Study on the Bubble Collapse Characteristics and Heat Transfer Mechanism of the Microchannel Reactor
<p>Three-dimensional physical model of the microchannel.</p> "> Figure 2
<p>Pressure contour and pressure curve during bubble collapse. (<b>a</b>) Pressure contour distribution during bubble collapse. (<b>b</b>) Time-varying pressure curve at the bubble collapse point.</p> "> Figure 3
<p>Velocity contour and velocity curve during bubble collapse. (<b>a</b>) Velocity contour distribution during bubble collapse. (<b>b</b>) Time-varying velocity curve at the bubble collapse point.</p> "> Figure 4
<p>Turbulence intensity analysis during bubble collapse. (<b>a</b>) Turbulence intensity distribution. (<b>b</b>) Turbulence intensity curve at the collapse point.</p> "> Figure 5
<p>Vorticity distribution and vorticity curve during bubble collapse in the flow field. (<b>a</b>) Vorticity distribution. (<b>b</b>) Time-varying vorticity curve.</p> "> Figure 6
<p>Temperature distribution at observation points in the flow field. (<b>a</b>) Observation point 1. (<b>b</b>) Observation point 2. (<b>c</b>) Observation point 3. (<b>d</b>) Observation point 4.</p> "> Figure 7
<p>Temperature evolution contour of the flow field before and after bubble collapse. (<b>a</b>) Before bubble collapse. (<b>b</b>) After bubble collapse.</p> "> Figure 8
<p>Dynamic process of bubble collapse in the flow field. (<b>a</b>) <span class="html-italic">t</span> = 0 ms. (<b>b</b>) <span class="html-italic">t</span> = 2.7 ms. (<b>c</b>) <span class="html-italic">t</span> = 3.1 ms. (<b>d</b>) <span class="html-italic">t</span> = 3.38 ms.</p> "> Figure 9
<p>Motion trajectories of particles affected by bubble collapse.</p> "> Figure 10
<p>Variations in particle velocity in the flow field. (<b>a</b>) Changes in particle velocity in the <span class="html-italic">X</span> direction. (<b>b</b>) Changes in particle velocity in the <span class="html-italic">Y</span> direction.</p> ">
Abstract
:1. Introduction
2. LBM Theoretical Modeling
2.1. LBM Two-Phase Flow Model
2.2. DEM Model
3. Numerical Model Experiments of Microreactor
3.1. Three-Dimensional Physical Model
3.2. Boundary and Initial Conditions
4. Numerical Results and Analysis
4.1. Bubble Collapse Evolution Mechanism
4.2. Flow Field Temperature Distribution Patterns
4.3. Particle Motion Patterns
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Z.W.; Li, C.X.; Qi, X.Y. Flow analysis on carbonaceous deposition of heavy oil droplets and catalyst particles for coking formation process. Energy 2022, 260, 124988. [Google Scholar] [CrossRef]
- Thiebaut, M.; Quillien, N.; Maison, A. Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary. Renew. Energy 2022, 195, 252–262. [Google Scholar] [CrossRef]
- Afra, B.; Karimnejad, S.; Delouei, A.A.; Tarokh, A. Flow control of two tandem cylinders by a highly flexible filament: Lattice spring IB-LBM. Ocean Eng. 2022, 250, 111025. [Google Scholar] [CrossRef]
- Huang, X.; Xia, S.; Lee, S.; Jia, Y.; Chen, Z.; Xu, J. Continuous production of monodisperse silver nanoparticles suitable for catalysis in a droplet-based microreactor system. ACS Appl. Nano Mater. 2023, 6, 8574–8583. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhao, W.; Su, Z.; Zhang, G.J.; Li, P.; Yurchenko, D. Enhancing vortex-induced vibrations of a cylinder with rod attachments for hydrokinetic power generation. Mech. Syst. Signal Process. 2020, 145, 106912. [Google Scholar] [CrossRef]
- Li, L.; Yang, Y.S.; Xu, W.X.; Lu, B.; Gu, Z.H.; Yang, J.G.; Tan, D.P. Advances in the multiphase vortex-induced vibration detection method and its vital technology for sustainable industrial production. Appl. Sci. 2022, 12, 8538. [Google Scholar] [CrossRef]
