The Effect of the Degree of Freedom and Weight of the Hand Exoskeleton on Joint Mobility Function
<p>Flowchart of the experimental steps from the preparation to statistical analysis of the experiment data.</p> "> Figure 2
<p>Hand exoskeleton prototype: (<b>a</b>) 3D assembly view and component’s degree of freedom (DOF); (<b>b</b>) setting up digit’s DOF and weight; (<b>c</b>) flexing and extending finger in 2 DOF setups.</p> "> Figure 3
<p>Two DOF linkage mechanism: (<b>a</b>) linkage mechanism design in SAM 7.0; (<b>b</b>) MCP to PIP joint relationship in optimized linkage versus target (natural finger movement).</p> "> Figure 4
<p>List of markers: (<b>a</b>) on hand exoskeleton; (<b>b</b>) on barehand.</p> "> Figure 5
<p>Customized pegboard test: (<b>a</b>) Ø6.4 mm pegboard for tip pinch; (<b>b</b>) Ø20mm pegboard for tripod pinch; (<b>c</b>) Ø6.4 mm and Ø20 mm peg; (<b>d</b>) the arm slider; (<b>e</b>) how to use the equipment.</p> "> Figure 6
<p>The S-NHPT: (<b>a</b>) Ø6.4 mm pegboard; (<b>b</b>) Ø20mm pegboard; (<b>c</b>) Ø6.4 mm and Ø20 mm peg; (<b>d</b>) how to use the equipment.</p> "> Figure 7
<p>Experiment Environment: (<b>a</b>) apparatus and equipment arrangement, (<b>b</b>) participant position in productivity task, (<b>c</b>) participant position in motion task.</p> "> Figure 8
<p>List of virtual markers: (<b>a</b>) on hand exoskeleton; (<b>b</b>) on barehand.</p> "> Figure 9
<p>Task completion time result (lesser values are better).</p> "> Figure 10
<p>Perceived ease of performing the tasks result (higher values are better).</p> "> Figure 11
<p>ROM reduction of the Index PIP joint.</p> "> Figure 12
<p>ROM reduction of joints affected by the degree of freedom reduction for insertion using tripod pinch; (<b>a</b>) at the thumb MCP joint; (<b>b</b>) at the middle finger PIP joint.</p> "> Figure 13
<p>ROM reduction of joints affected by weight addition for insertion using tripod pinch; (<b>a</b>) at the index finger MCP joint; (<b>b</b>) at the middle finger MCP joints; (<b>c</b>) at the middle finger DIP joint.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Prototypes
2.3. Experiment Tasks
2.4. Setup and Procedure
2.5. Measurements
2.5.1. Task Completion Time
2.5.2. Perceived Ease of Performing the Task
2.5.3. Task Completion Time
2.6. Statistical Analysis
3. Results
3.1. Task Completion Time
3.2. Perceived Ease of Performing the Task
3.3. ROM Reduction of Digits’ Joints
4. Discussion
4.1. Effect of Wearing HE
4.2. Effect of DOF
4.3. Effect of Weight
4.4. Interaction Effect
4.5. Design Direction
4.6. Limitation and Future Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krupp, S.; Peltner, B.; Zumhasch, R. Hand function and assistive devices. In Hand Function: A Practical Guide to Assessment, 2nd ed.; Duruöz, M.T., Ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 263–277. [Google Scholar] [CrossRef]
- Refour, E.M.; Sebastian, B.; Chauhan, R.J.; Ben-Tzvi, P.A. General purpose robotic hand exoskeleton with series elastic actuation. J. Mech. Robot. 2019, 11, 060902-1–060902-9. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, P.W.; Shen, Y.; Rosen, J. Hand exoskeleton systems-overview. In Wearable Robotics: Systems and Applications; Rosen, J., Ferguson, P.W., Eds.; Academic Press: Oxford, UK, 2020; pp. 149–175. [Google Scholar] [CrossRef]
