Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review
Abstract
:1. Introduction
2. Immobilization Techniques
3. Polyamide and Polyamide Enzyme Immobilization
4. Potential Applications and Future Outcomes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Shishtawy, R.M.; Ahmed, N.S.E.; Almulaiky, Y.Q. Immobilization of Catalase on Chitosan/Zno and Chitosan/Zno/Fe2o3 Nanocomposites: A Comparative Study. Catalysts 2021, 11, 820. [Google Scholar] [CrossRef]
- Kuepethkaew, S.; Zhang, Y.; Kishimura, H.; Kumagai, Y.; Simpson, B.K.; Benjakul, S.; Damodaran, S.; Klomklao, S. Enzymological Characteristics of Pepsinogens and Pepsins Purified from Lizardfish (Saurida micropectoralis) Stomach. Food Chem. 2022, 366, 130532. [Google Scholar] [CrossRef] [PubMed]
- Romero-Fernández, M.; Moreno-Perez, S.; Martins de Oliveira, S.; Santamaría, R.I.; Guisan, J.M.; Rocha-Martin, J. Preparation of a Robust Immobilized Biocatalyst of β-1,4-Endoxylanase by Surface Coating with Polymers for Production of Xylooligosaccharides from Different Xylan Sources. New Biotechnol. 2018, 44, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Cerqueira Pinto, M.C.; Lorente, G.F.; Manoel, E.A.; Guisán, J.M.; Ninow, J.L.; de Oliveira, D.; Pessela, B.C. Production of New Nanobiocatalysts via Immobilization of Lipase B from C. Antarctica on Polyurethane Nanosupports for Application on Food and Pharmaceutical Industries. Int. J. Biol. Macromol. 2020, 165, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Patra, T.; Gupta, M.K. Evaluation of Sodium Alginate for Encapsulation-Vitrification of Testicular Leydig Cells. Int. J. Biol. Macromol. 2020, 153, 128–137. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef]
- Mehdi, W.A.; Mehde, A.A.; Özacar, M.; Özacar, Z. Characterization and Immobilization of Protease and Lipase on Chitin-Starch Material as a Novel Matrix. Int. J. Biol. Macromol. 2018, 117, 947–958. [Google Scholar] [CrossRef]
- Katsimpouras, C.; Stephanopoulos, G. Enzymes in Biotechnology: Critical Platform Technologies for Bioprocess Development. Curr. Opin. Biotechnol. 2021, 69, 91–102. [Google Scholar] [CrossRef]
- Rehm, F.B.H.; Chen, S.; Rehm, B.H.A. Enzyme Engineering for in Situ Immobilization. Molecules 2016, 21, 1370. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, X.; Guo, Z.; Sun, Y. Remarkably Enhanced Activity and Substrate Affinity of Lipase Covalently Bonded on Zwitterionic Polymer-Grafted Silica Nanoparticles. J. Colloid Interface Sci. 2018, 519, 145–153. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Sun, Y. Lipase Immobilized to a Short Alkyl Chain-Containing Zwitterionic Polymer Grafted on Silica Nanoparticles: Moderate Activation and Significant Increase of Thermal Stability. Biochem. Eng. J. 2019, 146, 124–131. [Google Scholar] [CrossRef]
- Facin, B.R.; Valério, A.; de Oliveira, D.; Oliveira, J.V. Developing an Immobilized Low-Cost Biocatalyst for FAME Synthesis. Biocatal. Agric. Biotechnol. 2020, 29, 101752. [Google Scholar] [CrossRef]
- Wu, P.; Li, G.; He, Y.; Luo, D.; Li, L.; Guo, J.; Ding, P.; Yang, F. High-Efficient and Sustainable Biodegradation of Microcystin-LR Using Sphingopyxis sp. YF1 Immobilized Fe3O4@chitosan. Colloids Surfaces B Biointerfaces 2020, 185, 110633. [Google Scholar] [CrossRef]
- Zaitsev, S.Y.; Savina, A.A.; Zaitsev, I.S. Biochemical Aspects of Lipase Immobilization at Polysaccharides for Biotechnology. Adv. Colloid Interface Sci. 2019, 272, 102016. [Google Scholar] [CrossRef]