- Delouei, A.A.; Karimnejad, S.; He, F.L. Direct Numerical simulation of pulsating flow effect on the distribution of non-circular particles with increased levels of complexity: IB-LBM. Comput. Math. Appl. 2022, 121, 115–130. [Google Scholar] [CrossRef]
- Lin, H.; Shen, Q.; Ma, M.; Ji, R.; Guo, H.; Qi, H.; Xing, W.; Tang, H. 3D printing of porous ceramics for enhanced thermal insulation properties. Adv. Sci. 2024, e2412554. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.H.; Zheng, G.A. Investigate on the fluid dynamics and heat transfer behavior in an automobile gearbox based on the LBM-LES model. Lubricants 2025, in press. [Google Scholar]
- Škerlavaj, A.; Škerget, L.; Ravnik, J. Predicting Free–Surface Vortices with Single-Phase Simulations. Eng. Appl. Comp. Fluid Mech. 2014, 8, 193–210. [Google Scholar] [CrossRef]
- Li, L.; Xu, P.; Xu, W.X.; Lu, B.; Wang, C.Y.; Tan, D.P. Multi-field coupling vibration patterns of the multiphase sink vortex and distortion recognition method. Mech. Syst. Signal Process. 2024, 219, 111624. [Google Scholar] [CrossRef]
- Yang, X.; Song, F.; Zhang, T.C.; Yao, X.L.; Wang, W.L.; Zhang, Z.V.; Hou, Y.Y.; Qi, H.; Tang, H.P. Surface enhancement by micro-arc oxidation induced TiO2 ceramic coating on additive manufacturing Ti-6Al-4V. Chin. J. Mech. Eng. 2024, in press. [Google Scholar]
- Ge, J.Q.; Lin, Y.H.; Qi, H.; Li, Y.T.; Li, X.L.; Li, C.; Li, Z.A.; Xu, K.Q. The impact of ultrasonic-induced jet morphology on polishing efficiency. Int. J. Mech. Sci. 2024, 284, 109764. [Google Scholar] [CrossRef]
- Burlon, A.; Failla, G. On the dynamics of high-order beams with vibration absorbers. Appl. Math. Model. 2022, 112, 341–357. [Google Scholar] [CrossRef]
- Li, L.; Xu, W.X.; Tan, Y.F.; Yang, Y.S.; Yang, J.G.; Tan, D.P. Fluid-induced vibration evolution mechanism of multiphase free sink vortex and the multi-source vibration sensing method. Mech. Syst. Signal Process. 2023, 189, 110058. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; Zeng, H.; Hu, Z.; Fu, B. Numerical and experimental investigation on micromixers with serpentine microchannels. Int. J. Heat Mass Transf. 2016, 98, 131–140. [Google Scholar] [CrossRef]
- Rahimi, M.; Aghel, B.; Hatamifar, B.; Akbari, M.; Alsairafi, A. CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor. Chem. Eng. Process. Process Intensif. 2014, 86, 36–46. [Google Scholar] [CrossRef]
- Akbari, M.; Rahimi, M.; Faryadi, M. Gas–liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves. Chin. J. Chem. Eng. 2017, 25, 1143–1152. [Google Scholar] [CrossRef]
- Dong, Z.; Yao, C.; Zhang, Y.; Chen, G.; Yuan, Q.; Xu, J. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors. AIChE J. 2016, 62, 1294–1307. [Google Scholar] [CrossRef]
- Zhao, S.N.; Yao, C.Q.; Zhang, Q. Acoustic cavitation and ultrasound-assisted nitration process in ultrasonic microreactors: The effects of channel dimension, solvent properties and temperature. Chem. Eng. J. 2019, 374, 68–78. [Google Scholar] [CrossRef]
- Soleymani, A.; Kolehmainen, E.; Turunen, I. Numerical and experimental investigations of liquid mixing in T-type micromixers. Chem. Eng. J. 2008, 135, 219–228. [Google Scholar] [CrossRef]
- Cha, J.; Kim, J.; Ryu, S.K.; Park, J.; Jeong, Y.; Park, S. A highly efficient 3D micromixer using soft PDMS bonding. J. Micromechanics Microengineering 2006, 16, 1778. [Google Scholar] [CrossRef]
- Qiao, Z.; Yang, X.; Zhang, Y. A free-energy based multiple-distribution-function lattice Boltzmann method for multi-component and multi-phase flows. Appl. Therm. Eng. 2024, 257, 124241. [Google Scholar] [CrossRef]
- Molaeimanesh, G.R.; Googarchin, H.S.; Moqaddam, A.Q. Lattice Boltzmann simulation of proton exchange membrane fuel cells–A review on opportunities and challenges. Int. J. Hydrogen Energy 2016, 41, 22221–22245. [Google Scholar] [CrossRef]
