Eight-Bar Elbow Joint Exoskeleton Mechanism
<p>Ten-bar exoskeleton elbow joint mechanism.</p> "> Figure 2
<p>Ten-bar mechanism.</p> "> Figure 3
<p>Watt I six-bar linkage: (<b>a</b>) vector loops; (<b>b</b>) ICs.</p> "> Figure 4
<p>Crossed four-bar linkage: (<b>a</b>) vector loop; (<b>b</b>) ICs.</p> "> Figure 5
<p>Ten-bar mechanism: ICs.</p> "> Figure 6
<p>Ten-bar mechanism: result for a crank angle <span class="html-italic">θ</span><sub>2</sub> = 255° of <span class="html-italic">A</span><sub>0</sub><span class="html-italic">A</span> (Blue and magenta colors indicate the eight-bar elbow joint exoskeleton mechanism and the crossed four-bar linkage, respectively).</p> "> Figure 7
<p>Ten-bar mechanism: result for a crank angle <span class="html-italic">θ</span><sub>2</sub> = 290° of <span class="html-italic">A</span><sub>0</sub><span class="html-italic">A.</span>(Blue and magenta colors indicate the eight-bar elbow joint exoskeleton mechanism and the crossed four-bar linkage, respectively).</p> "> Figure 8
<p>Ten-bar elbow joint exoskeleton mechanism: (<b>a</b>) kinematic sketch; (<b>b</b>) application.</p> "> Figure 9
<p>Ten-bar linkage for the upper-limb exoskeleton: result for a crank angle <span class="html-italic">θ</span><sub>2</sub> = 300° of <span class="html-italic">A</span><sub>0</sub><span class="html-italic">A</span>. (Blue and magenta colors indicate the eight-bar elbow joint exoskeleton mechanism and the crossed four-bar linkage, respectively).</p> "> Figure 10
<p>Result for a crank angle <span class="html-italic">θ</span><sub>2</sub> = 252° of <span class="html-italic">A</span><sub>0</sub><span class="html-italic">A</span> for ten-bar linkage (Blue and magenta colors indicate the eight-bar elbow joint exoskeleton mechanism and the crossed four-bar linkage, respectively).</p> "> Figure 11
<p>Ten-bar mechanism and 3D-printed prototype for different configurations of crank angles <span class="html-italic">θ</span><sub>2</sub>: (<b>a</b>) 225°; (<b>b</b>) 240°; (<b>c</b>) 252°; (<b>d</b>) 270°; (<b>e</b>) 300°; (<b>f</b>) 315°.</p> "> Figure 12
<p>Whole sequence of the ten-bar mechanism closing motion.</p> ">
Abstract
:1. Introduction
- -
- A natural coupling with the human arm;
- -
- Wearable by workers of different arm sizes;
- -
- One motor only;
- -
- A comfortable motor installation under the human arm.
2. Ten-Bar Exoskeleton Elbow Joint Mechanism
3. Kinematic Analysis
- Watt I six-bar linkage
- Crossed four-bar linkage
- Ten-bar mechanism
3.1. Watt I Six-Bar Linkage
3.2. Crossed Four-Bar Linkage
3.3. Ten-Bar Mechanism
4. Graphical and Numerical Results
5. Application and Prototype
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zatsiorsky, V.M. Kinematics of Human Motion; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Klopčar, N.; Tomšič, M.; Lenarčič, J. A kinematic model of the shoulder complex to evaluate the arm-reachable workspace. J. Biomech. 2007, 40, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Perry, J. Upper limb powered exoskeleton. Int. J. Humanoid Robot. 2007, 4, 529–548. [Google Scholar] [CrossRef]
- Naidu, D.; Stopforth, R.; Bright, G.; Davrajh, S. A 7 DOF exoskeleton arm: Shoulder, elbow, wrist and hand mechanism for assistance to upper limb disabled individuals. In Proceedings of the IEEE Africon ‘11, Victoria Falls, Zambia, 10 November 2011; pp. 1–6. [Google Scholar]
