth Syst. Sci. 1999, 4, 239–249. [Google Scholar] [CrossRef]
- Strasser, U.; Mauser, W. Modelling the spatial and temporal variations of the water balance for the Weser catchment 1965–1994. J. Hydrol. 2001, 254, 199–214. [Google Scholar] [CrossRef]
- Prasch, M.; Mauser, W.; Weber, M. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin. Cryosphere 2013, 7, 889–904. [Google Scholar] [CrossRef]
- Zabel, F.; Mauser, W. 2-Way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol. Earth Syst. Sci. 2013, 17, 1705–1714. [Google Scholar] [CrossRef]
- Marke, T.; Mauser, W.; Pfeiffer, A.; Zängl, G.; Jacob, D.; Strasser, U. Application of a hydrometeorological model chain to investigate the effect of global boundaries and downscaling on simulated river discharge. Environ. Earth Sci. 2014, 71, 4849–4868. [Google Scholar] [CrossRef]
- Friend, A.D.; Stevens, A.K.; Knox, R.G.; Cannell, M.G.R. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol. Model. 1997, 95, 249–287. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. Models of photosynthesis. Plant Physiol. 2001, 125, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Aphalo, P.J.; Jarvis, P.G. Do stomata respond to relative humidity? Plant Cell Environ. 1991, 14, 127–132. [Google Scholar] [CrossRef]
- Medlyn, B.E.; Dreyer, E.; Ellsworth, D.; Forstreuter, M.; Harley, P.C.; Kirschbaum, M.U.F.; Loustau, D. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ. 2002, 25, 1167–1179. [Google Scholar] [CrossRef]
- Wu, A.; Black, A.; Verseghy, D.L.; Bailey, W.G. Comparison of two-layer and single-layer canopy models with Lagrangian and K-theory approaches in modelling evaporation from forests. Int. J. Climatol. 2001, 21, 1821–1839. [Google Scholar] [CrossRef]
- Campbell, G.S. Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution. Agr. Forest Meteorol. 1986, 36, 317–321. [Google Scholar] [CrossRef]
- Nobel, P.S. Physiochemical and Environmental Plant Physiology; Elsevier Academic Press: Burlington, ON, USA, 2005. [Google Scholar]
- Cionco, R.M. A mathematical model for air flow in a vegetative canopy. J. Appl. Meteorol. 1965, 4, 517–522. [Google Scholar] [CrossRef]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress Photosynth. Res. 1987, 4, 221–224. [Google Scholar]
- Reichstein, M. Drought Effects on Carbon and Water Exchange in Three Mediterranean Ecosystems; Bayreuther Forum Ökologie: Bayreuth, Germany, 2001. [Google Scholar]
- Jarvis, P.G.; Morison, J.I.L. The control of transpiration and photosynthesis by stomata. In Stomatal Physiology; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; Federal Biological Research Centre for Agriculture and Forestry: Braunschweig, Germany.
- Generation of Continuous Agricultural Information Products Using Multi-Temporal High Resolution Optical Data in A Model Framework—The M4Land Project. Available online: http://seom.esa.int/S2forScience2014/files/05_S2forScience-AgricultureI_KLUG.pdf (accessed on 30 September 2014).
- Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef]
- Klar, C.W.; Fiener, P.; Neuhaus, P.; Lenz-Wiedemann, V.I.S.; Schneider, K. Modelling of soil nitrogen dynamics within the decision support system DANUBIA. Ecol. Model. 2008, 217, 181–196. [Google Scholar] [CrossRef]
- Robertson, B.; Beckett, K.; Rampersad, C.; Putih, R. Quantitative geometric calibration & validation of the Rapideye constellation. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009.
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.K. Hyperspectral vegetation indices for estimation of leaf area index. In Proceedings of ISPRS Commission VII Mid-term Symposium, Enschede, the Netherlands, 8–11 May 2006.
- Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal exploitation of the Sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens. 2012, 4, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, W.; Bach, H. Simulation of Sentinel-3 images by four-stream surface-atmosphere radiative transfer modeling in the optical and thermal domains. Remote Sens. Environ. 2012, 120, 197–207. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- Guérif, M.; Duke, C.L. Adjustment procedures of a crop model to the site specific characteristics of soil and crop using remote sensing data assimilation. Agr. Ecosyst. Environ. 2000, 81, 57–69. [Google Scholar] [CrossRef]
- Machwitz, M.; Giustarini, L.; Bossung, C.; Frantz, D.; Schlerf, M.; Lilienthal, H.; Udelhoven, T. Enhanced biomass prediction by assimilating satellite data into a crop growth model. Environ. Model. Softw. 2014, 62, 437–453. [Google Scholar] [CrossRef]
- Blackmore, S. Remedial correction of yield map data. Precis. Agr. 1999, 1, 53–66. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Richter, K.; Atzberger, C.; Hank, T.B.; Mauser, W. Derivation of biophysical variables from Earth observation data: Validation and statistical measures. J. Appl. Remote Sens. 2012, 6. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agr. Biol. Eng. 2007, 50, 885–900. [Google Scholar]
- FAO. Harmonized World Soil Database (Version 1.21); FAO, IIASA: Rome, Italy and Laxenburg, Austria, 2012. [Google Scholar]
- US Geological Survey (USGS). Shuttle Radar Topography Mission, 1 Arc Second Scene, Unfilled Unfinished 2.0. Available online: http://www.landcover.org/data/srtm/ (accessed on 30 September 2014).
- Kastelliz, A.; Ruckenbauer, P. Quantifizierung Des Trockenheitsbedingten Ertragsrückganges Bei Getreide Sowie Prüfung der Entwicklung von Verfahren zur Frühzeitigen Prognose Eines Entsprechenden Minderertrages. Available online: https://forschung.boku.ac.at/fis/suchen.publikationen_uni_autoren?sprache_in=en&ansicht_in=&menue_id_in=211&publikation_id_in=18085 (accessed on 30 September 2014).
- Hank, T.B.; Frank, T.; Bach, H.; Mauser, W. On the Effect of Multiseasonal Earth Observation Availability for Assimilation-Supported Modelling of Winter Wheat Yield. Available online: http://www.spacebooks-online.com/product_info.php?products_id=17572 (accessed on 30 September 2014).
- Zhao, Y.; Chen, S.; Shen, S. Assimilating remote sensing information with crop model using Ensemble Kalman Filter for improving LAI monitoring and yield estimation. Ecol. Model. 2013, 270, 30–42. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hank, T.B.; Bach, H.; Mauser, W. Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sens. 2015, 7, 3934-3965. https://doi.org/10.3390/rs70403934
Hank TB, Bach H, Mauser W. Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sensing. 2015; 7(4):3934-3965. https://doi.org/10.3390/rs70403934
Chicago/Turabian StyleHank, Tobias B., Heike Bach, and Wolfram Mauser. 2015. "Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe" Remote Sensing 7, no. 4: 3934-3965. https://doi.org/10.3390/rs70403934
APA StyleHank, T. B., Bach, H., & Mauser, W. (2015). Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sensing, 7(4), 3934-3965. https://doi.org/10.3390/rs70403934