Singularity Avoidance for Cart-Mounted Hand-Guided Collaborative Robots: A Variational Approach
<p>Example of cart-mounted robot. The yellow cylinder represents the near-singularity volume to be avoided by the end-effector (shoulder singularity).</p> "> Figure 2
<p>Example of the non-admissible region (light orange) enclosed within the <math display="inline"><semantics> <mrow> <msup> <mi>λ</mi> <mo>−</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and the <math display="inline"><semantics> <mrow> <msup> <mi>λ</mi> <mo>+</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> curves. The green curve is an example of a cart motion law <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> that guarantees the satisfaction of (<a href="#FD5-robotics-11-00079" class="html-disp-formula">5</a>). The red curve is an example of a non-admissible cart motion law <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, since it violates (<a href="#FD5-robotics-11-00079" class="html-disp-formula">5</a>).</p> "> Figure 3
<p>Cart trajectories attempts along <span class="html-italic">x</span>-axes with respect to the singularity area (light orange) in variational approach. The thicker orange line is the trajectory solution of the minimization problem (<a href="#FD8-robotics-11-00079" class="html-disp-formula">8</a>). The blue straight line represents the initial guess of (<a href="#FD8-robotics-11-00079" class="html-disp-formula">8</a>).</p> "> Figure 4
<p>Density <span class="html-italic">H</span> as a function of the cart coordinate.</p> "> Figure 5
<p>Cart motion as a function of time (dark orange) with respect to the singularity area (light orange) in all the approaches that have been compared. Both the variational and the redundant approach exhibit effective behavior in addressing the singularity avoidance problem presented in <a href="#sec2dot2-robotics-11-00079" class="html-sec">Section 2.2</a>.</p> "> Figure 6
<p>Joint references (dashed), and joint trajectories in time resulting from linear approach. Each colour is related to a specific joint <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <mspace width="0.277778em"/> <mi>i</mi> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>0</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>6</mn> </mfenced> </mrow> </semantics></math>. The revolute joints are expressed in <math display="inline"><semantics> <mi>rad</mi> </semantics></math>, while the cart displacement joint is expressed in <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>.</p> "> Figure 7
<p>Joint references (dashed), and joint trajectories in time resulting from redundancy approach. Each color is related to a specific joint <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <mspace width="0.277778em"/> <mi>i</mi> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>0</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>6</mn> </mfenced> </mrow> </semantics></math>. The revolute joints are expressed in <math display="inline"><semantics> <mi>rad</mi> </semantics></math>, while the cart displacement joint is expressed in <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>.</p> "> Figure 8
<p>Joint references (dashed), and joint trajectories in time resulting from variational approach. Each color is related to a specific joint <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>i</mi> </msub> <mspace width="0.277778em"/> <mi>i</mi> <mo>∈</mo> <mfenced separators="" open="{" close="}"> <mn>0</mn> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>6</mn> </mfenced> </mrow> </semantics></math>. The revolute joints are expressed in <math display="inline"><semantics> <mi>rad</mi> </semantics></math>, while the cart displacement joint is expressed in <math display="inline"><semantics> <mi mathvariant="normal">m</mi> </semantics></math>.</p> "> Figure 9
<p>Cart trajectories attempts along <span class="html-italic">x</span>-axes with respect to the singularity area (light orange) in variational approach with admissible initial guess in (<a href="#FD8-robotics-11-00079" class="html-disp-formula">8</a>). The thicker orange line is the trajectory solution of the minimization problem (<a href="#FD8-robotics-11-00079" class="html-disp-formula">8</a>).</p> ">
Abstract
:1. Introduction
2. Cart-Mounted Cobot, Redundancy and Shoulder Singularity
2.1. Actual Joint Configurations
2.2. Shoulder Singularity Avoidance
2.3. Problem Statement
- Obtain a prescribed motion (e.g.,straight line or circular arc) when moving from to ;
- Reach each with the corresponding joint configuration (Section 2.1);
- Avoid (shoulder) singular and near-singular configurations (Section 2.2).
