Development of a Reduced-Degree-of-Freedom (DOF) Bipedal Robot with Elastic Ankles
<p>A novel 5-DOF biped robot kinematic architecture with a pendulum balancer: (<b>a</b>) CAD design developed by FreeCAD 0.19.3 software. (<b>b</b>) Real prototype. (<b>c</b>,<b>d</b>) Numerical model. 1—Weight applied by the end-effector frame of a pendulum; 2—Pendulum link; 3—Inverted pendulum actuator; 4—Central link; 5—Left hip roll servo motor; 6—Left leg link; 7—Left leg yaw servo motor. 8—IMU sensor (Model: WitMotion); 9—Dual motor controllers (Model: Odrive 3.5). <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>1</mn> </msub> </semantics></math>—Right leg yaw actuator’s position; <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>2</mn> </msub> </semantics></math>—Right hip roll joint’s position; <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>3</mn> </msub> </semantics></math>—Left hip roll joint’s position; <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>4</mn> </msub> </semantics></math>—Left leg yaw actuator’s position; <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>6</mn> </msub> </semantics></math>—Upper limb pendulum actuator’s position.</p> "> Figure 2
<p>CAD design of a novel reduced-DOF bipedal robot with an RRYY kinematic architecture performing a half gait cycle: (<b>a</b>) Home position. (<b>b</b>) Rotation of the upper limb part to the right side. (<b>c</b>) Stance phase. (<b>d</b>) Forward movement. (<b>e</b>) Double support phase. (<b>f</b>) Returning the upper limb part to the home position. (<b>g</b>) Closeup view of the feet. Δx—Displacement of the robot.</p> "> Figure 3
<p>Description of the chains used in kinematic calculations for the RRYY bipedal robot: (<b>a</b>) first kinematic chain (frames 1, 2, 3, 4 and 5); (<b>b</b>) second kinematic chain (frames 1, 2, 6 and 7); (<b>c</b>) intersection between the first and second kinematic chains (frames 1 and 2). <math display="inline"><semantics> <msub> <mi mathvariant="normal">L</mi> <mi>i</mi> </msub> </semantics></math>—link length that corresponds to frame i, m.</p> "> Figure 4
<p>Sketch of the bipedal robot stepping forward while balancing on its right leg: (<b>a</b>) Frontal plane. (<b>b</b>) Sagittal plane. (<b>c</b>) Transverse plane.</p> "> Figure 5
<p>Sketch of a weight balancer with weights applied on both sides.</p> "> Figure 6
<p>TPU -based ankle inclination on the frontal plane and its geometric structure: (<b>a</b>) abnormal case; (<b>b</b>) normal case; (<b>c</b>) foot structure; (<b>d</b>) 3D view of an ankle; (<b>e</b>) 2D Surface view of an ankle. 1—IMU sensor; 2—aluminum extrusion 20 mm × 20 mm; 3—foot cover; 4—TPU-based ankle; 5—back part; 6—front part of a foot.</p> "> Figure 7
<p>Pictures of the 3D printed sample TPU ankle prototypes with a modulus elasticity of <math display="inline"><semantics> <mi>σ</mi> </semantics></math> = 90 MPa at various geometries a × b × h: (<b>a</b>) 10 mm × 10 mm × 20 mm; (<b>b</b>) 20 mm × 10 mm × 20 mm; (<b>c</b>) 10 mm × 10 mm × 40 mm; (<b>d</b>) 20 mm × 10 mm × 40 mm; (<b>e</b>) 20 mm × 20 mm × 40 mm.</p> "> Figure 8
<p>Pictures of the tested TPU ankles with a modulus elasticity of <math display="inline"><semantics> <mi>σ</mi> </semantics></math> = 90 MPa and link length of 500 mm at different geometries. Graphs of inclination angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> (deg) vs. external tension force F (N): (<b>a</b>) FEA method; (<b>b</b>) Real prototypes. 1—IMU sensor. 2—Force sensor.</p> "> Figure 9