- Kamel Ariffin, M.F.; Idris, A. Fe2O3/Chitosan Coated Superparamagnetic Nanoparticles Supporting Lipase Enzyme from Candida antarctica for Microwave Assisted Biodiesel Production. Renew. Energy 2022, 185, 1362–1375. [Google Scholar] [CrossRef]
- Han, J.; Wang, L.; Wang, Y.; Dong, J.; Tang, X.; Ni, L.; Wang, L. Preparation and Characterization of Fe3O4-NH2@4-Arm-PEG-NH2, a Novel Magnetic Four-Arm Polymer-Nanoparticle Composite for Cellulase Immobilization. Biochem. Eng. J. 2018, 130, 90–98. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Zhang, Z.F.; Kaewlaoyoong, A.; Huang, J.T.; Cheruiyot, N.K.; Lin, C.; Huang, H.C. Improved Bioremediation of PCDD/Fs Contaminated Soil by Mycelium-Free Liquids Induced by Agro-Industrial Residues. Bioresour. Technol. Rep. 2023, 22, 101435. [Google Scholar] [CrossRef]
- Zhou, L.; Xie, X.; Wu, T.; Chen, M.; Yao, Q.; Zhu, H.; Zou, W. Compound Enzymatic Hydrolysis of Feather Waste to Improve the Nutritional Value. Biomass Convers. Biorefin. 2020, 12, 287–298. [Google Scholar] [CrossRef]
- Ramos, K.R.M.; Valdehuesa, K.N.G.; Nisola, G.M.; Lee, W.K.; Chung, W.J. Identification and Characterization of a Thermostable Endolytic β-Agarase Aga2 from a Newly Isolated Marine Agarolytic Bacteria Cellulophaga omnivescoria W5C. New Biotechnol. 2018, 40, 261–267. [Google Scholar] [CrossRef]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.H. State of the Art and Prospective of Lipase-Catalyzed Transesterification Reaction for Biodiesel Production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Costa-Silva, T.A.; Carvalho, A.K.F.; Souza, C.R.F.; De Castro, H.F.; Said, S.; Oliveira, W.P. Enzymatic Transesterification of Coconut Oil Using Chitosan-Immobilized Lipase Produced by Fluidized-Bed System. Energy Fuels 2017, 31, 12209–12216. [Google Scholar] [CrossRef]
- Binhayeeding, N.; Klomklao, S.; Prasertsan, P.; Sangkharak, K. Improvement of Biodiesel Production Using Waste Cooking Oil and Applying Single and Mixed Immobilised Lipases on Polyhydroxyalkanoate. Renew. Energy 2020, 162, 1819–1827. [Google Scholar] [CrossRef]
- Badgujar, V.C.; Badgujar, K.C.; Yeole, P.M.; Bhanage, B.M. Investigation of Effect of Ultrasound on Immobilized C. Rugosa Lipase: Synthesis of Biomass Based Furfuryl Derivative and Green Metrics Evaluation Study. Enzym. Microb. Technol. 2021, 144, 109738. [Google Scholar] [CrossRef] [PubMed]
- Sarno, M.; Iuliano, M.; Polichetti, M.; Ciambelli, P. High Activity and Selectivity Immobilized Lipase on Fe3O4 Nanoparticles for Banana Flavour Synthesis. Process Biochem. 2017, 56, 98–108. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Oro, C.E.D.; Franceschi, E.; Dallago, R.M.; Mignoni, M.L. Evaluation of Different Ionic Liquids as Additives in the Immobilization of Lipase CAL B by Sol-Gel Technique. Appl. Biochem. Biotechnol. 2021, 193, 2162–2181. [Google Scholar] [CrossRef] [PubMed]
- Quayson, E.; Amoah, J.; Hama, S.; Kondo, A.; Ogino, C. Immobilized Lipases for Biodiesel Production: Current and Future Greening Opportunities. Renew. Sustain. Energy Rev. 2020, 134, 110355. [Google Scholar] [CrossRef]
- Wang, R.; Ni, N.; Zhang, Q.; Duan, X.; He, Q.; Chi, Y. long Adsorption and Separation of Flavonoid Aglycones and Flavonol Aglycones by Using Zr(IV) Immobilized Collagen Fiber Adsorbent as Column Packing Material. Sep. Purif. Technol. 2022, 289, 120684. [Google Scholar] [CrossRef]
- Konovalova, V.; Guzikevich, K.; Burban, A.; Kujawski, W.; Jarzynka, K.; Kujawa, J. Enhanced Starch Hydrolysis Using α-Amylase Immobilized on Cellulose Ultrafiltration Affinity Membrane. Carbohydr. Polym. 2016, 152, 710–717. [Google Scholar] [CrossRef]
