A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters
<p>R<sub>rs</sub> spectra acquired from Mississippi’s Catfish Ponds (red) and Funil Reservoir (blue).</p> ">
<p>Correlation between chl-<span class="html-italic">a</span> and PC concentrations in both study sites.</p> ">
<p>Validation of the models in the mixed dataset using calibrations from (1) Mixed dataset, (2) Funil Reservoir dataset, and (3) Catfish Ponds dataset.</p> ">
<p>Validation for Funil Reservoir dataset using calibrations from (1) Mixed dataset and (3) Catfish Ponds dataset.</p> ">
<p>Validation for Catfish Pond dataset using calibrations from (1) Mixed dataset and (2) Funil Reservoir dataset.</p> ">
<p>Sensitivity analysis showing the interference of chl-<span class="html-italic">a</span> on the performance of (<b>A</b>) SC00, (<b>B</b>) SI05, (<b>C</b>) MI09, and (<b>D</b>) MM09.</p> ">
<p>Models using simulated Hyperion data: sensitivity analysis showing the interference of chl-<span class="html-italic">a</span> on the performance of (<b>A</b>) SC00, (<b>B</b>) SI05, (<b>C</b>) MI09, and (<b>D</b>) MM09.</p> ">
<p>Models using simulated CHRIS data: sensitivity analysis showing the interference of chl-<span class="html-italic">a</span> on the performance of (<b>A</b>) SC00, (<b>B</b>) SI05, (<b>C</b>) MI09, and (<b>D</b>) MM09.</p> ">
<p>Models using simulated HyspIRI data: sensitivity analysis showing the interference of chl-<span class="html-italic">a</span> on the performance of (<b>A</b>) SC00, (<b>B</b>) SI05, (<b>C</b>) MI09, and (<b>D</b>) MM09.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Remote Sensing Reflectance
2.3. Limnological Parameters
2.3.1. Chlorophyll-a
2.3.2. Phycocyanin
2.4. Model Calibration and Validation
2.5. Error Analysis
2.6. Sensitivity Analysis
3. Results and Discussion
3.1. Reflectance Characteristics
3.2. Bio-Optical Models
3.3. Sensitivity Analysis
3.4. Sensor Analysis
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Sun, D.; Li, Y.; Wang, Q.; Gao, J.; Le, C.; Huang, C.; Gong, S. Hyperspectral Remote Sensing of the Pigment C-Phycocyanin in Turbid Inland Waters, Based on Optical Classification. IEEE Trans. Geosci. Remote Sens 2013, 99, 1–14. [Google Scholar]
- Codd, G.A.; Lindsay, J.; Young, F.M.; Morrison, L.F.; Metcalf, J.S. Harmful Cyanobacteria. In Harmful Cyanobacteria, 1st ed.; Huisman, J., Matthijs, H.C.P., Visser, P.M., Eds.; Springer: Dordrecht, The Netherlands, 2005; Chapter 1; pp. 1–23. [Google Scholar]
- Sivonen, K.; Jones, G. Cyanobacterial Toxins. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 1st ed.; Chorus, I., Bartram, J., Eds.; UNESCO/WHO/UNEP: London, UK, 1999; Chapter 3; pp. 55–124. [Google Scholar]
- Azevedo, S.M.F.O.; Carmichael, W.W.; Jochimsen, E.M.; Rinehart, K.L.; Lau, S.; Shaw, G.R.; Eaglesham, G.K. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 2002, 181–182, 441–446. [Google Scholar]
- Mishra, S.; Mishra, D.R.; Schluchter, W.M. A novel algorithm for predicting phycocyanin concentrations in cyanobacteria: A proximal hyperspectral remote sensing approach. Remote Sens 2009, 1, 758–775. [Google Scholar]
- Reynolds, C.S. Ecology of Phytoplankton, 1st ed; Cambridge University Press: Cambridge, UK, 2006; p. 535. [Google Scholar]
- Shapiro, J. Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verh. Int. Ver. Limnol 1990, 24, 38–54. [Google Scholar]
- El-Alem, A.; Chokmani, K.; Laurion, I.; El-Adlouni, S.E. Comparative analysis of four models to estimate chlorophyll-a concentration in Case-2 waters using moderate resolution imaging spectroradiometer (MODIS) imagery. Remote Sens 2012, 4, 2373–2400. [Google Scholar]
- Le, C.; Li, Y.; Zha, Y.; Wang, Q.; Zhang, H.; Yin, B. Remote sensing of phycocyanin pigment in highly turbid inland waters in Lake Taihu, China. Int. J. Remote Sens 2011, 32, 8253–8269. [Google Scholar]
- Simis, S.G.H.; Peters, S.W.M.; Gons, H.J. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol. Oceanogr 2005, 50, 237–245. [Google Scholar]
- Hunter, P.D.; Tyler, A.N.; Carvalho, L.; Codd, G.A.; Maberly, S.C. Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell populations and toxins in eutrophic lakes. Remote Sens. Environ 2010, 114, 2705–2718. [Google Scholar] [Green Version]