3. Proposed Approach
Algorithm 1 Variational approach description: the main steps. |
|
Algorithm 2 Find the optimal cart motion law. |
Require: |
|
Ensure: the optimal cart motion law |
|
3.1. On the Convergence to a Feasible Solution
4. Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balasubramanian, R.; Xu, L.; Brook, P.D.; Smith, J.R.; Matsuoka, Y. Physical human interactive guidance: Identifying grasping principles from human-planned grasps. IEEE Trans. Robot. 2012, 28, 899–910. [Google Scholar] [CrossRef]
- Lee, H.M.; Kim, J.B. A survey on robot teaching: Categorization and brief review. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Frienbach, Switzerland, 2013; Volume 330, pp. 648–656. [Google Scholar]
- Massa, D.; Callegari, M.; Cristalli, C. Manual guidance for industrial robot programming. Ind. Robot. Int. J. 2015, 42, 457–465. [Google Scholar] [CrossRef]
- Rodamilans, G.B.; Villani, E.; Trabasso, L.G.; de Oliveira, W.R.; Suterio, R. A comparison of industrial robots interface: Force guidance system and teach pendant operation. Ind. Robot. Int. J. 2016, 43, 552–562. [Google Scholar] [CrossRef]
- Ragaglia, M.; Zanchettin, A.M.; Bascetta, L.; Rocco, P. Accurate sensorless lead-through programming for lightweight robots in structured environments. Robot. Comput.-Integr. Manuf. 2016, 39, 9–21. [Google Scholar] [CrossRef]
- Bascetta, L.; Ferretti, G.; Magnani, G.; Rocco, P. Walk-through programming for robotic manipulators based on admittance control. Robotica 2013, 31, 1143–1153. [Google Scholar] [CrossRef]
- Fujii, M.; Murakami, H.; Sonehara, M. Study on application of a human-robot collaborative system using hand-guiding in a production line. IHI Eng. Rev 2016, 49, 24–29. [Google Scholar]
- Safeea, M.; Neto, P.; Béarée, R. Precise hand-guiding of redundant manipulators with null space control for in-contact obstacle navigation. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 693–698. [Google Scholar] [CrossRef]
- Lee, S.D.; Ahn, K.H.; Song, J.B. Torque control based sensorless hand guiding for direct robot teaching. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 745–750. [Google Scholar] [CrossRef]
- Safeea, M.; Bearee, R.; Neto, P. End-effector precise hand-guiding for collaborative robots. In Proceedings of the Iberian Robotics Conference, Sevilla, Spain, 22–24 November 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 595–605. [Google Scholar]
- Blanchini, F.; Fenu, G.; Giordano, G.; Pellegrino, F.A. Inverse kinematics by means of convex programming: Some developments. In Proceedings of the 11th IEEE International Conference on Automation Science and Engineering (CASE 2015), Gothenburg, Sweden, 24–28 August 2015; pp. 3–8. [Google Scholar] [CrossRef]
- Blanchini, F.; Fenu, G.; Giordano, G.; Pellegrino, F.A. A convex programming approach to the inverse kinematics problem for manipulators under constraints. Eur. J. Control 2017, 33, 11–23. [Google Scholar] [CrossRef]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Chiaverini, S.; Oriolo, G.; Walker, I.D. Kinematically redundant manipulators. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 245–268. [Google Scholar]
- Safeea, M.; Neto, P. Precise positioning of collaborative robotic manipulators using hand-guiding. Int. J. Adv. Manuf. Technol. 2022, 120, 5497–5508. [Google Scholar] [CrossRef]
- Wrede, S.; Emmerich, C.; Grünberg, R.; Nordmann, A.; Swadzba, A.; Steil, J. A user study on kinesthetic teaching of redundant robots in task and configuration space. J. Hum.-Robot. Interact. 2013, 2, 56–81. [Google Scholar] [CrossRef]
- Weyrer, M.; Brandstötter, M.; Husty, M. Singularity avoidance control of a non-holonomic mobile manipulator for intuitive hand guidance. Robotics 2019, 8, 14. [Google Scholar] [CrossRef]
- Baillieul, J. Kinematic programming alternatives for redundant manipulators. In Proceedings of the Proceedings. 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 722–728. [Google Scholar]