- Cortés-Ríos, J.; Valdivia-Olivares, R.Y.; Álvarez-Figueroa, M.J.; Rodriguez-Fernandez, M.; González-Aramundiz, J.V. Optimization of Physicochemical Properties of Novel Multiple Nanoemulsion for Complex Food Matrices through Iterative Mathematical Modelling. J. Food Eng. 2020, 276, 109883. [Google Scholar] [CrossRef]
- Urrutia, P.; Bernal, C.; Wilson, L.; Illanes, A. Use of Chitosan Heterofunctionality for Enzyme Immobilization: β-Galactosidase Immobilization for Galacto-Oligosaccharide Synthesis. Int. J. Biol. Macromol. 2018, 116, 182–193. [Google Scholar] [CrossRef]
- Chiou, S.H.; Wu, W.T. Immobilization of Candida rugosa Lipase on Chitosan with Activation of the Hydroxyl Groups. Biomaterials 2004, 25, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Işık, M. High Stability of Immobilized Acetylcholinesterase on Chitosan Beads. ChemistrySelect 2020, 5, 4623–4627. [Google Scholar] [CrossRef]
- Mendes, A.A.; De Castro, H.F.; De S. Rodrigues, D.; Adriano, W.S.; Tardioli, P.W.; Mammarella, E.J.; De C. Giordano, R.; De L. C. Giordano, R. Multipoint Covalent Immobilization of Lipase on Chitosan Hybrid Hydrogels: Influence of the Polyelectrolyte Complex Type and Chemical Modification on the Catalytic Properties of the Biocatalysts. J. Ind. Microbiol. Biotechnol. 2011, 38, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Adriano, W.S.; Mendonça, D.B.; Rodrigues, D.S.; Mammarella, E.J.; Giordano, R.L.C. Improving the Properties of Chitosan as Support for the Covalent Multipoint Immobilization of Chymotrypsin. Biomacromolecules 2008, 9, 2170–2179. [Google Scholar] [CrossRef] [PubMed]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, Immobilization Methods, and Industrial Applications. Appl. Microbiol. Biotechnol. 2019, 103, 7399–7423. [Google Scholar] [CrossRef]
- Moazeni, F.; Chen, Y.C.; Zhang, G. Enzymatic Transesterification for Biodiesel Production from Used Cooking Oil, a Review. J. Clean. Prod. 2019, 216, 117–128. [Google Scholar] [CrossRef]
- Silva, J.d.C.; de França, P.R.L.; Converti, A.; Porto, T.S. Kinetic and Thermodynamic Characterization of a Novel Aspergillus Aculeatus URM4953 Polygalacturonase. Comparison of Free and Calcium Alginate-Immobilized Enzyme. Process Biochem. 2018, 74, 61–70. [Google Scholar] [CrossRef]
- Quilles, J.C.J.; Brito, R.R.; Borges, J.P.; Aragon, C.C.; Fernandez-Lorente, G.; Bocchini-Martins, D.A.; Gomes, E.; da Silva, R.; Boscolo, M.; Guisan, J.M. Modulation of the Activity and Selectivity of the Immobilized Lipases by Surfactants and Solvents. Biochem. Eng. J. 2015, 93, 274–280. [Google Scholar] [CrossRef]
- Kharazmi, S.; Taheri-Kafrani, A.; Soozanipour, A.; Nasrollahzadeh, M.; Varma, R.S. Xylanase Immobilization onto Trichlorotriazine-Functionalized Polyethylene Glycol Grafted Magnetic Nanoparticles: A Thermostable and Robust Nanobiocatalyst for Fruit Juice Clarification. Int. J. Biol. Macromol. 2020, 163, 402–413. [Google Scholar] [CrossRef]
- Reichardt, C.; Utgenannt, S.; Stahmann, K.P.; Klepel, O.; Barig, S. Highly Stable Adsorptive and Covalent Immobilization of Thermomyces Lanuginosus Lipase on Tailor-Made Porous Carbon Material. Biochem. Eng. J. 2018, 138, 63–73. [Google Scholar] [CrossRef]