- Mishra, S.; Mishra, D.R.; Lee, Z.; Tucker, C.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sens. Environ 2013, 133, 141–151. [Google Scholar]
- Reinart, A.; Kutser, T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sens. Environ 2006, 102, 74–85. [Google Scholar]
- Hunter, P.D.; Tyler, A.N.; Gilvear, D.J.; Willby, N.J. Using remote sensing to aid the assessment of human health risks from blooms of potentially toxic cyanobacteria. Environ. Sci. Technol 2009, 43, 2627–2633. [Google Scholar]
- Randolph, K.; Wilson, J.; Tedesco, L.; Li, L.; Pascual, D.P.; Soyeux, E. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens. Environ 2008, 112, 4009–4019. [Google Scholar]
- Dekker, A.G. Detection of Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing. 1993. [Google Scholar]
- Schalles, J.F.; Yacobi, Y.Z. Remote detection and seasonal patterns of phycocyanin, carotenoid, and chlorophyll pigments in eutrophic waters. Archives Hydrobiologica 2000, 55, 153–168. [Google Scholar]
- Branco, C.W.C.; Rocha, M.I.A.; Pinto, G.F.S.; Gômara, G.A.; De Filippo, R. Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lakes Reservoirs: Res. Manage 2002, 7, 87–92. [Google Scholar]
- Rocha, M.I.A.; Branco, C.W.C.; Sampaio, G.F.; Gômara, G.A.; De Filippo, R. Spatial and temporal variation of limnological features, Microcystis aeruginosa and zooplankton in a eutrophic reservoir (Funil Reservoir, Rio de Janeiro). Acta Limnol. Brasil 2002, 14, 73–86. [Google Scholar]
- Tucker, C.S. Ecology of channel catfish culture ponds in northwest Mississippi. Rev. Fisheries Sci 1996, 4, 1–54. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Optics 1999, 38, 7442–7455. [Google Scholar]
- Ohde, T.; Siegel, H. Derivation of immersion factors for the hyperspectral TriOS radiance sensor. J. Optics A: Pure Appl. Optics 2003, 5, L12–L14. [Google Scholar]
- Austin, R.W.; Halikas, G. The Index of Refraction of Seawater; Visibility Laboratory-Scripps Institute of Oceanography: La Jolla, CA, USA, 1976. [Google Scholar]
- Nush, E.A. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol 1980, 14, 14–36. [Google Scholar]
- Lorenzen, C.J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr 1967, 12, 343–346. [Google Scholar]
- Arar, E.J. Determination of Chlorophylls a and b and Identification of Other Pigments of Interest in Marine and Freshwater Algae Using High Performance Liquid Chromatography with Visible Wavelength Detection. In USEPA Method 447–0; US Environmental Protection Agency: Cincinnati, OH, USA, 1997. [Google Scholar]
- Sarada, R.; Pillai, M.G.; Ravishanker, G.A. Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process. Biochem 1999, 34, 795–801. [Google Scholar]
- Bennett, A.; Bogorad, L. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell. Biol 1973, 58, 419–435. [Google Scholar]
- Mishra, S. Remote Sensing of Harmful Algal Bloom. 2012. [Google Scholar]
- Vincent, R.K.; Qin, X.M.; McKay, R.M.L.; Miner, J.; Czajkowski, K.; Savino, J.; Bridgeman, T. Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie. Remote Sens. Environ 2004, 89, 381–392. [Google Scholar]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Appl. Optics 2005, 44, 412–422. [Google Scholar]
- Post, A.F.; Wit, R.; Mur, L.R. Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J. Plankton Res 1985, 7, 487–495. [Google Scholar]
- Gitelson, A. Non-destructive Estimation of Foliar Pigment (chlorophylls, carotenoids, and anthocyanins) Contents: Evaluating a Semi-analytical Three-band Model. In Hyperspectral. Remote Sensing of Vegetation; Thenkabail, P.S., Lyon, G.J., Huete, A., Eds.; CRC Press-Taylor and Francis Group: Boca Raton, FL, USA, 2011; pp. 141–166. [Google Scholar]
- Mariotto, I.; Thenkabail, P.S.; Huete, A.; Slonecker, E.T.; Platonov, A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ 2013, 139, 291–305. [Google Scholar]
- Cutter, M.A.; Lobb, D.R.; Williams, T.L.; Renton, R.E. Integration & Testing of the Compact High-Resolution Imaging Spectrometer (CHRIS). Proc. SPIE 1999, 3753, 180–191. [Google Scholar]
- Barry, P.S.; Mendenhall, J.; Jarecke, P.; Folkman, M.; Pearlman, J.; Markham, B. EO-1 Hyperion Hyperspectral Aggregation and Comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+. Proceedings of 2002 International IEEE Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 1648–1651.