- Safeea, M.; Bearee, R.; Neto, P. A Modified DLS Scheme With Controlled Cyclic Solution for Inverse Kinematics in Redundant Robots. IEEE Trans. Ind. Inform. 2021, 17, 8014–8023. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z. Repetitive Motion Planning and Control of Redundant Robot Manipulators; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zhang, Z.; Yan, Z.; Fu, T. Varying-parameter RNN activated by finite-time functions for solving joint-drift problems of redundant robot manipulators. IEEE Trans. Ind. Inform. 2018, 14, 5359–5367. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, L.; Yu, J.; Li, Y.; Yu, Z. Three recurrent neural networks and three numerical methods for solving a repetitive motion planning scheme of redundant robot manipulators. IEEE/ASME Trans. Mechatron. 2017, 22, 1423–1434. [Google Scholar] [CrossRef]
- Simonič, M.; Petrič, T.; Ude, A.; Nemec, B. Analysis of methods for incremental policy refinement by kinesthetic guidance. J. Intell. Robot. Syst. 2021, 102, 5. [Google Scholar] [CrossRef]
- Dean-Leon, E.; Ramirez-Amaro, K.; Bergner, F.; Dianov, I.; Lanillos, P.; Cheng, G. Robotic technologies for fast deployment of industrial robot systems. In Proceedings of the IECON 2016–42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; pp. 6900–6907. [Google Scholar] [CrossRef]
- Li, P.; Jiang, P.; Zhang, G. An enhanced DMAIC method for feature-driven continuous quality improvement for multi-stage machining processes in one-of-a-kind and small-batch production. IEEE Access 2019, 7, 32492–32503. [Google Scholar] [CrossRef]
- Bedrossian, N.; Flueckiger, K. Characterizing spatial redundant manipulator singularities. In Proceedings of the ICRA, Sacramento, CA, USA, 9–11 April 1991; pp. 714–719. [Google Scholar]
- Burdick, J.W. On the inverse kinematics of redundant manipulators: Characterization of the self-motion manifolds. In Advanced Robotics: 1989; Springer: Berlin/Heidelberg, Germany, 1989; pp. 25–34. [Google Scholar]
- Shamir, T. The singularities of redundant robot arms. Int. J. Robot. Res. 1990, 9, 113–121. [Google Scholar] [CrossRef]
- Tchoń, K.; Matuszok, A. On avoiding singularities in redundant robot kinematics. Robotica 1995, 13, 599–606. [Google Scholar] [CrossRef]
- Kim, J.; Marani, G.; Chung, W.K.; Yuh, J. A general singularity avoidance framework for robot manipulators: Task reconstruction method. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04, New Orleans, LA, USA, 26 April–1 May 2004; Volume 5, pp. 4809–4814. [Google Scholar]
- Wang, H.; Zhou, Z.; Zhong, X.; Chen, Q. Singular Configuration Analysis and Singularity Avoidance with Application in an Intelligent Robotic Manipulator. Sensors 2022, 22, 1239. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Dasgupta, B.; Mallik, A.K. Variational approach for singularity-free path-planning of parallel manipulators. Mech. Mach. Theory 2003, 38, 1165–1183. [Google Scholar] [CrossRef]
- Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Casagrande, D.; Fenu, G.; Pellegrino, F.A. Hamiltonian path planning in constrained workspace. Eur. J. Control 2017, 33, 1–10. [Google Scholar] [CrossRef]
- Pellegrino, F.A.; Vanzella, W. Virtual Redundancy and Barrier Functions for Collision Avoidance in Robotic Manufacturing. In Proceedings of the 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), Prague, Czech Republic, 9 June–2 July 2020; Jablonsky, J., Fliess, M., Viedma, E.H., Eds.; Volume 1, pp. 957–962. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvato, E.; Vanzella, W.; Fenu, G.; Pellegrino, F.A. Singularity Avoidance for Cart-Mounted Hand-Guided Collaborative Robots: A Variational Approach. Robotics 2022, 11, 79. https://doi.org/10.3390/robotics11040079
Salvato E, Vanzella W, Fenu G, Pellegrino FA. Singularity Avoidance for Cart-Mounted Hand-Guided Collaborative Robots: A Variational Approach. Robotics. 2022; 11(4):79. https://doi.org/10.3390/robotics11040079
Chicago/Turabian StyleSalvato, Erica, Walter Vanzella, Gianfranco Fenu, and Felice Andrea Pellegrino. 2022. "Singularity Avoidance for Cart-Mounted Hand-Guided Collaborative Robots: A Variational Approach" Robotics 11, no. 4: 79. https://doi.org/10.3390/robotics11040079
APA StyleSalvato, E., Vanzella, W., Fenu, G., & Pellegrino, F. A. (2022). Singularity Avoidance for Cart-Mounted Hand-Guided Collaborative Robots: A Variational Approach. Robotics, 11(4), 79. https://doi.org/10.3390/robotics11040079