<p>Graphs of the tested TPU ankles with a modulus elasticity of <math display="inline"><semantics> <mi>σ</mi> </semantics></math> = 90 MPa and link length of 500 mm at different geometries with axes representing inclination angle <math display="inline"><semantics> <mi>α</mi> </semantics></math> (deg) vs. tension force F (N): (<b>a</b>) FEA method; (<b>b</b>) Real prototypes.</p> "> Figure 10
<p>Diagrams of estimated inclination angle minimization: (<b>a</b>) FEA method; (<b>b</b>) real prototypes; (<b>c</b>) average result.</p> "> Figure 11
<p>Block diagram dedicated to the RRYY biped robot single support phase stability control.</p> "> Figure 12
<p>Elastic ankle stability control graphs during the single support phase: (<b>a</b>) Central link positions measured with an IMU sensor. (<b>b</b>) Right hip roll joint angles measured with a position encoder.</p> "> Figure 13
<p>RRYY bipedal robot lifting the left leg by 45 degrees and putting it down at a single-support stance (developed in the CoppeliaSim environment).</p> "> Figure 14
<p>Kinematic results of RRYY bipedal robot’s actuators lifting the left leg by 45 degrees and putting down in the single-support stance: (<b>a</b>) Joint positions (virtual environment). (<b>b</b>) Joint velocities (virtual environment). (<b>c</b>) Joint positions (real prototype). (<b>d</b>) Joint velocities (real prototype).</p> "> Figure 15
<p>Real model of the RRYY bipedal robot lifting the left leg by 45 degrees and putting it down in the single support stance.</p> "> Figure 16
<p>RRYY bipedal robot performing lateral motion lasting 2 cycles (developed in CoppeliaSim environment).</p> "> Figure 17
<p>Graphs of biped robot’s joints were obtained during the execution of a lateral movement: (<b>a</b>) Joint positions (virtual environment). (<b>b</b>) Joint velocities (virtual environment). (<b>c</b>) Joint positions (real prototype). (<b>d</b>) Joint velocities (real prototype).</p> "> Figure 18
<p>Testing an RRYY bipedal robot based on a lateral motion with a duration of 2 cycles.</p> "> Figure 19
<p>Kinematic results of 5 joints were obtained during the execution of a gait sequence: (<b>a</b>) Joint positions (virtual environment). (<b>b</b>) Joint velocities (virtual environment). (<b>c</b>) Joint positions (real prototype). (<b>d</b>) Joint velocities (real prototype).</p> "> Figure 20
<p>Pseudo-static walking sequence with 2 cycles (CoppeliaSim environment).</p> "> Figure 21
<p>Pseudo-static walking sequence with 2 cycles (Physical prototype).</p> "> Figure 22
<p>Experimental results of 5 joints obtained from numerical and real models after the execution of two gait cycles: (<b>a</b>) Torque computed from the numerical model. (<b>b</b>) Torque measured. (<b>c</b>) Joint mechanical power. (<b>d</b>) Joint electrical power.</p> "> Figure A1
<p>Block diagram of electrical and software connections.</p> "> Figure A2
<p>Right triangles were used to determine the right hip roll angle <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>2</mn> </msub> </semantics></math> during the inverse kinematics (IK) calculation: (<b>a</b>) Swinging leg part. (<b>b</b>) Pendulum actuator part.</p> ">
Abstract
:1. Introduction
1.1. Trajectory Generation Using an Inverted Pendulum Model
1.2. Stability Control
1.3. Foot Slip Mitigation
1.4. Adjustment on Rough Terrains
- The ankle inclination angle is measured by applying external forces. Predictions from Finite Element Analysis (FEA) and real-world models are compared.
- The stability of the robot’s central link and the roll motor of the lifting hip during the single support phase is assessed.