- Triolo, E.R.; Stella, M.H.; Busha, B.F. A Force Augmenting Exoskeleton for The Human Hand Designed for Pinching and Grasping. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2018), Honolulu, HI, USA, 17–21 July 2018; pp. 1875–1878. [Google Scholar] [CrossRef]
- Lince, A.; Celadon, N.; Battezzato, A.; Favetto, A.; Appendino, S.; Ariano, P.; Paleari, M. Design and Testing of An Under-Actuated Surface EMG-driven Hand Exoskeleton. In Proceedings of the International Conference on Rehabilitation Robotics (ICORR 2017), London, UK, 17–20 July 2017; pp. 670–675. [Google Scholar] [CrossRef]
- Kim, B.; In, H.; Lee, D.Y.; Cho, K.J. Development and assessment of a hand assist device: GRIPIT. J. NeuroEng. Rehabil. 2017, 14, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, B.L.; Main, J.A.; Peterson, S.W.; Strauss, A.M. Design and Control of Exoskeletons for Planetary Exploration. In Proceedings of the 25th International Conference on Environmental Systems, San Diego, CA, USA, 10–13 July 1995. Technical Paper 951729. [Google Scholar] [CrossRef]
- Heo, P.; Gu, G.M.; Lee, S.; Rhee, K.; Kim, J. Current hand exoskeleton technologies for rehabilitation and assistive engineering. Int. J. Precis. Eng. Manuf. 2012, 13, 807–824. [Google Scholar] [CrossRef]
- du Plessis, T.; Djouani, K.; Oosthuizen, C. A review of active hand exoskeletons for rehabilitation and assistance. Robotics 2021, 10, 40. [Google Scholar] [CrossRef]
- Noronha, B.; Accoto, D. Exoskeletal Devices for Hand Assistance and Rehabilitation: A Comprehensive Analysis of State-of-the-Art Technologies. IEEE Trans. Med. Robot. Bionics 2021, 3, 525–538. [Google Scholar] [CrossRef]
- Cook, A.M.; Polgar, J.M. Assistive Technologies: Principles and Practice, 4th ed.; Mosby Inc.: Saint Louis, MO, USA, 2015. [Google Scholar]
- International Classification of Functioning, Disability and Health; World Health Organization: Geneva, Switzerland, 2001.
- Vergara, M.; Sancho-Bru, J.L.; Gracia-Ibáñez, V.; Pérez-González, A. An introductory study of common grasps used by adults during performance of activities of daily living. J. Hand Ther. 2014, 27, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Soekadar, S.R.; Witkowski, M.; Vitiello, N.; Birbaumer, N. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomed. Technol. 2015, 60, 199–205. [Google Scholar] [CrossRef]
- Bianchi, M. Development and Testing of Hand Exoskeletons, Springer Thesis: Recognizing Outstanding Ph. D Research; Springer Nature Switzerland AG: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Bos, R.A.; Haarman, C.J.W.; Stortelder, T.; Nizamis, K.; Herder, J.L.; Stienen, A.H.A.; Plettenburg, D.H. A structured overview of trends and technologies in dynamic hand orthoses. J. NeuroEng. Rehabil. 2016, 13, 62. [Google Scholar] [CrossRef] [Green Version]
- Bensel, C.K. The effects of various thicknesses of chemical protective gloves on manual dexterity. Ergonomics 1993, 36, 687–696. [Google Scholar] [CrossRef]
- Rondinelli, R.D.; Dunn, W.; Hassanein, K.M.; Keesling, C.A.; Meredith, S.C.; Schulz, T.L.; Lawrence, N.J. A simulation of hand impairments: Effects on upper extremity function and implications toward medical impairment rating and disability determination. Arch. Phys. Med. Rehabil. 1997, 78, 1358–1363. [Google Scholar] [CrossRef]