- de Melo, R.R.; de Lima, E.A.; Persinoti, G.F.; Vieira, P.S.; de Sousa, A.S.; Zanphorlin, L.M.; de Giuseppe, P.O.; Ruller, R.; Murakami, M.T. Identification of a Cold-Adapted and Metal-Stimulated β-1,4-Glucanase with Potential Use in the Extraction of Bioactive Compounds from Plants. Int. J. Biol. Macromol. 2021, 166, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and Use of Immobilized Lipases in/on Nanomaterials: A Review from the Waste to Biodiesel Production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Ureta, M.M.; Martins, G.N.; Figueira, O.; Pires, P.F.; Castilho, P.C.; Gomez-Zavaglia, A. Recent Advances in β-Galactosidase and Fructosyltransferase Immobilization Technology. Crit. Rev. Food Sci. Nutr. 2020, 61, 2659–2690. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Goomber, S.; Kaur, J. Engineering Lipases for Temperature Adaptation: Structure Function Correlation. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 140261. [Google Scholar] [CrossRef]
- Karishma, S.; Saravanan, A.; Deivayanai, V.C.; Ajithkumar, U.; Yaashikaa, P.R.; Vickram, A.S. Emerging Strategies for Enhancing Microbial Degradation of Petroleum Hydrocarbons: Prospects and Challenges. Bioresour. Technol. Rep. 2024, 26, 101866. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; Manoel, E.A.; Fernandez-Lafuente, R.; De Oliveira, D. Nanomaterials for Biocatalyst Immobilization-State of the Art and Future Trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Liu, S.; Bilal, M.; Rizwan, K.; Gul, I.; Rasheed, T.; Iqbal, H.M.N. Smart Chemistry of Enzyme Immobilization Using Various Support Matrices—A Review. Int. J. Biol. Macromol. 2021, 190, 396–408. [Google Scholar] [CrossRef]
- Guo, R.; Zheng, X.; Wang, Y.; Yang, Y.; Ma, Y.; Zou, D.; Liu, Y. Optimization of Cellulase Immobilization with Sodium Alginate-Polyethylene for Enhancement of Enzymatic Hydrolysis of Microcrystalline Cellulose Using Response Surface Methodology. Appl. Biochem. Biotechnol. 2021, 193, 2043–2060. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Antunes, A.; Oro, C.E.D.; Franceschi, E.; Dallago, R.M.; Mignoni, M.L. Immobilization of Lipase CALB in Organically Modified Silica. Biointerface Res. Appl. Chem. 2021, 11, 7814–7825. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Antunes, A.; Oro, C.E.D.; Valduga, A.T.; Matuella Moreira, C.; Dallago, R.M.; Mignoni, M. Study of Drying Conditions of the Aerogel Obtained by the Sol-Gel Technique for Immobilization in Situ of Lipase Candida antarctica B. Ind. Biotechnol. 2019, 15, 350–356. [Google Scholar] [CrossRef]
- Bustamante-Vargas, C.E.; De Oliveira, D.; Nyari, N.L.D.; Valduga, E.; Soares, M.B.A.; Backes, G.T.; Dallago, R.M. In Situ Immobilization of Commercial Pectinase in Rigid Polyurethane Foam and Application in the Hydrolysis of Pectic Oligosaccharides. J. Mol. Catal. B Enzym. 2015, 122, 35–43. [Google Scholar] [CrossRef]
- Gaio, I.; Oro, C.E.D.; Graboski, A.M.; Bustamante-Vargas, C.E.; Tres, M.V.; Junges, A.; Dallago, R.M.; Valduga, E.; Furigo, A., Jr. Liquefied Petroleum Gas as Solvent Medium for the Treatment of Immobilized Pectinases. Biocatal. Agric. Biotechnol. 2017, 11, 108–115. [Google Scholar] [CrossRef]
- Babaki, M.; Yousefi, M.; Habibi, Z.; Brask, J.; Mohammadi, M. Preparation of Highly Reusable Biocatalysts by Immobilization of Lipases on Epoxy-Functionalized Silica for Production of Biodiesel from Canola Oil. Biochem. Eng. J. 2015, 101, 23–31. [Google Scholar] [CrossRef]
- Nyari, N.L.D.; Fernandes, I.A.; Bustamante-Vargas, C.E.; Steffens, C.; De Oliveira, D.; Zeni, J.; Rigo, E.; Dallago, R.M. In Situ Immobilization of Candida antarctica B Lipase in Polyurethane Foam Support. J. Mol. Catal. B Enzym. 2016, 124, 52–61. [Google Scholar] [CrossRef]
