A New Soft RCC Device with Pneumatic Regulation
<p>Simple sketch of the section of a truncated-conical arrangement.</p> "> Figure 2
<p>Movement of the system when a force <span class="html-italic">F</span> is applied to E.</p> "> Figure 3
<p>The linear Pneumatic Actuator system with Tunable-Compliance Constraint (PATuCCo).</p> "> Figure 4
<p>Device in the initial condition (dotted line) and after a longitudinal displacement <span class="html-italic">y<sub>L</sub></span> (continuous line).</p> "> Figure 5
<p>(<b>a</b>) CAD model of the linear pneumatic actuator used for the FEM analysis; (<b>b</b>) application points of force when <span class="html-italic">y<sub>L</sub> =</span> 0 and <span class="html-italic">Q = Q</span><sub>0</sub>; (<b>c</b>) constraints used in the FEM model of the membrane.</p> "> Figure 6
<p>Comparison between Formulation (2) (mod) and the FEM simulation (sim) by modifying the distance <span class="html-italic">Q</span> from P and using a pressure range from 0.2 to 1 bar.</p> "> Figure 7
<p>Comparison between Formulation (2) (mod) and the FEM simulation (sim), modifying the distance <span class="html-italic">Q</span> from P and considering a pressure range from 0.5 to 2 bar.</p> "> Figure 8
<p>Linear stiffness as a function of the pressure (<span class="html-italic">F<sub>X</sub></span> = 5 N).</p> "> Figure 9
<p>Stiffness of each point of application of the force along the Y axis and rotation angle around the Z axis if the force <span class="html-italic">F<sub>X</sub></span> = 5 N is applied.</p> "> Figure 10
<p>Stiffness varying the position of the piston (<span class="html-italic">y<sub>l</sub></span> = 3 mm, <span class="html-italic">y<sub>l</sub></span> = 6 mm, <span class="html-italic">y<sub>l</sub></span> = 9 mm) for the pressure range 0.5–1.5 bar (<span class="html-italic">F<sub>X</sub></span> = 15 N).</p> ">
Abstract
:1. Introduction
2. RCC Formulation and Adaptation to PATuCCo Actuator
2.1. Remote Center of Compliance (RCC)
2.2. Pneumatic Actuator with Tunable-Compliance Constraint (PATuCCo)
3. RCC Formula for the PATuCCo Actuator
4. FEM Analysis of the PATuCCo actuator
5. Results and Discussion
- (1)
- Increasing values of the longitudinal displacement yL of the piston tip are imposed (see Figure 4);
- (2)
- At each yL, a transversal load (parallel to X axis) is applied to different points of the piston, producing a motion of the axis of the piston in the XY plane (translation and rotation);
- (3)
- The system’s RCC is individuated as the point of the applied load that produces a pure translation (parallel to X axis) of the axis of the piston without rotation.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bright, G.; Duebler, C. Design and Implementation of an Intelligent Remote Centre Compliance (IRCC) as a Means of Intelligent Position Feedback for a Construction Robot. In Proceedings of the 16th IAARC/IFAC/IEEE International Symposium on Automation and Robotics in Construction, Madrid, Spain, 22–24 September 1999; pp. 719–723. [Google Scholar]
- Drake, S.H. Using Compliace in Lieu of Sensory Feedback for Automatic Assembly. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, September 1977. [Google Scholar]
- Watson, P.C. Instrumented Remote Center Compliance Device. U.S. Patent 4,316,329A, 23 February 1982. [Google Scholar]
- Drake, S.H.; Simunovic, S.N. Compliant Assembly System Device. U.S. Patent 4,155,169A, 22 May 1979. [Google Scholar]
- Nevins, J.L.; Whitney, D.E. Assembly Research. Automatica 1980, 16, 595–613. [Google Scholar] [CrossRef]
- De Fazio, T. Single Stage Remote Center Compliance Device. U.S. Patent 4,414,750A, 15 November 1983. [Google Scholar]
- Whitney, D.E.; De Fazio, T. Transferrable-Center Compliance System. U.S. Patent 4,439,926A, 3 April 1984. [Google Scholar]
- Sorli, M.; Govi, G. Insertion Force Recognition by Modelling and Simulation of Assembly Systems with Accomodators. In IFAC Proceedings Volumes; Elsevier BV: Amsterdam, The Netherlands, 1992; Volume 25, pp. 111–116. [Google Scholar]
- Joo, S.; Miyazaki, F. On the Mechanics of Elastomer Shear Pads for Remote Center Compliance (RCC). Trans. Inst. Syst. Control. Inf. Eng. 1996, 9, 383–391. [Google Scholar] [CrossRef]
- Whitney, D.E.; De Fazio, E.T. Adjustable Remote Center Compliance Device. U.S. Patent 4,477,975A, 23 October 1984. [Google Scholar]