2. Robot Design and Computations
2.1. Kinematic Architecture
2.1.1. Forward Kinematics
2.1.2. Inverse Kinematics
2.2. Static Architecture
2.2.1. Conditions for Equilibrium
2.2.2. Conditions for Safety
2.2.3. Inverse Statics
2.2.4. Forward Statics
3. Experimental Results
3.1. Testing the Elastic Ankle Inclination
3.2. Single Support Phase Stability Control
Algorithm 1: Testing the robot’s equilibrium stability at a single support phase. |
Input: Input IMU roll reference position, (deg) Output: Roll motor positions, [t] (deg), IMU roll actual positions, [t] (deg) |
3.3. Single Support Phase
3.4. Performance of a Lateral Movement
3.5. Performance of a Pseudo-Static Gait Sequence
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TPU | Thermoplastic Polyurethane |
FEA | Finite Element Analysis |
DOF | Degrees of freedom |
SLIP | Spring-Loaded Inverted Pendulum |
LIPM | Linear Inverted Pendulum Model |
LPM | Linear Pendulum Model |
PDAC | Passive Dynamic Autonomous Control |
RVFLNN | Random Vector Function-link Neural Network |
ZMP | Zero moment point |
COM | Center of mass |
COP | Center of Pressure |
MPC | Model Predictive Control |
BLDC | Brushless direct current |
CAN | Controller area network |
IMU | Inertial measurement units |
PLA | Polylactic acid |
SSP | Single support phase |
DSP | Double support phase |
CPG | Central pattern generator |
TPE | Thermoplastic elastomer |
CF-PETg | Carbon fiber with polyethylene terephthalate glycol |
Appendix A. Electrical System Design
Appendix B. Solving the Kinematics Problem for Chain 1 (Swinging Leg Side)
Matrix Elements | Specification |
---|---|
a11 | |
a12 | |
a13 | |
a21 | |
a22 | |
a23 | |
a31 | |
a32 | |
a33 | |
Appendix C. Solving the Kinematics Problem for Chain 2 (Upper Limb Part)
Matrix Elements | Specification |
---|---|
b11 | |
b12 | |
b13 | |
b21 | |
b22 | |
b23 | |
b31 | 0 |
b32 | |
b33 | |
References
- Englsberger, J.; Werner, A.; Ott, C.; Henze, B.; Roa, M.A.; Garofalo, G.; Burger, R.; Beyer, A.; Eiberger, O.; Schmid, K.; et al. Overview of the torque-controlled humanoid robot TORO. In Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014; pp. 916–923. [Google Scholar] [CrossRef]
- Marquez-Acosta, E.; De-León-Gómez, V.; Santibañez, V.; Chevallereau, C.; Aoustin, Y. Experimental Validation of the Essential Model for a Complete Walking Gait with the NAO Robot. Robotics 2024, 13, 123. [Google Scholar] [CrossRef]
- Destephe, M.; Brandão, M.; Kishi, T.; Zecca, M.; Hashimoto, K.; Takanishi, A. Walking in the uncanny valley: Importance of the attractiveness on the acceptance of a robot as a working partner. Front. Psychol. 2015, 6, 204. [Google Scholar] [CrossRef] [PubMed]
- Grizzle, J.; Abba, G.; Plestan, F. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Trans. Autom. Control 2001, 46, 51–64. [Google Scholar] [CrossRef]
- Grizzle, J.; Hurst, J.; Morris, B.; Park, H.W.; Sreenath, K. MABEL, a new robotic bipedal walker and runner. In Proceedings of the 2009 American Control Conference, St. Louis, MI, USA, 10–12 June 2009; pp. 2030–2036. [Google Scholar] [CrossRef]
- Mir-Nasiri, N.; Jo, H.S. Joint space legs trajectory planning for optimal hip-mass carry walk of 4-DOF parallelogram bipedal robot. In Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, China, 4–7 August 2010; pp. 616–621. [Google Scholar] [CrossRef]
- Zang, X.; Lin, Z.; Liu, Y.; Sun, X.; Zhao, J. Control Strategy Research for a Biped Walking Robot with Flexible Ankle Joints. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 93–96. [Google Scholar] [CrossRef]
- Li, Z.; Zeng, J.; Chen, S.; Sreenath, K. Autonomous Navigation of Underactuated Bipedal Robots in Height-Constrained Environments. arXiv 2023, arXiv:2109.05714. [Google Scholar] [CrossRef]