- Antunes, A.; Oro, C.E.D.; Denti, A.F.; da Silva, L.M.; Ficanha, A.M.M.; Mulinari, J.; Venquiaruto, L.D.; Zeni, J.; Mignoni, M.L.; Dallago, R.M. In Situ CALB Immobilization in Xerogel and Sonogel Employing TMOS as Silica Precursor and Polyethylene Glycol as Additive. Processes 2024, 12, 2411. [Google Scholar] [CrossRef]
- Sicard, C. In Situ Enzyme Immobilization by Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2023, 62, e202213405. [Google Scholar] [CrossRef]
- Pahujani, S.; Kanwar, S.S.; Chauhan, G.; Gupta, R. Glutaraldehyde Activation of Polymer Nylon-6 for Lipase Immobilization: Enzyme Characteristics and Stability. Bioresour. Technol. 2008, 99, 2566–2570. [Google Scholar] [CrossRef]
- Alatawi, F.S.; Elsayed, N.H.; Monier, M. Immobilization of Horseradish Peroxidase on Modified Nylon-6 Fibers. ChemistrySelect 2020, 5, 6841–6850. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Rinken, T. Immobilization of Pectinolytic Enzymes on Nylon 6/6 Carriers. Appl. Sci. 2021, 11, 4591. [Google Scholar] [CrossRef]
- Rather, A.H.; Khan, R.S.; Wani, T.U.; Beigh, M.A.; Sheikh, F.A. Overview on Immobilization of Enzymes on Synthetic Polymeric Nanofibers Fabricated by Electrospinning. Biotechnol. Bioeng. 2022, 119, 9–33. [Google Scholar] [CrossRef]
- Song, J.E.; Kim, H.R.; Lee, S.H. Effect of Enzymatic Hydrolysis on Developing Support of Polyamide Woven Fabric for Enzyme Immobilization. Text. Res. J. 2019, 89, 1345–1360. [Google Scholar] [CrossRef]
- Zaidi, A.; Gainer, J.L.; Carta, G.; Mrani, A.; Kadiri, T.; Belarbi, Y.; Mir, A. Esterification of Fatty Acids Using Nylon-Immobilized Lipase in n-Hexane: Kinetic Parameters and Chain-Length Effects. J. Biotechnol. 2002, 93, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.M.; Saavedra Pinto, G.A.; Ferreira De Castro, H.; Jose’luiz De Lima-Filho, J.; Henrique De Magalhães, E.; Melo, M. Variables That Affect Immobilization of Mucor Miehei Lipase on Nylon Membrane. World J. Microbiol. Biotechnol. 2004, 20, 371–375. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, S.; Thakur, J.; Gupta, R. Immobilization of Polygalacturonase from Aspergilus Niger onto Glutaraldehyde Activated Nylon-6 and Its Application in Apple Juice Clarification. Acta Aliment. 2010, 39, 277–292. [Google Scholar] [CrossRef]
- Zeng, H.Y.; Liu, X.Y.; He, P.; Peng, D.H.; Fan, B.; Xia, K. Lipase Adsorption on Woven Nylon-6 Membrane: Optimization, Kinetic and Thermodynamic Analyses. Biocatal. Biotransform. 2014, 32, 188–197. [Google Scholar] [CrossRef]
- Halin, N.I.A.; Al-Khatib, M.F.R.; Salleh, H.M.; Nasef, M.M. Immobilization of Candida rugosa Lipase on Aminated Polyvinyl Benzyl Chloride-Grafted Nylon-6 Microfibers. Bull. Chem. React. Eng. Catal. 2019, 14, 369–379. [Google Scholar] [CrossRef]
- Laird, M.; Yokoyama, J.; Carcel, C.; Unno, M.; Bartlett, J.R.; Wong Chi Man, M. Sol–Gel Processing of Polyhedral Oligomeric Silsesquioxanes: Nanohybrid Materials Incorporating T8 and T10 Cages. J. Sol-Gel Sci. Technol. 2020, 95, 760–770. [Google Scholar] [CrossRef]
- Coelho, A.L.S.; Orlandelli, R.C. Immobilized Microbial Lipases in the Food Industry: A Systematic Literature Review. Crit. Rev. Food Sci. Nutr. 2020, 61, 1689–1703. [Google Scholar] [CrossRef]
- Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.L.; Zink, J.I.; Stoddart, J.F. Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Acc. Chem. Res. 2011, 44, 903–913. [Google Scholar] [CrossRef]