- Kou, J.; Sun, S. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility. Comput. Methods Appl. Mech. Eng. 2018, 331, 623–649. [Google Scholar] [CrossRef]
- Guo, Q.; Cheng, P. Direct numerical simulations of sessile droplet evaporation on a heated horizontal surface surrounded by moist air. Int. J. Heat Mass Transf. 2019, 134, 828–841. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Su, Y.; Hao, Y.; Zhang, X.; Huang, Z.; Zhang, W. Investigation of oil/water two-phase flow behavior in laminated shale porous media considering heterogeneous structure and fluid-solid interaction. Phys. Fluids 2024, 36, 3. [Google Scholar] [CrossRef]
- Singh, N.K.; Premachandran, B. Coupled level set and volume of fluid method on unstructured grids for the direct numerical simulations of two-phase flows including phase change. Int. J. Heat Mass Transf. 2018, 122, 182–203. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Su, Y.; Jin, Z.H. Lattice Boltzmann model for oil/water two-phase flow in nanoporous media considering heterogeneous viscosity, liquid/solid, and liquid/liquid slip. SPE J. 2022, 27, 3508–3524. [Google Scholar] [CrossRef]
- Tashakori, A.F. Effect of inter-particle forces on solids mixing in fluidized beds. Powder Technol. 2023, 415, 118098. [Google Scholar] [CrossRef]
- Tan, Y.F.; Ni, Y.S.; Wu, J.F.; Li, L.; Tan, D.P. Machinability evolution of gas–liquid-solid three-phase rotary abrasive flow finishing. Int. J. Adv. Manuf. Technol. 2023, 131, 2145–2164. [Google Scholar] [CrossRef]
- Ezure, T.; Ito, K.; Tanaka, M.; Ohshima, H.; Kameyama, Y. Experiments on gas entrainment phenomena due to free surface vortex induced by flow passing beside stagnation region. Nucl. Eng. Des. 2019, 350, 90–97. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.Y.; Li, L.; Wu, J.F.; Yin, Z.C.; Tan, D.P. Numerical investigation of mesoscale multiphase mass transport mechanism in fibrous porous media. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2363246. [Google Scholar] [CrossRef]
- Guo, X.M.; Yang, M.Y.; Li, F.Q.; Zhu, Z.C.; Cui, B.L. Investigation on Cryogenic Cavitation Characteristics of an Inducer Considering Thermodynamic Effects. Energies 2024, 17, 3627. [Google Scholar] [CrossRef]
- Chirathalattu, A.T.; Santhosh, B.; Bose, C.; Philip, R.; Balaram, B. Passive suppression of vortex-induced vibrations using a nonlinear energy sink-Numerical and analytical perspective. Mech. Syst. Signal Process. 2023, 182, 109556. [Google Scholar] [CrossRef]
- Tamburini, A.; Cipollina, A.; Micale, G. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension. Chem. Eng. J. 2012, 193, 234–255. [Google Scholar] [CrossRef]
- Tao, S.; He, Q.; Yang, X.; Luo, J.; Zhao, X. Numerical study on the drag and flow characteristics of porous particles at intermediate Reynolds numbers. Math. Comput. Simul. 2022, 202, 273–294. [Google Scholar] [CrossRef]
- Qian, Y.; Cai, R.; Zhang, L. A spheropolyhedral-based discrete elem.ent lattice Boltzmann method for simulation of non-spherical adhesive particulate flow. Comput. Phys. Commun. 2023, 291, 108809. [Google Scholar] [CrossRef]
- Li, L.; Tan, Y.F.; Xu, W.X.; Ni, Y.S.; Yang, J.G.; Tan, D.P. Fluid-induced transport dynamics and vibration patterns of multiphase vortex in the critical transition states. Int. J. Mech. Sci 2023, 252, 108376. [Google Scholar] [CrossRef]
- Li, L.; Lu, B.; Xu, W.X.; Wang, C.Y.; Wu, J.F.; Tan, D.P. Dynamic behaviors of multiphase vortex-induced vibration for hydropower energy conversion. Energy 2024, 308, 132897. [Google Scholar] [CrossRef]
- Blais, B.; Bertrand, F. CFD-DEM Investigation of viscous solid-liquid mixing: Impact of particle properties and mixer characteristics. Chem. Eng. Res. Des. 2017, 118, 270–285. [Google Scholar] [CrossRef]
