Kinematics Analysis of a Class of Spherical PKMs by Projective Angles
<p>The kinematic structure of the agile eye.</p> "> Figure 2
<p>The agile eye (Adapted from [<a href="#B7-robotics-07-00059" class="html-bibr">7</a>]).</p> "> Figure 3
<p>A non-overconstrained version of the agile-eye.</p> "> Figure 4
<p>Definition of the projective angles <span class="html-italic">α<sub>i</sub></span> and of the auxiliary angles <span class="html-italic">β<sub>i</sub></span>.</p> "> Figure 5
<p>A 3D model to show the projective angles <span class="html-italic">α<sub>i</sub></span> and of the auxiliary angles <span class="html-italic">β<sub>i</sub></span>.</p> "> Figure 6
<p>Visualization of the projective angles on the xy, yz and xz plane; in this example, the projective angles assume the value: 60°, 30°, 45°.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Agile Eye
2.2. The Projective Angles
- project the unit vector v of V on plane YZ obtaining vector v”, α1 is the angle between v” and Y;
- project the unit vector w of W on plane XZ obtaining vector w”, α2 is the angle between w” and Z;
- project the unit vector u of U on plane XY obtaining vector u”, α3 is the angle between u” and X.
- β1 is the angle between V and the plane YZ
- β2 is the angle between W and the plane XZ
- β3 is the angle between U and the plane XY
2.3. Inverse Kinematics of the Spherical PKM
- leg 1:
- rotations α1β1γ1 around the following axis sequence XZY,
- leg 2:
- rotations α2β2γ2 around YXZ,
- leg 3:
- rotations α3β3γ3 around ZYX.
2.4. Direct Kinematics
2.5. Projective Angles and Spherical PKM
2.6. From Projective Angle to Rotation Matrix
2.7. Velocity Analysis
2.8. Acceleration Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gosselin, C.; Angeles, J. The Optimum Kinematic Design of a Spherical Three-Degrees-of-Freedom Parallel Manipulator. ASME J. Mech. Trans. Autom. Des. 1989, 111, 202–207. [Google Scholar] [CrossRef]
- Gosselin, C.M.; Sefrioui, J.; Richard, M.J. On the direct kinematics of spherical three-degree-of-freedom parallel manipulators of general architecture. ASME J. Mech. Des. 1994, 116, 594–598. [Google Scholar] [CrossRef]
- Gosselin, C.M.; Lavoie, E. On the kinematic design of spherical three-degree-of-freedom parallel manipulators. Int. J. Robot. Res. 1993, 12, 394–402. [Google Scholar] [CrossRef]
- Kong, X.; Gosselin, C.M. A formula that produces a unique solution to the forward displacement analysis of a quadratic spherical parallel manipulator: The Agile Eye. ASME J. Mech. Robot. 2010, 2, 044501. [Google Scholar] [CrossRef]
- Malosio, M.; Pio Negri, S.; Pedrocchi, N.; Vicentini, F.; Caimmi, M.; Molinari Tosatti, L. A Spherical Parallel Three Degrees-of-Freedom Robot for Ankle-Foot Neuro-Rehabilitation. In Proceedings of the 34th Annual International Conference of the IEEE EMBS, San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Malosio, M.; Caimmi, M.; Ometto, M.; Molinari Tosatti, L. Ergonomics and kinematic compatibility of PKankle, a fully-parallel spherical robot for ankle-foot rehabilitation. In Proceedings of the 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil, 12–15 August 2014. [Google Scholar]
- Gosselin, C.M.; St. Pierre, E.; Gagné, M. On the development of the Agile Eye. IEEE Robot. Autom. Mag. 1996, 3, 29–37. [Google Scholar] [CrossRef]
- Innocenti, C.; Parenti-Castelli, V. Echelon Form Solution of Direct Kinematics for the General Fully-Parallel Spherical Wrist. Mech. Mach. Theory 1993, 28, 553–561. [Google Scholar] [CrossRef]
- Wohlhart, K. Displacement Analysis of the General Spherical Stewart Platform. Mech. Mach. Theory 1994, 29, 581–589. [Google Scholar] [CrossRef]
- Huang, Z.; Yao, Y.L. A New Closed-Form Kinematics of the Generalized 3-DOF Spherical Parallel Manipulator. Robotica 1999, 17, 475–485. [Google Scholar] [CrossRef]
- Alici, G.; Shirinzadeh, B. Topology Optimisation and Singularity Analysis of a 3-SPS Parallel Manipulator with a Passive Constraining Spherical Joint. Mech. Mach. Theory 2004, 39, 215–235. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Dai, J.S.; Legnani, G. A non-overconstrained variant of the Agile Eye with a special decoupled kinematics. Robotica 2014, 32, 889–905. [Google Scholar] [CrossRef]
- Legnani, G.; Fassi, I. Representation of 3D Motion by Projective Angles. In Proceedings of the ASME IDETC2015, Boston, MA, USA, 2–5 August 2015. [Google Scholar]
- Legnani, G.; Casolo, F.; Righettini, P.; Zappa, B. A homogeneous matrix approach to 3D kinematics and dynamics—I. Theory. Mech. Mach. Theory 1996, 31, 573–587. [Google Scholar] [CrossRef]
- Legnani, G.; Casolo, F.; Righettini, P.; Zappa, B. A homogeneous matrix approach to 3D kinematics and dynamics—II. Applications to chain of rigid bodies and serial manipulators. Mech. Mach. Theory 1996, 31, 589–605. [Google Scholar] [CrossRef]