- Mou, H.; Tang, J.; Liu, J.; Xu, W.; Hou, Y.; Zhang, J. High Dynamic Bipedal Robot with Underactuated Telescopic Straight Legs. Mathematics 2024, 12, 600. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Feng, H.; Zhang, S.; Fu, Y. Design and Control for WLR-3P: A Hydraulic Wheel-legged Robot. Cyborg Bionic Syst. 2023, 4, 0025. [Google Scholar] [CrossRef]
- Chang, L.; Piao, S.; Leng, X.; He, Z.; Zhu, Z. Inverted pendulum model for turn-planning for biped robot. Phys. Commun. 2020, 42, 101168. [Google Scholar] [CrossRef]
- Shi, X.; Gao, J.; Lu, Y.; Tian, D.; Liu, Y. Biped Walking Based on Stiffness Optimization and Hierarchical Quadratic Programming. Sensors 2021, 21, 1696. [Google Scholar] [CrossRef]
- Li, L.; Xie, Z.; Luo, X.; Li, J. Trajectory Planning of Flexible Walking for Biped Robots Using Linear Inverted Pendulum Model and Linear Pendulum Model. Sensors 2021, 21, 1082. [Google Scholar] [CrossRef]
- Cho, J.; Park, J.H. Model Predictive Control of Running Biped Robot. Appl. Sci. 2022, 12, 11183. [Google Scholar] [CrossRef]
- Sun, P.; Gu, Y.; Mao, H.; Chen, Z.; Li, Y. Research on Walking Gait Planning and Simulation of a Novel Hybrid Biped Robot. Biomimetics 2023, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.J.; Mitchell, J.E.; Goldfarb, M. Actuated Dynamic Walking in a Seven-Link Biped Robot. IEEE/ASME Trans. Mechatronics 2012, 17, 147–156. [Google Scholar] [CrossRef]
- Aoyama, T.; Hasegawa, Y.; Sekiyama, K.; Fukuda, T. Stabilizing and Direction Control of Efficient 3-D Biped Walking Based on PDAC. IEEE/ASME Trans. Mechatronics 2009, 14, 712–718. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Z.; Chen, Y. Bipedal walking pattern generation and control for humanoid robot with bivariate stability margin optimization. Adv. Mech. Eng. 2018, 10, 1687814018800883. [Google Scholar] [CrossRef]
- Caron, S.; Mallein, B. Balance Control Using Both ZMP and COM Height Variations: A Convex Boundedness Approach. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1779–1784. [Google Scholar] [CrossRef]
- Ding, B.; Plummer, A.; Iravani, P. Investigating Balancing Control of a Standing Bipedal Robot With Point Foot Contact. In Proceedings of the 7th IFAC Symposium on Mechatronic Systems MECHATRONICS 2016, Loughborough, UK, 5–8 September 2016. [Google Scholar] [CrossRef]
- Yeon, J.S.; Park, J.H. A Fast Turning Method for Biped Robots With Foot Slip During Single-Support Phase. IEEE/ASME Trans. Mechatronics 2014, 19, 1847–1858. [Google Scholar] [CrossRef]
- Zhao, F.; Gao, J. Anti-Slip Gait Planning for a Humanoid Robot in Fast Walking. Appl. Sci. 2019, 9, 2657. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, X.; Huang, Q.; Zhang, W.; Meng, L.; Zhang, W.; Gao, J. Gait Planning of Omnidirectional Walk on Inclined Ground for Biped Robots. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 888–897. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, E.S. Foot and Body Control of Biped Robots to Walk on Irregularly Protruded Uneven Surfaces. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2009, 39, 289–297. [Google Scholar] [CrossRef]
- Yao, D.; Yang, L.; Xiao, X.; Zhou, M. Velocity-Based Gait Planning for Underactuated Bipedal Robot on Uneven and Compliant Terrain. IEEE Trans. Ind. Electron. 2022, 69, 11414–11424. [Google Scholar] [CrossRef]
- Tang, J.; Mou, H.; Hou, Y.; Zhu, Y.; Liu, J.; Zhang, J. A Low-Inertia and High-Stiffness Cable-Driven Biped Robot: Design, Modeling, and Control. Mathematics 2024, 12, 559. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, Z.; Dong, S.; Sadiq, M.T.; Zhang, F.; Li, J. Structural Design and Kinematics Simulation of Hydraulic Biped Robot. Appl. Sci. 2020, 10, 6377. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, X.; Liu, H.; Chen, X.; Fukuda, T.; Huang, Q. Design of Crawling Motion for a Biped Walking Humanoid with 3-DoF Rigid-Flexible Waist. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 974–979. [Google Scholar] [CrossRef]