- Wu, J.F.; Li, L.; Li, Z.; Xu, P.; Qi, H.; Wang, C.Y.; Zhang, Y.K.; Xie, Y.S.; Tan, D.P. Multiphase dynamic interfaces and abrasive transport dynamics for abrasive flow machining in shear thickening transition states. Powder Technol. 2024, 446, 120150. [Google Scholar] [CrossRef]
- Xu, W.X.; Xu, P.; Yang, Y.; Tan, D.P.; Li, L. The utilization and advancement of laser ultrasound testing in the assessment of aerospace composite characteristics: A review. Chin. J. Aeronaut. 2025, in press. [Google Scholar]
- Stroh, A.; Daikeler, A.; Nikku, M. Coarse grain 3D CFD-DEM simulation and validation with capacitance probe measurements in a circulating fluidized bed. Chem. Eng. Sci. 2019, 196, 37–53. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.H.; Ni, Y.S.; Wang, C.Y.; Tan, Y.F.; Tan, D.P. Critical penetrating vibration evolution behaviors of the gas-liquid coupled vortex flow. Energy 2024, 292, 130236. [Google Scholar] [CrossRef]
- Tan, Y.F.; Ni, Y.S.; Xu, W.X.; Xie, Y.S.; Li, L.; Tan, D.P. Key technologies and development trends of the soft abrasive flow finishing method. J. Zhejiang Univ. Sci. A 2023, 24, 1043–1064. [Google Scholar] [CrossRef]
- He, L.; Liu, Z.; Zhao, Y. Study on a semi-resolved CFD-DEM method for rod-like particles in a gas-solid fluidized bed. Particuology 2024, 87, 20–36. [Google Scholar] [CrossRef]
- Wang, C.Y.; Li, Z.; Xu, P.; Hou, Y.Q.; Tan, D.P.; Li, L. Collision modelling approach and transient response mechanism of ring-ribbed cylindric shells for underwater vehicles. Appl. Math. Model. 2025, 141, 115923. [Google Scholar] [CrossRef]
- Li, L.; Gu, Z.H.; Xu, W.X.; Tan, Y.F.; Fan, X.H.; Tan, D.P. Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling. Energy 2023, 272, 127015. [Google Scholar] [CrossRef]
- Li, L.; Lu, B.; Xu, W.X.; Gu, Z.H.; Yang, Y.S.; Tan, D.P. Mechanism of multiphase coupling transport evolution of free sink vortex. Acta Phys Sin 2023, 72, 034702. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Li, Z.; Li, L.; Wang, C.Y.; Wu, J.F.; Xie, Y.S.; Yin, Z.C.; Tan, D.P. Deposition mechanism of microscopic impacting droplets on flexible porous substrates. Int. J. Mech. Sci. 2025, in press. [Google Scholar]
- Li, L.; Xu, P.; Li, Q.H.; Yin, Z.C.; Zheng, R.Y.; Wu, J.F.; Bao, J.J.; Qi, H.; Tan, D.P. Multi-field coupling particle flow dynamic behaviors of the microreactor and ultrasonic control method. Powder Technol. 2025, in press. [Google Scholar]
- Xu, P.; Li, Q.H.; Wang, C.Y.; Li, L.; Tan, D.P.; Wu, H.P. Interlayer healing mechanism of multipath deposition 3D printing models and interlayer strength regulation method. J. Manuf. Process. 2025, in press. [Google Scholar]
- Zheng, G.A.; Weng, X.X.; Wang, T.; Xu, P.; Xu, W.X.; Li, L.; Xu, X.F.; Tan, D.P. Piezoelectric ultrasonic coupling-based polishing of micro-tapered holes with abrasive flow. J. Zhejiang Univ.-Sci. A 2025, in press. [Google Scholar]
- Lungu, M.; Siame, J.; Mukosha, L. Comparison of CFD-DEM and TFM approaches for the simulation of the small scale challenge problem. Powder Technol. 2020, 378, 85–103. [Google Scholar] [CrossRef]
- Chelton, D.B.; Gaube, P.; Schlax, M.G.; Early, J.J.; Samelson, R.M. The Influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 2011, 334, 328–332. [Google Scholar] [CrossRef]
- Tan, D.P.; Hou, Y.Q.; Wang, C.Y.; Cheng, J.W.; Song, W.L. Analytical and experimental investigation of vibration response for the cracked fluid-filled thin cylindrical shell under transport condition. Appl. Math. Model. 2025, in press. [Google Scholar]
- Jovanović, A.; Pezo, M.; Pezo, L. DEM/CFD analysis of granular flow in static mixers. Powder Technol. 2014, 266, 240–248. [Google Scholar] [CrossRef]