- Kiguchi, K.; Rahman, M.H.; Sasaki, M.; Teramoto, K. Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assist. Robot. Auton. Syst. 2008, 56, 678–691. [Google Scholar] [CrossRef]
- Wang, X.; Song, Q.; Wang, X.; Liu, P. Kinematics and dynamics analysis of a 3-DOF upper-limb exoskeleton with an internally rotated elbow joint. Appl. Sci. 2018, 8, 464. [Google Scholar] [CrossRef]
- Lu, J.; Chen, W.; Tomizuka, M. Kinematic design and analysis of a 6-DOF upper limb exoskeleton model for a brain-machine interface study. IFAC Proc. Vol. 2013, 46, 293–300. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, L.; Yanhe, Z.; Jie, Z.; Hegao, C. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints. Bio-Med. Mater. Eng. 2014, 24, 2527–2535. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, D.; Tsagarakis, N.; Kousidou, S.; Costa, N.; Sarakoglou, I. “Soft” exoskeletons for upper and lower body rehabilitation—Design, control and testing. Int. J. Humanoid Robot. 2014, 4, 549–573. [Google Scholar] [CrossRef]
- Vertechy, R.; Frisoli, A.; Dettori, A.; Solazzi, M.; Bergamasco, M. Development of a new exoskeleton for upper limb rehabilitation. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 188–193. [Google Scholar]
- Tsai, B.C.; Wang, W.W.; Hsu, L.C.; Fu, L.C.; Lai, J.S. An articulated rehabilitation robot for upper limb physiotherapy and training. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 1470–1475. [Google Scholar]
- Lugo-Villeda, M.A.; Ruiz-Sanchez, F.J.; Dominguez-Ramirez, O.A.; Parra-Vega, V. Robotic Design of an Upper Limb Exoskeleton for Motion Analysis and Rehabilitation of Paediatric Neuromuscular Disorders. In Converging Clinical and Engineering Research on Neurorehabilitation. Biosystems & Biorobotics; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1, pp. 265–269. [Google Scholar]
- Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb rehabilitation. J. NeuroEngineering Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Zeiaee, A.; Soltani-Zarrin, R.; Langari, R.; Tafreshi, R. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 759–764. [Google Scholar]
- Gull, M.A.; Bai, S.; Bak, T. A Review on Design of Upper Limb Exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef]
- Tsagarakis, N.; Caldwell, D.G.; Medrano-Cerda, G.A. A 7 DOF pneumatic muscle actuator (PMA) powered exoskeleton. In Proceedings of the 8th IEEE International Workshop on Robot and Human Interaction. RO-MAN ‘99 (Cat. No.99TH8483), Pisa, Italy, 27–29 September 1999; pp. 327–333. [Google Scholar]
- Stanišić, M.M.; Goehler, C.M. Reproducing human arm motion using a kinematically coupled humanoid shoulder-elbow complex. Appl. Bionics Biomech. 2008, 5, 175–185. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, Y.; Wang, X.; Zhao, Y.; Ding, Q. Configuration optimization and kinematic analysis of a wearable exoskeleton arm. In Proceedings of the 2017 International Conference on Robotics and Automation Sciences (ICRAS), Hong Kong, China, 26–29 August 2017; pp. 124–128. [Google Scholar]
- Ma, R.; Tang, Z.; Gao, X.; Ni, W. Mechanism Design and Kinematics Analysis of an Original Cable-driving Exoskeleton Robot. In Proceedings of the 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, 25–27 May 2018; pp. 1869–1874. [Google Scholar]