- He, B.; Wang, S.; Liu, Y. Underactuated robotics: A review. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419862164. [Google Scholar] [CrossRef]
- Chevallereau, C.; Grizzle, J.W.; Shih, C.L. Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot. IEEE Trans. Robot. 2009, 25, 37–50. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, L.; Yu, Z.; Chen, X.; Han, L. Motion Control for Underactuated Robots Adaptable to Uneven Terrain by Decomposing Body Balance and Velocity Tracking. In Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), Chongqing, China, 3–5 July 2021; pp. 729–734. [Google Scholar] [CrossRef]
- Sadati, N.; Hamed, K. Neural Controller for a 5-Link Planar Biped Robot. In Proceedings of the RO-MAN 2007—The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, Republic of Korea, 26–29 August 2007; pp. 980–985. [Google Scholar] [CrossRef]
- Oda, N.; Abe, T. Visual stabilization of walking motion for biped robot with flexible ankles. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 2744–2749. [Google Scholar] [CrossRef]
- Vu, M.N.; Lee, J.; Oh, Y. Walking control algorithm of the 5-link robot based on operational space control. In Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 6–9 August 2017; pp. 1532–1537. [Google Scholar] [CrossRef]
- Folgheraiter, M.; Yessirkepov, S.; Umurzakov, T. NU-Biped-4.5: A Lightweight and Low-Prototyping-Cost Full-Size Bipedal Robot. Robotics 2024, 13, 9. [Google Scholar] [CrossRef]
- Folgheraiter, M.; Umurzakov, T.; Yessirkepov, S. A Servomotor with Adjustable Stiffness for Humanoid Robotics Application. In Proceedings of the ACTUATOR 2022, International Conference and Exhibition on New Actuator Systems and Applications, Mannheim, Germany, 28–30 June 2022; pp. 1–4. [Google Scholar]
- Craig, J. Introduction to Robotics: Mechanics & Control; Addison-Wesley Publishing Company: Reading, MA, USA, 1986. [Google Scholar]
- FacFox. Comparison of 3D Printed TPU, Rubber, and Other Flexible Resins. 2024. Available online: https://facfox.com/docs/kb/comparison-of-3d-printed-tpu-rubber-and-other-flexible-resins (accessed on 1 November 2024).
- Emir, F.; Ceylan, G.; Ayyildiz, S. In vitro accuracies of 3D printed models manufactured by two different printing technologies. Eur. Oral Res. 2020, 55, 80–85. [Google Scholar] [CrossRef]
- Saen, P.; Atai, M.; Nodehi, A.; Solhi, L. Physical characterization of unfilled and nanofilled dental resins: Static versus dynamic mechanical properties. Dent. Mater. 2016, 32, e185–e197. [Google Scholar] [CrossRef]
- RTP Company. An Engineer’s Guide to Specify the Right Thermoplastic. 2014. Available online: https://www.rtpcompany.com/wp-content/uploads/2014/03/An-Engineers-Guide-to-Specify-the-Right-Thermoplastic.pdf (accessed on 1 November 2024).
- Adrover Monserrat, B.; Llumà, J.; Jerez-Mesa, R.; Travieso-Rodriguez, J. Study of the Influence of the Manufacturing Parameters on Tensile Properties of Thermoplastic Elastomers. Polymers 2022, 14, 576. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, J.; Zhang, J.; Zhang, X.; Zhu, T.; Hong, D. Design and Control of a Miniature Bipedal Robot with Proprioceptive Actuation for Dynamic Behaviors. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 8547–8553. [Google Scholar] [CrossRef]
- Niiyama, R.; Nishikawa, S.; Kuniyoshi, Y. A Biomechanical Approach to Open-loop Bipedal Running with a Musculoskeletal Athlete Robot. Adv. Robot. 2012, 26, 383–398. [Google Scholar] [CrossRef]
- Lin, Z.; Zang, X.; Zhang, X.; Liu, Y.; Heng, S. Analysis and control of biped robot with variable stiffness ankle joints. Technol. Health Care 2020, 28, 453–462. [Google Scholar] [CrossRef]
- Engineering, S. Inverse Kinematics of Robots | Robotics 101. YouTube. 2022. Available online: https://www.youtube.com/watch?v=1-FJhmey7vk (accessed on 20 November 2024).