- Sethi, T. Design and Development of Instrumented Remote Centre Compliance. Master’s Thesis, National Institute of Technologyrourkela, Odisha, India, 12 January 2016. [Google Scholar]
- Drake, S.H.; Simunovic, S.N. Compliance Element for Remote Center Compliance Unit. U.S. Patent 4,276,697A, 7 May 1981. [Google Scholar]
- Lee, S. Development of a New Variable Remote Center Compliance (VRCC) With Modified Elastomer Shear Pad (ESP) for Robot Assembly. IEEE Trans. Autom. Sci. Eng. 2005, 2, 193–197. [Google Scholar] [CrossRef]
- Beltran-Hernandez, C.C.; Petit, D.; Ramirez-Alpizar, I.G.; Harada, K. Variable Compliance Control for Robotic Peg-In-Hole Assembly: A Deep-Reinforcement-Learning Approach. Appl. Sci. 2020, 10, 6923. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, H.; Pham, D.T.; Wang, Y.; Yongquan, Z.; Lim, J.; Su, S. Peg–hole disassembly using active compliance. R. Soc. Open Sci. 2019, 6, 190476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, L.-J.; Zhu, Z.-N. Modeling and Analysis of a Compliance Model and Rotational Precision for a Class of Remote Center Compliance Mechanisms. Appl. Sci. 2016, 6, 388. [Google Scholar] [CrossRef] [Green Version]
- Parks, P.A.; Light, N.A.; Bathurst, S.P.; Higginson, J.A.; Bibl, A. Mass Transfer Tool Manipulator Assembly with Remote Center of Compliance. U.S. Patent 10,183,396, 22 January 2019. [Google Scholar]
- Vaschieri, V.; Gadaleta, M.; Bilancia, P.; Berselli, G.; Razzoli, R. Virtual Prototyping of a Flexure-based RCC Device for Automated Assembly. Procedia Manuf. 2017, 11, 380–388. [Google Scholar] [CrossRef]
- Muscolo, G.G.; Fontana, M. A Novel Linear Pneumatic Actuator with Tunable-Compliance Constraint. Int. J. Mech. Control, submitted.
- Jafari, A.; Tsagarakis, N.G.; Caldwell, D.G. A Novel Intrinsically Energy Efficient Actuator with Adjustable Stiffness (AwAS). IEEE/ASME Trans. Mechatron. 2013, 18, 355–365. [Google Scholar] [CrossRef]
- Van Ham, R.; VanderBorght, B.; Van Damme, M.; Verrelst, B.; Lefeber, D. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robot. Auton. Syst. 2007, 55, 761–768. [Google Scholar] [CrossRef]
- Kim, B.-S.; Song, J.-B. Design and Control of a Variable Stiffness Actuator Based on Adjustable Moment Arm. IEEE Trans. Robot. 2012, 28, 1145–1151. [Google Scholar] [CrossRef]
- Franchi, V.; Di Rito, G.; Galatolo, R.; Cannella, F.; Caldwell, D.; Muscolo, G.G. Multibody Analysis and Design of an Electromechanical System Simulating Hyperelastic Membranes. In Computational Methods in Applied Sciences; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; Volume 53, pp. 115–122. [Google Scholar]
- Franchi, V.; Di Rito, G.; Galatolo, R.; Cannella, F.; Caldwell, D.; Muscolo, G.G. Modelling and Control Design of a Novel Robotic Membrane. Int. J. Mech. Control 2019, 20, 113–122. [Google Scholar]
- Muscolo, G.G.; Moretti, G.; Cannata, G. SUAS: A Novel Soft Underwater Artificial Skin with Capacitive Transducers and Hyperelastic Membrane. Robotica 2018, 37, 756–777. [Google Scholar] [CrossRef]
- Bolignari, M.; Fontana, M. Design and experimental characterization of a high performance hydrostatic transmission for robot actuation. Meccanica 2020, 1–11. [Google Scholar] [CrossRef]
- Ciblak, N.; Lipkin, H. Design and Analysis of Remote Center of Compliance Structures. J. Robot. Syst. 2003, 20, 415–427. [Google Scholar] [CrossRef]
- Ogden, R. Elastic Deformations of Rubberlike Solids. In Mechanics of Solids; Elsevier BV: Amsterdam, The Netherlands, 1982; pp. 499–537. [Google Scholar]
- Zhao, F.; Wu, P.S. VRCC: A variable remote center compliance device. Mechatronics 1998, 8, 657–672. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottero, S.; Muscolo, G.G.; Ferraresi, C. A New Soft RCC Device with Pneumatic Regulation. Robotics 2020, 9, 98. https://doi.org/10.3390/robotics9040098
Bottero S, Muscolo GG, Ferraresi C. A New Soft RCC Device with Pneumatic Regulation. Robotics. 2020; 9(4):98. https://doi.org/10.3390/robotics9040098
Chicago/Turabian StyleBottero, Stefano, Giovanni Gerardo Muscolo, and Carlo Ferraresi. 2020. "A New Soft RCC Device with Pneumatic Regulation" Robotics 9, no. 4: 98. https://doi.org/10.3390/robotics9040098
APA StyleBottero, S., Muscolo, G. G., & Ferraresi, C. (2020). A New Soft RCC Device with Pneumatic Regulation. Robotics, 9(4), 98. https://doi.org/10.3390/robotics9040098