- Dežman, M.; Asfour, T.; Ude, A.; Gams, A. Mechanical design and friction modelling of a cable-driven upper-limb exoskeleton. Mech. Mach. Theory 2022, 171, 104746. [Google Scholar] [CrossRef]
- Bai, S.; Christensen, S.; Islam, M.R.U. An upper-body exoskeleton with a novel shoulder mechanism for assistive applications. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1041–1046. [Google Scholar]
- Figliolini, G.; Lanni, C.; Kaur, R. Kinematic synthesis of spherical four-bar linkages for five-poses rigid body guidance. In Advances in Mechanism and Machine Science; Uhl, T., Ed.; IFToMM WC 2019. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2019; Volume 73, pp. 639–648. [Google Scholar] [CrossRef]
- Bardi, E.; Gandolla, M.; Braghin, F.; Resta, F.; Pedrocchi, A.L.G.; Ambrosini, E. Upper limb soft robotic wearable devices: A systematic review. J. NeuroEngineering Rehabil. 2022, 19, 87. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Amemiya, M.; Kaneishi, D.; Nakashima, Y.; Seki, M.; Ando, T.; Kobayashi, Y.; Iijima, H.; Nagaoka, M.; Fujie, M.G.; et al. Development of an elbow-forearm interlock joint mechanism toward an exoskeleton for patients with essential tremor. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2055–2062. [Google Scholar]
- Manna, S.K.; Dubey, V.N. A mechanism for elbow exoskeleton for customised training. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1597–1602. [Google Scholar]
- Canesi, M.; Xiloyannis, M.; Ajoudani, A.; Biechi, A.; Masia, L. Modular one-to-many clutchable actuator for a soft elbow exosuit. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1679–1685. [Google Scholar]
- Song, H.; Kim, Y.S.; Yoon, J.; Yun, S.H.; Seo, J.; Kim, Y.J. Development of Low-Inertia High-Stiffness Manipulator LIMS2 for High-Speed Manipulation of Foldable Objects. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4145–4151. [Google Scholar]
- Zhang, S.; Fu, Q.; Guo, S.; Fu, Y. A Telepresence System for Therapist-in-the-Loop Training for Elbow Joint Rehabilitation. Appl. Sci. 2019, 9, 1710. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Yang, S.; Liu, J.; Hao, G. Design and experimental study of a passive power-source-free stiffness-self-adjustable mechanism. Front. Mech. Eng. 2021, 16, 32–45. [Google Scholar] [CrossRef]
- Beadle, C.W.; O’Brien, M.E. Kinematic analysis of the human elbow. Orthot. Prosthet. 1976, 30, 31–32. [Google Scholar]
- Freudenstein, F.; Woo, L.S. Kinematics of the human knee joint. Bull. Math. Biophys. 1969, 31, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Tomassi, L.; Lanni, C.; Figliolini, G. A Novel Design Method of Four-Bar Linkages Mimicking the Human Knee Joint in the Sagittal Plane. In The International Conference of IFToMM ITALY; Niola, V., Gasparetto, A., Quaglia, G., Carbone, G., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 586–592. [Google Scholar] [CrossRef]
- Figliolini, G.; Lanni, C.; Sorli, M. Kinematic analysis and centrodes between rotating tool with reciprocating motion and workpiece. In The International Conference of IFToMM ITALY; Niola, V., Gasparetto, A., Quaglia, G., Carbone, G., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 54–60. [Google Scholar] [CrossRef]
- Lanni, C.; Figliolini, G.; Tomassi, L. Higher-Order Centrodes and Bresse’s Circles of Slider-Crank Mechanisms. In Proceedings of the ASME 2023 IDETC-CIE2023, Boston, MA, USA, 20–23 August 2023; Volume 8. article number v008t08a012. [Google Scholar] [CrossRef]