Lower Limb Joint Orientation | Geometric Motion Type and Direction | Possible Actions | Advantages | Drawbacks | Upper Limb Joint Orientation (Min. Requirement) | Sketch |
---|---|---|---|---|---|---|
RRRR (Roll joints) | Planar motion (y and z direction) | - SSP configuration; - Lateral motion | - Simplicity to control SSP stability; - Minimized foot sliding problems; - Simplified upper limb structure | - Absence of effective walking sequence | Roll joint | |
PPPP (Pitch joints) [6,32,34] | Planar motion (x and z direction) | - SSP configuration; - Squatting; - Gait plan | - Fast forward movement | - Difficulty to control SSP stability; - Foot sliding problems; - Complicated upper limb design | Roll and pitch joints | |
YYYY (Yaw joints) | Planar motion (x and y direction) | - Turning; - Sliding gait | - Simplicity to stabilize posture equilibrium; - Simplified upper limb structure | - Poor motion quality due to sliding feet on the ground; - Slow forward movement | Roll joint | |
PPYY (Pitch and yaw joints) | Spatial motion (x, y and z direction) | - SSP configuration; - Turning; - Gait plan | - Fast forward movement | - Difficulty to control SSP stability; - Foot sliding problems; - Complicated upper limb structure | Roll and pitch joints | |
YYPP (Yaw and pitch joints) | Spatial motion (x, y and z direction) | - SSP configuration; - Turning; - Gait plan; - Squatting | - Fast forward movement; - Simplicity to control SSP stability | - Foot sliding problems; - Complicated upper limb design | Roll and pitch joints | |
RRPP (Roll and pitch joints) | Spatial motion (x, y and z direction) | - SSP configuration; - Gait plan; - Squatting; - Lateral motion | - Fast forward movement; - Simplicity to control SSP stability; - Minimized foot sliding problems | - Complicated upper limb design | Roll and pitch joints | |
PPRR (Pitch and roll joints) | Spatial motion (x, y and z direction) | - SSP configuration; - Gait plan; - Lateral motion | - Fast forward movement; - Minimized foot sliding problems | - Difficulty to control SSP stability; - Complicated upper limb design | Roll and pitch joints | |
YYRR (Yaw and roll joints) | Spatial motion (x, y and z direction) | - SSP configuration; - Gait plan; - Turning; - Lateral motion | - Minimized foot sliding problems; - Simplified upper limb structure | - Difficulty to control SSP stability; - Slow forward movement | Roll joint | |
RRYY 1 (Roll and yaw joints) | Spatial motion (x, y and z direction) | - SSP configuration; - Gait plan; - Turning; - Lateral motion | - Simplicity to control SSP stability; - Minimized foot sliding problems; - Simplified upper limb structure | - Slow forward movement | Roll joint |
Material Type | Durability, Chemical and Tear Resistance | Young’s Modulus, MPa | Melting Temperature, Deg | Applications |
---|---|---|---|---|
Polylactic acid (PLA) | Low and brittle | 2500–3200 | 170–200 | Food containers, biodegradable medical implants and drug delivery system. |
CF-PETg 1 | High | 2340–2800 | 230–250 | Bike handles, protective cases, gears and load-bearing parts of machines. |
Thermoplastic elastomer (TPE) | Average | 4–120 | 180–250 | Toy industry, cellphone cases, insulators of electrical cables. |
Polyjet rubber | Low [38] | 61 [39] | 50–62 | Gaskets, wearables, masks, covers [38]. |
Flexible resin | Low [38] | 2 [40] | 115–120 | Shoe manufacturing; wearable devices; padding elements [38]. |
Nylon | High [41] | 2700 | 270 | Textile, ropes and tendon lines. |
Thermoplastic polyurethane (TPU) | High[38] | 60–100 [42] | 200–220 | Gaskets, shock absorbers, vibration isolators, seals [38] |
Trial i | Ankle Size (a × b × h), mm | dy(FEA), mm | (FEA), deg | Z(FEA), % | dy(Real), mm | (Real), deg | Z(Real), % | |