- Kong, X.; Gosselin, C.M. Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators. Int. J. Robot. Res. 2004, 23, 237–245. [Google Scholar] [CrossRef]
- Kong, X.; Gosselin, C.M. Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory. ASME J. Mech. Des. 2004, 126, 101–126. [Google Scholar] [CrossRef]
- Fang, Y.; Tsai, L.-W. Structure Synthesis of a Class of 3-DOF Rotational Parallel Manipulators. IEEE Trans. Robot. Autom. 2004, 20, 117–121. [Google Scholar] [CrossRef]
- Karouia, M.; Hervé, J.M. Asymmetrical 3-Dof Spherical Parallel Mechanisms. Eur. J. Mech. A Solids 2005, 24, 47–57. [Google Scholar] [CrossRef]
- Hess-Coelho, T.A. Topological Synthesis of a Parallel Wrist Mechanism. ASME J. Mech. Des. 2006, 128, 230–235. [Google Scholar] [CrossRef]
- Karouia, M.; Hervé, J.M. A Three-DOF Tripod for Generating Spherical Rotation. In Advances in Robot Kinematics; Lenarčić, J., Stanišić, M.M., Eds.; Springer: Basel, Switzerland, 2000; pp. 395–402. [Google Scholar]
- Di Gregorio, R. Kinematics of a New Spherical Parallel Manipulator with Three Equal Legs: The 3-URC Wrist. J. Robot. Syst. 2001, 18, 213–219. [Google Scholar] [CrossRef]
- Di Gregorio, R. A New Parallel Wrist Using Only Revolute Pairs: The 3-RUU Wrist. Robotica 2001, 19, 305–309. [Google Scholar] [CrossRef]
- Di Gregorio, R. A New Family of Spherical Parallel Manipulators. Robotica 2002, 20, 353–358. [Google Scholar] [CrossRef]
- Di Gregorio, R. Kinematics of the 3-UPU Wrist. Mech. Mach. Theory 2003, 38, 253–263. [Google Scholar] [CrossRef]
- Di Gregorio, R. The 3-RRS Wrist: A New, Simple and Non-Overconstrained Spherical Parallel Manipulator. ASME J. Mech. Des. 2004, 126, 850–855. [Google Scholar] [CrossRef]
- Di Gregorio, R. Kinematics of the 3-RSR wrist. IEEE Trans. Robot. 2004, 20, 750–753. [Google Scholar] [CrossRef]
- Karouia, M.; Hervé, J.M. Non-Overconstrained 3-Dof Spherical Parallel Manipulators of Type: 3-RCC, 3-CCR, 3-CRC. Robotica 2006, 24, 85–94. [Google Scholar] [CrossRef]
- Gogu, G. Fully-Isotropic Three-Degree-of-Freedom Parallel Wrists. In Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 895–900. [Google Scholar]
- Enferadi, J.; Tootoonchi, A.A. A Novel Spherical Parallel Manipulator: Forward Position Problem, Singularity Analysis, and Isotropy Design. Robotica 2009, 27, 663–676. [Google Scholar] [CrossRef]
- Baumann, R.; Maeder, W.; Glauser, D.; Clavel, R. The PantoScope: A Spherical Remote-Center-of-Motion Parallel Manipulator for Force Reflection. In Proceedings of the IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 20–25 April 1997; pp. 718–723. [Google Scholar]
- Vischer, P.; Clavel, R. Argos: A Novel 3-DoF Parallel Wrist Mechanism. Int. J. Robot. Res. 2000, 19, 5–11. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Dai, J.S. Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery. ASME J. Med. Devices 2012, 6, 021008. [Google Scholar] [CrossRef]
- Carricato, M.; Parenti-Castelli, V. A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist. Int. J. Robot. Res. 2004, 23, 661–667. [Google Scholar] [CrossRef]
- Gallardo, J.; Rodríguez, R.; Caudillo, M.; Rico, J.M. A Family of Spherical Parallel Manipulators with Two Legs. Mech. Mach. Theory 2008, 43, 201–216. [Google Scholar] [CrossRef]
- Kuo, C.-H. Projective-Angle-Based Rotation Matrix and Its Applications. In Proceedings of the Second IFToMM Asian Conference on Mechanism and Machine Science, Tokyo, Japan, 7–10 November 2012. [Google Scholar]
- Legnani, G.; Fassi, I.; Giberti, H.; Cinquemani, S.; Tosi, D. A new isotropic and decoupled 6-DoF parallel manipulator. Mech. Mach. Theory 2012, 58, 64–81. [Google Scholar] [CrossRef]
- Angels, J. Rational Kinematics; Springer: London, UK, 1988. [Google Scholar]
- Nappo, F. On the absence of a general link between the angular velocity and the characterization of a rigid displacement. Rendiconti di Matematica 1970, 3. Series VI. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legnani, G.; Fassi, I. Kinematics Analysis of a Class of Spherical PKMs by Projective Angles. Robotics 2018, 7, 59. https://doi.org/10.3390/robotics7040059
Legnani G, Fassi I. Kinematics Analysis of a Class of Spherical PKMs by Projective Angles. Robotics. 2018; 7(4):59. https://doi.org/10.3390/robotics7040059
Chicago/Turabian StyleLegnani, Giovanni, and Irene Fassi. 2018. "Kinematics Analysis of a Class of Spherical PKMs by Projective Angles" Robotics 7, no. 4: 59. https://doi.org/10.3390/robotics7040059
APA StyleLegnani, G., & Fassi, I. (2018). Kinematics Analysis of a Class of Spherical PKMs by Projective Angles. Robotics, 7(4), 59. https://doi.org/10.3390/robotics7040059