- Figliolini, G.; Lanni, C.; Cirelli, M.; Pennestrì, E. Kinematic Properties of nth-order Bresse Circles Intersections for a Crank-Driven Rigid Body. Mech. Mach. Theory 2023, 190, 105445. [Google Scholar] [CrossRef]
- Gordon, C.G.; Churchill, T.; Clauser, C.E.; Bradtmiller, C.B.; McConville, J.T.; Tebbetts, I.; Walker, R.A. 1988 Anthropometric Survey of U.S. Personnel: Summary Statistics; Technical Report Natick/TR-89/044; Anthropology Research Project, Inc.: Yellow Springs, OH, USA, 1989. [Google Scholar]
r1 [mm] | r2 = r6 [mm] | r31 [mm] | r32 [mm] | r41 [mm] | r42 [mm] |
---|---|---|---|---|---|
70 | 30 | 45 | 50 | 65 | 40 |
r8 [mm] | r9 [mm] | r10 [mm] | r11 [mm] | d1 = d3 [mm] | d2 [mm] |
25 | 65 | 60 | 18 | 30 | 117.50 |
θ2 [deg] | vA [mm/s] | vB [mm/s] | vC [mm/s] | vD [mm/s] | vE [mm/s] |
---|---|---|---|---|---|
255 | [28.978, −7.765]T | [23.220, −17.463]T | [16.82, −28.239]T | [34.78, −35.324]T | [37.509, −28.21]T |
290 | [28.191, 10.261]T | [12.906, −5.905]T | [−4.077, −23.86]T | [13.328, −23.80]T | [20.848, −9.538]T |
vH6 [mm/s] | vH8 [mm/s] | vH68 [mm/s] | vM [mm/s] | vN [mm/s] | |
255 | [8.648, 56.278]T | [34.933, 39.356]T | [−26.38, 16.937]T | [8.853, 8.549]T | [17.782, 2.818]T |
290 | [−39.128, 44.18]T | [16.092, 24.658]T | [−54.675, 20.00]T | [5.443, 6.483]T | [12.502, 3.904]T |
θ2 [deg] | ω3 [rad/s] | ω4 [rad/s] | ω5 [rad/s] | ω6 [rad/s] | ω8 [rad/s] | ω9 [rad/s] | ω10 [rad/s] | ω11 [rad/s] |
---|---|---|---|---|---|---|---|---|
255 | −0.251 | 0.447 | −0.127 | 0.644 | 0.424 | 0.277 | 0.205 | 0.219 |
290 | −0.4944 | 0.2183 | −0.2688 | 0.5802 | 0.3007 | 0.2015 | 0.1411 | 0.2795 |
r1 = r31 = r32 = r5 = d [mm] | r2 = r41 = r42 = r6 = c = e [mm] | r8 = r11 [mm] | r9 = r10 [mm] | d1 = d3 [mm] | d2 [mm] |
---|---|---|---|---|---|
70 | 60 | 18 | 57.90 | 30 | 117.50 |
θ2 [deg] | vA = vB = vC [mm/s] | vD = vE [mm/s] | |||
---|---|---|---|---|---|
300 | [51.962, 30.000]T | [112.583, 65.000]T | |||
252 | [57.063, −18.5410]T | [13.328, −23.804]T | |||
vH6 [mm/s] | vH8 [mm/s] | vH68 [mm/s] | vM [mm/s] | vN [mm/s] | |
300 | [−58.750, 101.758]T | [−45.816, 103.288]T | [−13.556, −11.892]T | [9.158, 29.955]T | [29.650, 47.93]T |
252 | [36.309, 111.749]T | [58.722, 103.305]T | [−22.609, 8.507]T | [16.74, 19.605]T | [35.108, 12.69]T |
θ2 [deg] | ω3 = ω5 [rad/s] | ω4 = ω6 [rad/s] | ω8 [rad/s] | ω9 [rad/s] | ω10 [rad/s] | ω11 [rad/s] |
---|---|---|---|---|---|---|
300 | 0 | 1 | 1.514 | 0.973 | 0.541 | −0.514 |
252 | −0.4944 | 0.2183 | 1.0901 | 0.6448 | 0.4453 | −0.0901 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figliolini, G.; Lanni, C.; Tomassi, L.; Ortiz, J. Eight-Bar Elbow Joint Exoskeleton Mechanism. Robotics 2024, 13, 125. https://doi.org/10.3390/robotics13090125
Figliolini G, Lanni C, Tomassi L, Ortiz J. Eight-Bar Elbow Joint Exoskeleton Mechanism. Robotics. 2024; 13(9):125. https://doi.org/10.3390/robotics13090125
Chicago/Turabian StyleFigliolini, Giorgio, Chiara Lanni, Luciano Tomassi, and Jesús Ortiz. 2024. "Eight-Bar Elbow Joint Exoskeleton Mechanism" Robotics 13, no. 9: 125. https://doi.org/10.3390/robotics13090125
APA StyleFigliolini, G., Lanni, C., Tomassi, L., & Ortiz, J. (2024). Eight-Bar Elbow Joint Exoskeleton Mechanism. Robotics, 13(9), 125. https://doi.org/10.3390/robotics13090125