Spatio-Temporal Change of Snow Cover and Its Response to Climate over the Tibetan Plateau Based on an Improved Daily Cloud-Free Snow Cover Product
"> Figure 1
<p>Shuttle Radar Topography Mission (SRTM)-Digital Elevation Model (DEM) based elevation and location of climate stations over the Tibetan Plateau region. S1–S7 denote the seven Landsat images used for validation of MODIS composite snow cover images.</p> "> Figure 2
<p>Mean cloud coverage from standard daily MODIS snow cover products (left: Terra MODIS and right: Aqua MODIS) during the 8-year period from 2003 to 2010 in the TP region, with a mean cloud cover of 45% in the 10:30 am (<b>left</b>) <span class="html-italic">versus</span> 52% in the 1:30 pm (<b>right</b>).</p> "> Figure 3
<p>Mean cloud cover reduction over the period of 2003 to 2010 from MYD10A1/MOD10A1, to daily combined MOYD, to daily adjacent temporal reduction (MTS), to daily SNOWL result (MSL), and to daily MODIS and AMSR-E composite (MA) in the TP region.</p> "> Figure 4
<p>Examples of cloud reduction from MOD10A1 and MYD10A1 images on 2 February 2008 to different composite images MOYD, MTS, MSL, and MA of 2 February 2008, in Tibetan Plateau.</p> "> Figure 4 Cont.
<p>Examples of cloud reduction from MOD10A1 and MYD10A1 images on 2 February 2008 to different composite images MOYD, MTS, MSL, and MA of 2 February 2008, in Tibetan Plateau.</p> "> Figure 5
<p>Examples of snow cover maps from Landsat, MODIS and MODIS composites on 22 February 2003 (region S4 of <a href="#remotesensing-07-00169-f001" class="html-fig">Figure 1</a>).</p> "> Figure 5 Cont.
<p>Examples of snow cover maps from Landsat, MODIS and MODIS composites on 22 February 2003 (region S4 of <a href="#remotesensing-07-00169-f001" class="html-fig">Figure 1</a>).</p> "> Figure 6
<p>The weight ratio (Rwi) of snow cover over the course of year. The dots indicate the average Rwi, and the vertical bars are the standard deviation of Rwi during 2003–2010.</p> "> Figure 7
<p>Mean spatial patterns of the year of snow cover onset (<b>a</b>); melt (<b>b</b>); and snow cover continuous (<b>c</b>).</p> "> Figure 8
<p>Snow covered days (SCD) maps from the daily cloudless snow cover images (<span class="html-italic">i.e.</span>, MA) during 2003 to 2010.</p> "> Figure 9
<p>Change tendency (days/year) of snow-covered days (SCD) (<b>a</b>) and its significance level (<b>b</b>) in pixel scale during the 8-year period in the TP.</p> "> Figure 10
<p>Dynamic changes of daily SCA, daily mean temperature, and daily precipitation from 2003 to 2010.</p> "> Figure 11
<p>Relationship among the persistent snow cover area, annual mean temperature, and annual precipitation from 2003 to 2010.</p> "> Figure 12
<p>Relationships between SCD and climate change in snow seasons in the 7 elevation zones from 2003 to 2010 in the TP.</p> "> Figure 12 Cont.