- Soto-Rivas, K.; Richter, D.; Escauriaza, C. Flow effects of finite-sized tidal turbine arrays in the Chacao Channel, Southern Chile. Renew. Energy 2022, 195, 637–647. [Google Scholar]
- Qiu, Y.; Wang, F.N.; Zhang, Z.; Shi, K.Q.; Song, Y.; Lu, J.T.; Xu, M.J.; Qian, M.Y.; Zhang, W.A.; Wu, J.X.; et al. Quantitative softness and texture bimodal haptic sensors for robotic clinical feature identification and intelligent picking. Sci. Adv. 2024, 10, eadp0348. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, P.; Li, Q.H.; Zheng, R.Y.; Xu, X.M.; Wu, J.F.; He, B.Y.; Bao, J.J.; Tan, D.P. Particle flow modeling and ultrasonic vibration suppression method of microfluidic chip based on LBM-LES-DEM coupling. Appl. Math. Model. 2025, in press. [Google Scholar]
- Xin, Y.; Zhao, Y.; Zhang, T.C.; Zhang, F.S.; Yao, X.L.; Xiao, B.; Lin, P.; Qi, H.; Liu, S.F.; Tang, H.P. Multi-build orientation effects on microstructural evolution and mechanical behavior of truly as-built selective laser melting Ti6Al4V alloys. J. Mater. Res. Technol. 2024, 30, 3967–3976. [Google Scholar]
- Ji, R.Q.; Shen, Q.T.; Zhang, L.; Zeng, X.; Qi, H. Novel photocatalysis-assisted mechanical polishing of laser cladding cobalt-based alloy using TiO2 nanoparticles. Powder Technol. 2024, 444, 119990. [Google Scholar] [CrossRef]
- Fu, D.N.; Sheng, J.; Wang, L.J.; Zhang, X.J.; Yang, R.D.; Li, X.K.; Wang, Y. In situ silver-loaded cellulose for high-strength antibacterial composite air filtration paper. Cellulose 2025, in press. [Google Scholar]
- Kan, K.; Zhang, Q.Y.; Xu, Z.; Zheng, Y.; Gao, Q.; Shen, L. Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions. Energy 2022, 250, 124532. [Google Scholar] [CrossRef]
- Hosseini, S.; Aghebatandish, S.; Dadvand, A.; Khoo, B.C. An immersed boundary-lattice Boltzmann method with multi relaxation time for solving flow-induced vibrations of an elastic vortex generator and its effect on heat transfer and mixing. Chem. Eng. J. 2021, 405, 126652. [Google Scholar] [CrossRef]
- Lin, H.; Ma, M.; Qi, H.; Wang, X.; Xing, Z.; Alowasheeir, A.; Tang, H.; Jun, S.C.; Yamauchi, Y.; Liu, S.D. 3D-Printed photocatalysts for revolutionizing catalytic conversion of solar to chemical energy. Prog. Mater. Sci. 2025, 151, 101427. [Google Scholar] [CrossRef]
- Chakraborty, I.; Biswas, G.; Ghoshdastidar, P.S. A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. Int. J. Heat Mass Transf. 2013, 58, 240–259. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Multiphase model | Particle tracking model |
g (m/s2) | −9.81 |
Initial distribution function in fluid domain | (x − 0.001)2 + y2 + z2 > 0.00000025 |
Entrance velocity (m/s) | 1, 1.5, 2, 2.5 |
Radius of bubble (mm) | 0.5 |
Outlet pressure | Standard atmospheric pressure |
Wall function | Enhanced wall function |
Particle diameter (mm) | 0.2 |
Particle density (kg/m3) | 480, 1050, 2200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, G.; Xu, P.; Wang, T.; Yan, Q. Study on the Bubble Collapse Characteristics and Heat Transfer Mechanism of the Microchannel Reactor. Processes 2025, 13, 281. https://doi.org/10.3390/pr13010281
Zheng G, Xu P, Wang T, Yan Q. Study on the Bubble Collapse Characteristics and Heat Transfer Mechanism of the Microchannel Reactor. Processes. 2025; 13(1):281. https://doi.org/10.3390/pr13010281
Chicago/Turabian StyleZheng, Gaoan, Pu Xu, Tong Wang, and Qing Yan. 2025. "Study on the Bubble Collapse Characteristics and Heat Transfer Mechanism of the Microchannel Reactor" Processes 13, no. 1: 281. https://doi.org/10.3390/pr13010281
APA StyleZheng, G., Xu, P., Wang, T., & Yan, Q. (2025). Study on the Bubble Collapse Characteristics and Heat Transfer Mechanism of the Microchannel Reactor. Processes, 13(1), 281. https://doi.org/10.3390/pr13010281