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr 2004, 49, 2179–2189. [Google Scholar]
- Matthews, M.W.; Bernard, S. Similar studies should be performed in diverse inland waters representative of other geographical regions of the world where data are lacking. Remote Sens 2013, 5, 4370–4404. [Google Scholar]
Funil Reservoir | Catfish Ponds | ||
---|---|---|---|
Surface Area (km2) | 40 | 0.004–0.03 | |
Mean depth (m) | 20 | 1.1 | |
Time frame of field campaigns (years) | 2013 | 2010–2011 | |
Total samples | 16 | 23 | |
Chl-a (μg/L) | Maximum | 52.78 | 831.35 |
Minimum | 4.92 | 59.79 | |
Range | 47.86 | 771.56 | |
Average | 19.49 | 230.2 | |
Standard Deviation | 14.79 | 176.16 | |
PC (μg/L) | Maximum | 35.95 | 857.08 |
Minimum | 9.16 | 68.13 | |
Range | 26.79 | 788.95 | |
Average | 14.52 | 241.51 | |
Standard Deviation | 7.70 | 215.72 | |
Total Nitrogen (μg/L) | Maximum | 1,620 | 8,000 [12] |
Minimum | 100 | 4,000 [12] | |
Total Phosphorus (μg/L) | Maximum | 37.77 | 500 [12] |
Minimum | 16.46 | 800 [12] |
Name | Reference | Model |
---|---|---|
DE93 | Dekker [16] | PC ∝ [(Rrs(600) + Rrs(648)) − Rrs(624)] |
SC00 | Schalles & Yacobi [17] | PC ∝ Rrs(650) / Rrs(625) |
SI05 | Simis et al. [10]* | PC ∝ Rrs(709) / Rrs(620) |
MI09 | Mishra et al. [5] | PC ∝ Rrs(700) / Rrs(600) |
SM12 | Mishra [29] | PC ∝ Rrs(709) / Rrs(600) |
MM09 | Modified Mishra et al. [5]** | PC ∝ Rrs(724) / Rrs(600) |
HU10 | Hunter et al. [11] | PC ∝ [( (615) − (600)) · Rrs(725)] |
Calibration | Validation |
---|---|
Mixed dataset (n = 23) | Catfish Ponds |
Funil Reservoir | |
Mixed dataset (n = 16) | |
Funil Reservoir | Catfish Ponds |
Mixed dataset (n = 16) | |
Catfish Ponds | Funil Reservoir |
Mixed dataset (n = 16) |
Estimator | Formulas |
---|---|
Bias | |
MAE | |
MSE | |
RMSE |
Model | R2 | Adj. R2 | X1 | p-value |
---|---|---|---|---|
Funil Dataset | ||||
DE93 | 0.088 | 0.023 | −664.535 | 0.2654 |
SC00 | 0.745 | 0.727 | 181.122 | >0.0001 |
SI05 | 0.793 | 0.779 | 41.196 | >0.0001 |
MI09 | 0.807 | 0.794 | 50.836 | >0.0001 |
SM12 | 0.909 | 0.902 | 35.638 | >0.0001 |
MM09 | 0.414 | 0.372 | 62.656 | 0.0072 |
HU10 | 0.125 | 0.062 | −3.841 | 0.1798 |
Catfish Ponds Dataset | ||||
DE93 | 0.617 | 0.599 | 1381.323 | >0.0001 |
SC00 | 0.338 | 0.306 | 1622.554 | 0.0036 |
SI05 | 0.748 | 0.736 | 274.873 | >0.0001 |
MI09 | 0.170 | 0.131 | 268.015 | 0.0504 |
SM12 | 0.591 | 0.572 | 344.990 | >0.0001 |
MM09 | 0.731 | 0.718 | 270.868 | >0.0001 |
HU10 | 0.060 | 0.015 | −12.285 | 0.2611 |
Mixed Dataset | ||||
DE93 | 0.051 | 0.006 | 5966.595 | 0.3016 |
SC00 | 0.518 | 0.495 | 1303.031 | 0.0001 |
SI05 | 0.684 | 0.669 | 132.365 | >0.0001 |