---|---|---|---|---|---|---|---|---|
1 | 10 × 10 × 20 | 37 | 4.24 | 0 | 60 | 6.39 | 0 | 0 |
2 | 20 × 10 × 20 | 29.6 | 3.4 | 19.8 | 34.3 | 3.93 | 38.5 | 29.2 |
3 | 10 × 20 × 20 | 33.7 | 3.86 | 9 | 49.2 | 5.65 | 11.6 | 10.3 |
4 | 20 × 20 × 20 | 27.7 | 3.18 | 25 | 28.78 | 3.3 | 48.4 | 36.7 |
5 | 10 × 10 × 40 | 34.8 | 4 | 5.7 | 52.3 | 6 | 6.1 | 5.9 |
6 | 20 × 10 × 40 | 23.1 | 2.65 | 37.5 | 24 | 2.75 | 57 | 47.2 |
7 | 10 × 20 × 40 | 28.8 | 3.3 | 22.2 | 29.7 | 3.4 | 46.8 | 34.5 |
8 | 20 × 20 × 40 | 19.66 | 2.25 | 46.9 | 20.1 | 2.3 | 64 | 55.5 |
Robot Name (Research Group) | Motion of the Legs (DOF) | Foot Structure | Yaw Joints | Total Mass, kg | Total Heigh, m | Walking Speed (m/s) | Research Works |
---|---|---|---|---|---|---|---|
Oda et al. [33] | 12 | Spring integrated | Present | 35 | 1.06 | N/A 1 | Vision-based vibration controller; visual stabilization; ankle deformation |
L04 Robot [9] | 6 | Rigid telescopic legs | Absent | N/A | Adjustable | 0.5 | Dynamic analysis of the bipedal motion |
Mir-Nasiri et al. [6] | 4 | Rigid flat | Absent | N/A | 1 | 0.6 | Trajectory planning strategy; pulley-based parallelogram mechanism |
Christine Chevallereau et al. [30] | 8 | Point feet | Absent | 9 | 0.6 | 0.45 | Minimized energy consumption; asymptotically stable periodic walking |
BRUCE [43] | 10 | 4 bar linkage mechanism | Present | 3.6 | 0.5 | 0.1 | Pulley added on each leg to reduce the inertia; real-time dynamic motion controller |
Zhang et al. [7] | 4 | Spring integrated | Absent | N/A | N/A | N/A | Time-invariant gait planning; gait stability; virtual constraint method |
CRANE robot [31] | 6 | Point feet | Absent | 8 | 0.96 | 0.1 | Velocity tracking and a posture balance strategy; feedforward torque controller |
Sadati et al. [32] | 4 | Point feet | Absent | 32 | 1.44 | N/A | CPG network, PI and feedback controller developed to regulate the hip and knee joints |
Vu et al. [34] | 4 | Spring integrated | Absent | 13.9 | 0.8 | N/A | Floating trunk stabilization developed for a walking sequence |
Aoyama et al. [17] | 12 | Rigid flat | Present | 24 | 1 | 0.26 | Prediction of the walking robot’s dynamic properties with PDAC concept |
Athlete robot [44] | 6 | Elastic blade | Absent | 10 | 1.86 | 2.1 | Testing the running and jumping actions; Pneumatic driven joints |
Zhenkun Lin et al. [45] | 4 | Pneumatic control unit integrated | Absent | 11 | 0.56 | 0.35 | Locomotion architecture; ankle stiffness analyzed |
NU-Biped-4.5 [35] | 12 | TPU ankle integrated | Present | 15 | 1.1 | 0.16 | ankle stiffness, energy absorption analyzed at an optimized height |
RRYY bipedal robot 2 | 4 | TPU ankle integrated | Present | 8–12 | 1.12 | 0.005 | Ankle geometry optimized; robot’s SSP posture stability analyzed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yessirkepov, S.; Folgheraiter, M.; Abakov, A.; Umurzakov, T. Development of a Reduced-Degree-of-Freedom (DOF) Bipedal Robot with Elastic Ankles. Robotics 2024, 13, 172. https://doi.org/10.3390/robotics13120172
Yessirkepov S, Folgheraiter M, Abakov A, Umurzakov T. Development of a Reduced-Degree-of-Freedom (DOF) Bipedal Robot with Elastic Ankles. Robotics. 2024; 13(12):172. https://doi.org/10.3390/robotics13120172
Chicago/Turabian StyleYessirkepov, Sharafatdin, Michele Folgheraiter, Arman Abakov, and Timur Umurzakov. 2024. "Development of a Reduced-Degree-of-Freedom (DOF) Bipedal Robot with Elastic Ankles" Robotics 13, no. 12: 172. https://doi.org/10.3390/robotics13120172
APA StyleYessirkepov, S., Folgheraiter, M., Abakov, A., & Umurzakov, T. (2024). Development of a Reduced-Degree-of-Freedom (DOF) Bipedal Robot with Elastic Ankles. Robotics, 13(12), 172. https://doi.org/10.3390/robotics13120172