- Wells, R.; Hunt, S.; Hurley, K.; Rosati, P. Laboratory assessment of the effect of heavy rubber glove thickness and sizing on effort, performance and comfort. Int. J. Ind. Erg. 2010, 40, 386–391. [Google Scholar] [CrossRef]
- Fromme, N.P.; Camenzind, M.; Riener, R.; Rossi, R.M. Design of a lightweight passive orthosis for tremor suppression. J. NeuroEng. Rehabil. 2020, 17, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troncossi, M.; Mozaffari-Foumashi, M.; Castelli, V.P. An original classification of rehabilitation hand exoskeletons. J. Robot. Mech. Eng. Res. 2016, 1, 17–29. [Google Scholar] [CrossRef]
- Nycz, C.; Butzer, T.; Lambercy, O.; Arata, J.; Fischer, G.; Gassert, R. Design and characterization of a lightweight and fully portable remote actuation system for use with a hand exoskeleton. IEEE Robot. Auto. Lett. 2016, 1, 976–983. [Google Scholar] [CrossRef]
- Faizan, M.S.; Muzammil, M. Hand tremor suppression device for patients suffering from Parkinson’s disease. J. Med. Eng. Technol. 2020, 44, 190–197. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Shahid, T.; Gouwanda, D.; Nurzaman, S.G.; Gopalai, A.A. Moving toward soft robotics: A decade review of the design of hand exoskeletons. Biomimetics 2018, 3, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffari-Foumashi, M.; Troncossi, M.; Castelli, V.P. State-of-the-Art of Hand Exoskeleton Systems; Internal Report; Università di Bologna DIEM Dipartimento di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia: Bologna, Italy, 2011. [Google Scholar]
- Lambelet, C.; Temiraliuly, D.; Siegenthaler, M.; Wirth, M.; Woolley, D.G.; Lambercy, O.; Gassert, R.; Wenderoth, N. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. J. NeuroEng. Rehabil. 2020, 17, 32. [Google Scholar] [CrossRef]
- Cary, I.; Dipcot, J.A. A Comparison of dominant and non-dominant hand function in both right- and left-handed individuals using the Southampton Hand Assessment Procedure (SHAP). Br. J. Hand Ther. 2003, 8, 4–10. [Google Scholar] [CrossRef]
- Ozcan, A.; Tulum, Z.; Pinar, L.; Başkurt, F. Comparison of pressure pain threshold, grip strength, dexterity, and touch pressure of dominant and non-dominant hands within and between right-and left-handed subjects. J. Kor. Med. Sci. 2004, 19, 874–878. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, T.; Demura, S.; Aoki, H. Superiority of the dominant and nondominant hands in static strength and controlled force exertion. Percep. Mot. Skills 2009, 109, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Jo, I.; Park, Y.; Lee, J.; Bae, J. A portable and spring-guided hand exoskeleton for exercising flexion/extension of the fingers. Mech. Mach. Theory 2019, 135, 176–191. [Google Scholar] [CrossRef]
- Johansson, G.M.; Häger, C.K. A modified standardized nine hole peg test for valid and reliable kinematic assessment of dexterity post-stroke. J. NeuroEng. Rehabil. 2019, 16, 8. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Weber, K.; Kashman, N.; Volland, G. Adult norms for the nine hole peg test of finger dexterity. Occup. Ther. J. Res. 1985, 5, 24–38. [Google Scholar] [CrossRef]
- Feix, T.; Romero, J.; Schmiedmayer, H.; Dollar, A.; Kragic, D. The GRASP taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 66–77. [Google Scholar] [CrossRef]