MI09 | 0.547 | 0.525 | 198.107 | 0.0001 |
SM12 | 0.640 | 0.623 | 155.970 | >0.0001 |
MM09 | 0.673 | 0.658 | 136.692 | >0.0001 |
HU10 | 0.466 | 0.441 | −13.919 | 0.0003 |
PC | Chl-a | PC:Chl-a |
---|---|---|
68.13 | 228.26 | 0.30 |
77.19 | 229.25 | 0.33 |
83.19 | 59.79 | 1.39 |
84.88 | 205.60 | 0.41 |
92.24 | 117.40 | 0.78 |
105.75 | 131.05 | 0.80 |
114.50 | 94.03 | 1.22 |
116.82 | 109.26 | 1.07 |
118.79 | 360.01 | 0.33 |
119.02 | 152.50 | 0.78 |
119.61 | 130.43 | 0.91 |
136.44 | 101.40 | 1.34 |
159.31 | 332.38 | 0.48 |
173.54 | 117.42 | 1.48 |
191.12 | 198.50 | 0.96 |
203.17 | 164.30 | 1.23 |
234.32 | 149.61 | 1.56 |
301.60 | 210.83 | 1.43 |
352.66 | 155.54 | 2.26 |
550.96 | 168.22 | 3.27 |
639.02 | 539.73 | 1.18 |
655.33 | 507.70 | 1.29 |
857.08 | 831.35 | 1.03 |
Mixed Dataset Mixed Calibration | |||||||
---|---|---|---|---|---|---|---|
Estimator | D93 | SC00 | S05 | M09 | SM12 | MM09 | H10 |
Bias | 27.884 | 55.119 | 30.472 | 36.709 | 34.287 | 36.062 | 43.176 |
MAE | 156.034 | 100.247 | 84.726 | 111.710 | 95.558 | 79.642 | 111.087 |
MSE | 59,821.765 | 31,009.467 | 18,507.809 | 39,371.406 | 25,612.029 | 17,665.301 | 43,296.194 |
RMSE | 244.585 | 176.095 | 136.043 | 198.422 | 160.038 | 132.911 | 208.077 |
RMSE(%) | 28.845 | 20.768 | 16.044 | 23.401 | 18.874 | 15.675 | 24.540 |
Funil Reservoir Calibration | |||||||
Bias | 171.474 | 145.279 | 109.744 | 124.394 | 125.551 | 90.375 | 125.742 |
MAE | 173.428 | 147.109 | 112.190 | 125.891 | 125.922 | 96.090 | 127.198 |
MSE | 86,109.276 | 72,634.933 | 52,200.685 | 65,289.794 | 62,249.894 | 41,362.024 | 66,594.099 |
RMSE | 293.444 | 269.509 | 228.475 | 255.519 | 249.499 | 203.377 | 258.058 |
RMSE(%) | 34.607 | 31.785 | 26.945 | 30.135 | 29.425 | 23.985 | 30.434 |
Catfish Ponds Calibration | |||||||
Bias | 3,103.557 | 6.313 | 128.852 | 43.635 | 138.474 | 123.386 | 1.175 |
MAE | 3,103.557 | 105.260 | 154.526 | 125.628 | 174.409 | 147.100 | 140.362 |
MSE | 9,688,859.449 | 23,761.486 | 36,958.560 | 38,411.144 | 46,590.750 | 30,953.637 | 42,369.837 |
RMSE | 3,112.693 | 154.148 | 192.246 | 195.988 | 215.849 | 175.936 | 205.839 |
RMSE(%) | 367.097 | 18.179 | 22.673 | 23.114 | 25.456 | 20.749 | 24.276 |
Funil Reservoir Dataset | |||||||
Catfish Ponds Calibration | |||||||
Bias | 2,939.150 | −57.184 | 279.993 | 52.170 | 275.038 | 250.650 | −58.610 |
MAE | 2,939.150 | 62.948 | 279.993 | 55.642 | 275.038 | 250.650 | 58.610 |
MSE | 8,638,835.017 | 6,338.247 | 79,998.696 | 3,682.608 | 79,783.183 | 63,125.493 | 3,526.687 |
RMSE | 2,939.190 | 79.613 | 282.840 | 60.684 | 282.459 | 251.248 | 59.386 |
RMSE(%) | 10,969.226 | 297.121 | 1,055.577 | 226.478 | 1,054.154 | 937.672 | 221.632 |