<p>Relationships between SCD and climate change in snow seasons in the 7 elevation zones from 2003 to 2010 in the TP.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Meteorological Observation Data
3.1.2. MODIS Snow-Cover Data
Snow Season | MOD10A1 | MYD10A1 | AE_DySno | |||||
---|---|---|---|---|---|---|---|---|
Total Images | Missing Date | Mean Cloud (%) | Total Images | Missing Date | Mean Cloud (%) | Total Images | Missing Date | |
2003 | 357 | 17–24 December | 39.83 | 364 | 48.94 | 358 | 30 October–5 November | |
2004 | 365 | 19 February | 37.75 | 366 | - | 46.85 | 365 | 19 November |
2005 | 365 | - | 43.81 | 365 | - | 53.72 | 364 | 17 November |
2006 | 364 | 24 August | 37.33 | 364 | 5 July | 46.20 | 364 | 18 November |
2007 | 365 | - | 38.67 | 364 | 2 December | 47.88 | 363 | 27– 28 November |
2008 | 366 | 21–23 December | 40.97 | 366 | 49.15 | 366 | ||
2009 | 365 | 45.61 | 365 | 51.20 | 364 | July 11 | ||
2010 | 365 | 44.37 | 365 | 49.91 | 363 | 3–4 February |
3.1.3. Passive Microwave AMSR-E/Aqua Daily SWE Data
3.1.4. DEM
3.1.5. Landsat TM/ETM
Region | Sensor | Day | Local time | Path | Row |
---|---|---|---|---|---|
S1 | ETM+ | 2007/11/20 | 11:13:59 | 147 | 037 |
S2 | TM | 2010/08/23 | 11:19:23 | 148 | 035 |
S3 | ETM+ | 2007/04/15 | 10:55:31 | 134 | 040 |
S4 | ETM+ | 2003/02/22 | 10:58:44 | 135 | 038 |
S5 | ETM+ | 2003/03/24 | 10:53:27 | 141 | 039 |
S6 | ETM+ | 2003/05/05 | 10:57:19 | 132 | 034 |
S7 | ETM+ | 2003/11/22 | 11:01:42 | 131 | 038 |
3.2. Methods
3.2.1. Composite Rules for Daily Cloud-Free Snow Cover Product
3.2.2. Accuracy Assessment of the Snow-Cover Images
Image: Snow | Image: No Snow | Image: Cloud | |
---|---|---|---|
Ground: snow | Sb | Ss1 | Ss2 |
Ground: no snow | Ls1 | Lb | Ls2 |
3.2.3. Maximum Snow-Covered Days (SCD)
4. Results and Discussion
4.1. Effectiveness of Cloud Removal
4.2. Snow Classification Accuracy
SCA Image | S-S | S-L | S-C | L-L | L-S | L-C | Clear Sky | All Sky | ||
---|---|---|---|---|---|---|---|---|---|---|
Snow Accuracy (%) | Overall Accuracy (%) | Snow Accuracy (%) | Overall Accuracy (%) | |||||||
MOD10A1 | 1936 | 448 | 3855 | 139,735 | 797 | 102,290 | 81.21 | 99.13 | 31.03 | 56.88 |
MYD10A1 | 1452 | 613 | 4326 | 122,914 | 1486 | 114,580 | 70.31 | 98.34 | 22.72 | 50.68 |
MOYD | 2552 | 546 | 2733 | 179,275 | 2372 | 63,011 | 82.38 | 98.42 | 43.77 | 72.59 |
MTS | 3710 | 663 | 2183 | 200,816 | 2461 | 41,204 | 84.84 | 98.50 | 56.59 | 81.47 |
MSL | 4670 | 781 | 1736 | 215,291 | 2558 | 26,068 | 85.67 | 98.50 | 64.98 | 87.60 |
MA | 4979 | 875 | 0 | 245,364 | 3199 | 0 | 85.05 | 98.40 | 85.05 | 98.40 |
Region | Snow Cover Image | Khat | Snow Cover (%) of MODIS Image | Snow Cover (%) of Landsat Image |
---|---|---|---|---|
S1 | MOD10A1 | 0.467 | 10.63 | 18.82 |
MYD10A1 | 0.383 | 11.26 | ||
MOYD | 0.536 | 13.10 | ||
MTS | 0.590 | 13.51 | ||
MSL | 0.671 | 13.92 | ||
MA | 0.703 | 14.23 | ||
S2 | MOD10A1 | 0.591 | 38.83 | 48.44 |
MYD10A1 | 0.413 | 21.37 | ||
MOYD | 0.667 | 40.41 | ||
MTS | 0.731 | 42.53 | ||
MSL | 0.794 | 44.16 | ||
MA | 0.812 | 45.95 | ||
S3 | MOD10A1 | 0.561 | 28.76 | 39.67 |
MYD10A1 | 0.493 | 17.14 | ||
MOYD | 0.630 | 30.78 | ||
MTS | 0.686 | 31.52 | ||
MSL | 0.728 | 32.67 | ||
MA | 0.769 | 35.17 | ||
S4 | MOD10A1 | 0.687 | 49.10 | 65.32 |
MYD10A1 | 0.089 | 9.20 | ||
MOYD | 0.743 | 51.31 | ||
MTS | 0.767 | 53.14 | ||
MSL | 0.813 | 57.91 | ||
MA | 0.841 | 61.30 | ||
S5 | MOD10A1 | 0.531 | 10.64 | 17.33 |
MYD10A1 | 0.484 | 7.07 | ||
MOYD | 0.590 | 11.31 | ||
MTS | 0.663 | 11.62 | ||
MSL | 0.721 | 12.91 | ||
MA | 0.744 | 13.57 | ||