- Almenara, M.; Cempini, M.; Gómez, C.; Cortese, M.; Martín, C.; Medina, J.; Vitiello, N.; Opisso, E. Usability test of a hand exoskeleton for activities of daily living: An example of user-centered design. Disabil. Rehabil. Assist. Technol. 2015, 12, 84–96. [Google Scholar] [CrossRef]
- Montagnani, F.; Controzzi, M.; Cipriani, C. Independent long fingers are not essential for a grasping hand. Sci. Rep. 2016, 6, 35545. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Shiekhzadeh, A.; Nordin, M. The effect of load weight vs. pace on muscle recruitment during lifting. App. Ergon. 2012, 43, 1044–1050. [Google Scholar] [CrossRef]
- Ciriello, V.M.; Snook, S.H.; Buck, A.C.; Wilkinson, P.L. The effects of task duration on psychophysically-determined maximum acceptable weights and forces. Ergonomics 1990, 33, 187–200. [Google Scholar] [CrossRef]
- Dianat, I.; Haslegrave, C.M.; Stedmon, A.W. Design options for improving protective gloves for industrial assembly work. App. Ergon. 2014, 45, 1208–1217. [Google Scholar] [CrossRef] [Green Version]
- Khallaf, M. Effect of gravity and task specific training of elbow extensors on upper extremity function after stroke. Neuro. Res. Int. 2018, 2018, 4172454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boothroyd, G.; Dewhurst, P.; Knight, W.A. Product Design for Manufacture and Assembly, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Mohammadi, A.; Lavranos, J.; Choong, P.; Oetomo, D. Flexo-glove: A 3D Printed Soft Exoskeleton Robotic Glove for Impaired Hand Rehabilitation and Assistance. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2018), Honolulu, HI, USA, 17–21 July 2018; pp. 2120–2123. [Google Scholar] [CrossRef]
- In, H.; Cho, K.; Kim, K.; Lee, B. Jointless Structure and Under-Actuation Mechanism for Compact Hand Exoskeleton. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 462–467. [Google Scholar] [CrossRef]
- Cempini, M.; Marzegan, A.; Rabuffetti, M.; Cortese, M.; Vitiello, N.; Ferrarin, M. Analysis of relative displacement between the HX wearable robotic exoskeleton and the user’s hand. J. NeuroEng. Rehabil. 2014, 11, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; El-Haik, B. Design for Six Sigma: Roadmap to Product Development, 2nd ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Mennella, C.; Alloisio, S.; Novellino, A.; Viti, F. Characteristics and Applications of Technology-Aided Hand Functional Assessment: A Systematic Review. Sensors 2022, 22, 199. [Google Scholar] [CrossRef] [PubMed]
- Glowinski, S.; Obst, M.; Majdanik, S.; Potocka-Banaś, B. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators. Sensors 2021, 21, 3432. [Google Scholar] [CrossRef] [PubMed]
Condition | Annotation | |
---|---|---|
WO1 | Condition without wearing HE (barehand) for the first run | |
│------ balanced -----│ | 3DOF NL | Condition with wearing HE with uninstalled medial pushrod (3 DOFs linkage) and no digits’ loads attached (70 g digits weight) |
3DOF L | Condition with wearing HE with uninstalled medial pushrod (3 DOFs linkage) and all digits’ loads attached (140 g digits weight) | |
2DOF NL | Condition with wearing HE with installed medial pushrod (2 DOFs linkage) and no digits’ loads attached (70 g digits weight) | |
2DOF L | Condition with wearing HE with installed medial pushrod (2 DOFs linkage) and all digits’ loads attached (140 g digits weight) | |
WO2 | Condition without wearing HE (barehand) for the second run |