- Amaya-Delgado, L.; Hidalgo-Lara, M.E.; Montes-Horcasitas, M.C. Hydrolysis of Sucrose by Invertase Immobilized on Nylon-6 Microbeads. Food Chem. 2006, 99, 299–304. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Dencheva, N.V.; Denchev, Z.Z. Immobilization of Enological Pectinase on Magnetic Sensitive Polyamide Microparticles for Wine Clarification. Foods 2024, 13, 420. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Silva, C.J.; Zille, A.; Guebitz, G.M.; Cavaco-Paulo, A. Laccase Immobilization on Enzymatically Functionalized Polyamide 6,6 Fibres. Enzyme Microb. Technol. 2007, 41, 867–875. [Google Scholar] [CrossRef]
- Jankowska, K.; Grzywaczyk, A.; Piasecki, A.; Kijeńska-Gawrońska, E.; Nguyen, L.N.; Zdarta, J.; Nghiem, L.D.; Pinelo, M.; Jesionowski, T. Electrospun Biosystems Made of Nylon 6 and Laccase and Its Application in Dyes Removal. Environ. Technol. Innov. 2021, 21, 101332. [Google Scholar] [CrossRef]
- Maryšková, M.; Schaabová, M.; Tománková, H.; Novotnỳ, V.; Rysová, M. Wastewater Treatment by Novel Polyamide/Polyethylenimine Nanofibers with Immobilized Laccase. Water 2020, 12, 588. [Google Scholar] [CrossRef]
- Dencheva, N.; Braz, J.; Scheibel, D.; Malfois, M.; Denchev, Z.; Gitsov, I. Polymer-Assisted Biocatalysis: Polyamide 4 Microparticles as Promising Carriers of Enzymatic Function. Catalysts 2020, 10, 767. [Google Scholar] [CrossRef]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef]
Enzyme | Immobilization Conditions | Highlighted Results | References |
---|---|---|---|
Candida rugosa lipase | Partial hydrolysis of nylon-6 with 6 N hydrochloric acid (HCl), followed by treatment with a 2.5% GA solution at pH 7 and subsequent contact with an enzyme solution buffered at pH 7 | Synthesis of esters of saturated and unsaturated fatty acids, with conversion > 90% using 3.8% by weight of immobilized enzyme, for a reaction time of 10 h at 25 °C | [62] |
Mucor javanicus lipase | Nylon pieces coated with polyvinyl alcohol (PVA) followed by cross-linking with GA | Operational stability of five consecutive reuses, retaining 8.7% of free enzyme activity | [63] |
Bacillus coagulans BTS-3 lipase | Nylon-6 particles, partially hydrolyzed with 6 N HCl and treated with GA and subsequent contact with an enzyme solution | Maximum biocatalyst activity at 55 °C and pH 7.5. It retained 85% of its original activity after eight cycles. | [57] |
Aspergillus niger pectinase PG | Nylon-6 activated with GA | 40% immobilization yield and four cycles maintaining 50% of its initial activity | [64] |
Candida rugosa lipase | Nylon-6 membrane activated using 0.5% GA | Hydrolysis of olive oil (45 °C for 5 h) with 10 reuse cycles with residual activity of approximately 80% | [65] |
Candida rugosa lipase | Nylon-6 microfibers grafted with polyvinyl benzyl chloride | Three-cycle operational stability with residual activity above 73% | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oro, C.E.D.; Saorin Puton, B.M.; Venquiaruto, L.D.; Dallago, R.M.; Tres, M.V. Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review. Processes 2025, 13, 200. https://doi.org/10.3390/pr13010200
Oro CED, Saorin Puton BM, Venquiaruto LD, Dallago RM, Tres MV. Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review. Processes. 2025; 13(1):200. https://doi.org/10.3390/pr13010200
Chicago/Turabian StyleOro, Carolina E. Demaman, Bruna M. Saorin Puton, Luciana D. Venquiaruto, Rogério Marcos Dallago, and Marcus V. Tres. 2025. "Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review" Processes 13, no. 1: 200. https://doi.org/10.3390/pr13010200
APA StyleOro, C. E. D., Saorin Puton, B. M., Venquiaruto, L. D., Dallago, R. M., & Tres, M. V. (2025). Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review. Processes, 13(1), 200. https://doi.org/10.3390/pr13010200