Mixed Calibration | |||||||
Bias | −83.570 | −24.276 | 22.903 | 3.636 | 11.262 | 23.130 | –3.393 |
MAE | 83.570 | 34.342 | 25.841 | 16.831 | 23.490 | 23.768 | 5.927 |
MSE | 7,115.514 | 2,301.443 | 767.377 | 426.762 | 746.925 | 604.059 | 114.377 |
RMSE | 84.354 | 47.973 | 27.702 | 20.658 | 27.330 | 24.578 | 10.695 |
RMSE(%) | 314.812 | 179.039 | 103.384 | 77.098 | 101.997 | 91.725 | 39.913 |
Catfish Ponds Dataset | |||||||
Funil Reservoir Calibration | |||||||
Bias | 5,040.604 | 207.704 | 150.849 | 173.707 | 174.972 | 116.461 | 174.222 |
MAE | 5,040.604 | 207.704 | 151.761 | 173.707 | 174.972 | 126.505 | 174.222 |
MSE | 25,606,599.392 | 86,365.614 | 59,637.746 | 73,992.014 | 71,760.882 | 46,177.712 | 75,424.552 |
RMSE | 5,060.296 | 293.880 | 244.208 | 272.015 | 267.882 | 214.890 | 274.635 |
RMSE(%) | 641.398 | 37.250 | 30.954 | 34.478 | 33.954 | 27.238 | 34.810 |
Catfish Ponds Dataset | |||||||
Mixed Calibration | |||||||
Bias | −13613.808 | 64.019 | 5.273 | 22.999 | 10.620 | 8.999 | 32.391 |
MAE | 13613.808 | 128.858 | 104.186 | 128.950 | 115.237 | 104.689 | 140.536 |
MSE | 185,669,971.223 | 35,529.975 | 21,105.169 | 39,685.667 | 27,393.270 | 20,938.331 | 44,856.741 |
RMSE | 13,626.077 | 188.494 | 145.276 | 199.213 | 165.509 | 144.701 | 211.794 |
RMSE(%) | 1727.120 | 23.892 | 18.414 | 25.250 | 20.978 | 18.341 | 26.845 |
Hyperion | CHRIS | HyspIRI | ||||
---|---|---|---|---|---|---|
R2 | RMSE (%) | R2 | RMSE (%) | R2 | RMSE (%) | |
SC00 | 0.42 | 23.23 | 0.49 | 16.81 | 0.54 | 18.38 |
SI05 | 0.69 | 15.54 | 0.72 | 14.45 | 0.71 | 14.87 |
MI09 | 0.55 | 22.63 | 0.64 | 18.43 | 0.62 | 20.16 |
MM09 | 0.68 | 16.30 | 0.68 | 15.41 | 0.68 | 15.58 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ogashawara, I.; Mishra, D.R.; Mishra, S.; Curtarelli, M.P.; Stech, J.L. A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters. Remote Sens. 2013, 5, 4774-4798. https://doi.org/10.3390/rs5104774
Ogashawara I, Mishra DR, Mishra S, Curtarelli MP, Stech JL. A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters. Remote Sensing. 2013; 5(10):4774-4798. https://doi.org/10.3390/rs5104774
Chicago/Turabian StyleOgashawara, Igor, Deepak R. Mishra, Sachidananda Mishra, Marcelo P. Curtarelli, and José L. Stech. 2013. "A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters" Remote Sensing 5, no. 10: 4774-4798. https://doi.org/10.3390/rs5104774
APA StyleOgashawara, I., Mishra, D. R., Mishra, S., Curtarelli, M. P., & Stech, J. L. (2013). A Performance Review of Reflectance Based Algorithms for Predicting Phycocyanin Concentrations in Inland Waters. Remote Sensing, 5(10), 4774-4798. https://doi.org/10.3390/rs5104774