Digit | Digit Joint | Four Marker Angles [Line 1, Line 2] |
---|---|---|
Thumb | T MCP (Thumb Metacarpophalangeal) | From V_T to TP3, From TC3 to TC2 |
T IP (Thumb Interphalangeal) | From TD1 to TD2, From TP3 to V_T | |
Index Finger | I MCP (Index Metacarpophalangeal) | From V_I to IP3, From V_MC to C2 (WO conditions) |
From V_I to IP3, From C3 to C2 (HE conditions) | ||
I PIP (Index Proximal Interphalangeal) | From IM1 to IM2, From IP3 to V_I | |
I DIP (Index Distal Interphalangeal) | From ID1 to ID2, From IM2 to IM1 | |
Middle Finger | M MCP (Middle Metacarpophalangeal) | From V_M to MP3, From C3 to C2 (WO conditions) |
From V_M to MP3, From C3 to V_MC (HE conditions) | ||
M PIP (Middle Proximal Interphalangeal) | From MM1 to MM2, From MP3 to V_M | |
M DIP (Middle Distal Interphalangeal) | From MD1 to MD2, From MM2 to MM1 |
(a) at tip pinch | (b) at tripod pinch | |||||
---|---|---|---|---|---|---|
Insertion Depth | Insertion Depth | |||||
6 mm | 12 mm | 18 mm | 6 mm | 12 mm | 18 mm | |
Thumb MCP | ||||||
DOF | 0.242 | 0.096 * | 0.149 | 0.842 | 0.081 * | 0.757 |
Wt. | 0.433 | 0.316 | 0.995 | 0.494 | 0.929 | 0.580 |
DOF × Wt. | 0.554 | 0.985 | 0.990 | 0.695 | 0.044 ** | 0.245 |
Thumb IP | ||||||
DOF | 0.762 | 0.516 | 0.176 | 0.695 | 0.930 | 0.791 |
Wt. | 0.524 | 0.124 | 0.514 | 0.251 | 0.902 | 0.474 |
DOF × Wt. | 0.420 | 0.534 | 0.362 | 0.686 | 0.624 | 0.395 |
Index MCP | ||||||
DOF | 0.932 | 0.212 | 0.049 ** | 0.544 | 0.461 | 0.598 |
Wt. | 0.996 | 0.350 | 0.912 | 0.256 | 0.133 | 0.362 |
DOF × Wt. | 0.056 * | 0.905 | 0.457 | 0.117 | 0.211 | 0.006 ** |
Index PIP | ||||||
DOF | 0.001 ** | 0.005 ** | 0.001 ** | 0.011 ** | 0.071 * | 0.053 * |
Wt. | 0.567 | 0.323 | 0.405 | 0.366 | 0.188 | 0.084 * |
DOF × Wt. | 0.307 | 0.847 | 0.616 | 0.913 | 0.876 | 0.798 |
Index DIP | ||||||
DOF | 0.816 | 0.416 | 0.409 | 0.793 | 0.892 | 0.254 |
Wt. | 0.357 | 0.104 | 0.961 | 0.652 | 0.703 | 0.506 |
DOF × Wt. | 0.244 | 0.719 | 0.521 | 0.501 | 0.456 | 0.240 |
Middle MCP | ||||||
DOF | 0.477 | 0.396 | 0.228 | |||
Wt. | 0.036 ** | 0.006 ** | 0.090 * | |||
DOF × Wt. | 0.319 | 0.030 ** | 0.016 ** | |||
Middle PIP | ||||||
DOF | 0.002 ** | 0.016 ** | 0.006 ** | |||
Wt. | 0.211 | 0.051 * | 0.076 * | |||
DOF × Wt. | 0.268 | 0.546 | 0.191 | |||
Middle DIP | ||||||
DOF | 0.501 | 0.248 | 0.112 | |||
Wt. | 0.647 | 0.093 * | 0.032 ** | |||
DOF × Wt. | 0.121 | 0.625 | 0.043 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priadythama, I.; Yeoh, W.L.; Loh, P.Y.; Muraki, S. The Effect of the Degree of Freedom and Weight of the Hand Exoskeleton on Joint Mobility Function. Robotics 2022, 11, 53. https://doi.org/10.3390/robotics11020053
Priadythama I, Yeoh WL, Loh PY, Muraki S. The Effect of the Degree of Freedom and Weight of the Hand Exoskeleton on Joint Mobility Function. Robotics. 2022; 11(2):53. https://doi.org/10.3390/robotics11020053
Chicago/Turabian StylePriadythama, Ilham, Wen Liang Yeoh, Ping Yeap Loh, and Satoshi Muraki. 2022. "The Effect of the Degree of Freedom and Weight of the Hand Exoskeleton on Joint Mobility Function" Robotics 11, no. 2: 53. https://doi.org/10.3390/robotics11020053
APA StylePriadythama, I., Yeoh, W. L., Loh, P. Y., & Muraki, S. (2022). The Effect of the Degree of Freedom and Weight of the Hand Exoskeleton on Joint Mobility Function. Robotics, 11(2), 53. https://doi.org/10.3390/robotics11020053