S6 | MOD10A1 | 0.511 | 13.31 | 20.21 |
MYD10A1 | 0.372 | 9.38 | ||
MOYD | 0.563 | 13.54 | ||
MTS | 0.608 | 13.72 | ||
MSL | 0.688 | 14.05 | ||
MA | 0.706 | 14.62 | ||
S7 | MOD10A1 | 0.507 | 40.26 | 51.36 |
MYD10A1 | 0.483 | 33.94 | ||
MOYD | 0.539 | 41.13 | ||
MTS | 0.551 | 43.47 | ||
MSL | 0.684 | 46.18 | ||
MA | 0.721 | 46.76 |
4.3. The Timing of Snow Cover Onset and Melt, and Continuous Snow Cover
4.4. Tendency of SCD during 2003–2010
Year | Area of SCD (%) | ||||
---|---|---|---|---|---|
SCD ≤ 60 | 61 < SCD ≤ 120 | 121 < SCD ≤ 180 | 181 < SCD ≤ 350 | SCD > 350 | |
2003 | 30.03 | 41.13 | 6.45 | 6.37 | 16.03 |
2004 | 30.95 | 40.51 | 7.60 | 7.60 | 13.34 |
2005 | 29.88 | 40.88 | 7.84 | 7.11 | 14.33 |
2006 | 29.83 | 39.70 | 8.52 | 8.94 | 12.01 |
2007 | 28.53 | 39.43 | 10.45 | 10.71 | 10.88 |
2008 | 27.49 | 38.82 | 11.68 | 12.13 | 9.88 |
2009 | 26.32 | 38.28 | 11.74 | 14.52 | 9.14 |
2010 | 25.78 | 37.66 | 11.49 | 15.41 | 9.66 |
4.5. Spatial-Temporal Variability of Snow-Cover Area and Its Response to Climate Change
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ. 2006, 101, 257–269. [Google Scholar] [CrossRef]
- Wulder, M.; Nelson, T.; Derksen, C.; Seemann, D. Snow cover variability across central Canada (1978–2002) derived from satellite passive microwave data. Clim. Chang. 2007, 82, 113–130. [Google Scholar] [CrossRef]
- Andreadis, K.M.; Lettenmaier, D.P. Assimilating remotely sensed snow observations into a macroscale hydrology model. Adv. Water Resour. 2006, 29, 872–886. [Google Scholar] [CrossRef]
- Clark, M.P.; Slater, A.G.; Barrett, A.P.; Hay, L.E.; McCabe, G.J.; Rajagopalan, B.; Leavesley, G.H. Assimilation of snow covered area information into hydrologic and land-surface models. Adv. Water Resour. 2006, 29, 1209–1221. [Google Scholar] [CrossRef]
- Grayson, R.B.; Blöschl, G.; Western, A.W.; McMahon, T.A. Advances in the use of observed spatial patterns of catchment hydrological response. Adv. Water Resour. 2002, 25, 1313–1334. [Google Scholar] [CrossRef]
- Hall, D.K.; Foster, J.L.; DiGirolamo, N.E.; Riggs, G.A. Snow cover, snowmelt timing and stream power in the Wind River Range, Wyoming. Geomorphology 2012, 137, 87–93. [Google Scholar] [CrossRef]
- Lopez, P.; Sirguey, P.; Arnaud, Y.; Pouyaud, B.; Chevallier, P. Snow cover monitoring in the Northern Patagonia Icefield using MODIS satellite images (2000–2006). Glob. Planet Chang. 2008, 61, 103–116. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol. 2008, 358, 240–258. [Google Scholar] [CrossRef]
- Tekeli, A.E.; Akyürek, Z.; Arda Şorman, A.; Şensoy, A.; Ünal; Şorman, A. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Liang, T.G.; Huang, X.D.; Wu, C.X.; Liu, X.Y.; Li, W.L.; Guo, Z.G.; Ren, J.Z. An application of MODIS data to snow cover monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1514–1526. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua. J. Hydrol. 2009, 371, 192–200. [Google Scholar]
- Wang, X.; Xie, H.; Liang, T. Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1497–1513. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, X.; Xie, H.; Wu, C.; Feng, Q.; Huang, X.; Chen, Q. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements. Remote Sens. Environ. 2008, 112, 3750–3761. [Google Scholar] [CrossRef]
- Xie, H.; Wang, X.; Liang, T. Development and assessment of combined Terra and Aqua snow cover products in Colorado Plateau, USA and northern Xinjiang, China. J. Appl. Remote Sens. 2009. [Google Scholar] [CrossRef]
- Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13, 1361–1373. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, N.; Yao, T. Evaluation of a cloud-gap-filled MODIS daily snow cover product over the Pacific Northwest USA. J. Hydrol. 2011, 404, 157–165. [Google Scholar] [CrossRef]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Foster, J.; Hall, D.K.; Eylander, J.B.; Kim, E.; Riggs, G.A.; Tedesco, M.; Nghiem, S.; Kelly, R.; Choudhury, B.; Reichle, R.; et al. Blended visible, passive microwave and scatterometer global snow products. In Proceedings of the 64th Eastern Snow Conference, St.John’s, NL, Canada, 29 May–1 June 2007.
- Foster, J.L.; Hall, D.K.; Eylander, J.B.; Riggs, G.A.; Nghiem, S.V.; Tedesco, M.; Kim, E.; Montesano, P.M.; Kelly, R.E.J.; Casey, K.A.; et al. A blended global snow product using visible, passive microwave and scatterometer satellite data. Int. J. Remote Sens. 2011, 32, 1371–1395. [Google Scholar]
- Paudel, K.P.; Andersen, P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology. Remote Sens. Environ. 2011, 115, 1234–1246. [Google Scholar] [CrossRef]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef]
- Huang, X.D.; Hao, X.H.; Feng, Q.S.; Wang, W.; Liang, T.G. A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau. Sci. Cold Arid Reg. 2014, 6, 0116–0123. [Google Scholar]
- Bavay, M.; Grünewald, T.; Lehning, M. Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Adv. Water Resour. 2013, 55, 4–16. [Google Scholar]
- Crawford, C.J.; Manson, S.M.; Bauer, M.E.; Hall, D.K. Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sens. Environ. 2013, 135, 224–233. [Google Scholar] [CrossRef]
- Liston, G.E. Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic, and ecologic modeling. J. Appl. Meteorol. 1999, 38, 1474–1487. [Google Scholar] [CrossRef]
- Liston, G.E.; Sturm, M. Winter precipitation patterns in arctic Alaska determined from a blowing-snow model and snow-depth observations. J. Hydrometeorol. 2002, 3, 646–659. [Google Scholar] [CrossRef]
- Xu, B.; Cao, J.; Hansen, J.; Yao, T.; Joswia, D.R.; Wang, N.; Wu, G.; Wang, M.; Zhao, H.; Yang, W.; et al. Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. USA 2009, 106, 22114–22118. [Google Scholar] [CrossRef]
- Singh, S.K.; Rathore, B.P.; Bahuguna, I.M. Ajai. Snow cover variability in the Himalayan-Tibetan region. Int. J. Climatol. 2014, 34, 446–452. [Google Scholar]
- Lee, W.S.; Bhawar, R.L.; Kim, M.K.; Sang, J. Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring. Atmos. Environ. 2013, 75, 113–122. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Pepin, N.; Flügel, W.A.; Sanchez-Lorenzo, A.; Yan, Y.; Zhang, Y. Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Glob. Planet Chang. 2010, 72, 11–24. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Wang, Q.; Zang, L.; Zhou, B.; Hao, Z.; Su, F. Climate change on the northern Tibetan Plateau during 1957–2009: Spatial patterns and possible mechanisms. J. Clim. 2013, 26, 85–109. [Google Scholar] [CrossRef]
- Si, D.; Ding, Y. Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979–2011. J. Clim. 2013, 26, 7622–7634. [Google Scholar] [CrossRef]
- Han, L.; Tsunekawa, A.; Tsubo, M.; He, C.; Shen, M. Spatial variations in snow cover and seasonally frozen ground over northern China and Mongolia, 1988–2010. Glob. Planet Chang. 2014, 116, 139–148. [Google Scholar] [CrossRef]
- Maskey, S.; Uhlenbrook, S.; Ojha, S. An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Clim. Chang. 2011, 108, 391–400. [Google Scholar] [CrossRef]
- Mukhopadhyay, B. Signature and hydrologic consequences of climate change within the upper-middle Brahmaputra Basin. Hydrol. Process. 2013, 27, 2126–2143. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Zhang, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–8. [Google Scholar]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar]
- Wang, W.; Liang, T.; Huang, X.; Feng, Q.; Xie, H.; Liu, X.; Chen, M.; Wang, X. Early warning of snow-caused disasters in pastoral areas on the Tibetan Plateau. Nat. Hazard. Earth Syst. Sci. 2013, 13, 1411–1425. [Google Scholar] [CrossRef]
- Gao, J.; Williams, M.W.; Fu, X.; Wang, G.; Gong, T. Spatiotemporal distribution of snow in eastern Tibet and the response to climate change. Remote Sens. Environ. 2012, 121, 1–9. [Google Scholar] [CrossRef]
- Kang, S.; Xu, Y.; You, Q.; Flügel, W.A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010. [Google Scholar] [CrossRef]
- Rodriguez, E.; Morris, C.; Belz, E. A global assessment of the (SRTM) performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Huang, X.; Xie, H.; Liang, T.; Yi, D. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau. Int. J. Remote Sens. 2011, 32, 5177–5196. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Scaramuzza, P.; Micijevic, E.; Chander, G. SLC Gap-Filled Products: Phase One Methodology. Available online: http://landsat.usgs.gov/documents/SLC_Gap_Fill_Methodology.pdf (accessed on 19 December 2014).
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sens. Environ. 2003, 86, 162–176. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Cohen, J. The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Meas. 1973, 33, 613–619. [Google Scholar] [CrossRef]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Visser, H.; Nijs, T.D. The map comparison kit. Environ. Model. Softw. 2006, 21, 346–358. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar]
- Tang, Z.; Wang, J.; Li, H.; Yan, L. Spatiotemporal changes of snow cover over the Tibetan plateau based on cloud-removed moderate resolution imaging spectroradiometer fractional snow cover product from 2001 to 2011. J. Appl. Remote Sens. 2013. [Google Scholar] [CrossRef]
- Qin, D.; Liu, S.; Li, P. Snow cover distribution, variability, and response to climate change in western China. J. Clim. 2006, 19, 1820–1833. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Wang, B. Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian Summer Monsoon. J. Clim. 2004, 17, 2780–2793. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Huang, X.; Deng, J.; Xie, H.; Liang, T. Spatio-Temporal Change of Snow Cover and Its Response to Climate over the Tibetan Plateau Based on an Improved Daily Cloud-Free Snow Cover Product. Remote Sens. 2015, 7, 169-194. https://doi.org/10.3390/rs70100169
Wang W, Huang X, Deng J, Xie H, Liang T. Spatio-Temporal Change of Snow Cover and Its Response to Climate over the Tibetan Plateau Based on an Improved Daily Cloud-Free Snow Cover Product. Remote Sensing. 2015; 7(1):169-194. https://doi.org/10.3390/rs70100169
Chicago/Turabian StyleWang, Wei, Xiaodong Huang, Jie Deng, Hongjie Xie, and Tiangang Liang. 2015. "Spatio-Temporal Change of Snow Cover and Its Response to Climate over the Tibetan Plateau Based on an Improved Daily Cloud-Free Snow Cover Product" Remote Sensing 7, no. 1: 169-194. https://doi.org/10.3390/rs70100169
APA StyleWang, W., Huang, X., Deng, J., Xie, H., & Liang, T. (2015). Spatio-Temporal Change of Snow Cover and Its Response to Climate over the Tibetan Plateau Based on an Improved Daily Cloud-Free Snow Cover Product. Remote Sensing, 7(1), 169-194. https://doi.org/10.3390/rs70100169