Fabrication of Flexible SWCNTs/Polyurethane Coatings for Efficient Electric and Thermal Management of Space Optical Remote Sensors
<p>Schematic illustration for fabricating SWCNTs/WPU.</p> "> Figure 2
<p>SEM images of SWCNTs (<b>a</b>,<b>b</b>), SWCNTs/WPU-1 (<b>c</b>,<b>d</b>), SWCNTs/WPU-2 (<b>e</b>,<b>f</b>), SWCNTs/WPU-3 (<b>g</b>,<b>h</b>), SWCNTs/WPU-4 (<b>i</b>,<b>j</b>), and WPU (<b>k</b>,<b>l</b>).</p> "> Figure 3
<p>Raman spectra of SWCNTs before and after acid treatment (<b>a</b>). XRD patterns of SWCNTs/WPU (<b>b</b>). FTIR spectra of SWCNTs (<b>c</b>) and SWCNTs/WPU (<b>d</b>). TGA (<b>e</b>) and DTG (<b>f</b>) curves of SWCNTs/WPU.</p> "> Figure 4
<p>Effect of SWCNT content on the electrical conductivity (<b>a</b>) and thermal conductivity (<b>b</b>) of r-SWCNTs/WPU and p-SWCNTs/WPU.</p> "> Figure 5
<p>Stress–strain curves of p-SWCNTs/WPU (<b>a</b>). Tensile strength of r-SWCNTs/WPU and p-SWCNTs/WPU (<b>b</b>). Stability of electrical and thermal conductivities of p-SWCNTs/WPU-4 with bending experiment of 0–1000 cycles (<b>c</b>).</p> "> Figure 6
<p>Schematic illustration for heat dissipation solution.</p> "> Figure 7
<p>Heat transformation diagram (<b>a</b>), structural diagram (<b>b</b>), and cross-sectional photograph (<b>c</b>) of thermal radiator.</p> "> Figure 8
<p>Temperature variation of various components and positions of the radiator during the in-orbit flight.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of SWCNTs/WPU
2.3. Characterization
3. Results and Discussion
3.1. Characterization of SWCNTs/WPU
3.2. Electric and Thermal Conductivity of SWCNTs/WPU
3.3. Mechanical and Conductivity Stability of SWCNTs/WPU
3.4. SWCNTs/WPU in Designed Radiator
3.5. Thermal Management for in Orbit Flight
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Wen, Q.; Chen, S. Engineering survey of the environment and disaster monitoring and forecasting small satellite constellation. Int. J. Digit. Earth 2012, 5, 217–227. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, S.; Gao, T.; Zhao, Z.; Meng, Q.; Zhang, P. Design of CCD thermal control system for SuperView satellite remote sensor and its start debugging in-orbit. J. Phys. Conf. Ser. 2021, 1820, 012013. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, L.; Han, H.; Ren, L.; Liu, S.; Wang, R. Optimal design of thermal control system for space optical remote sensor based on NSGA-II and opto-mechanical-thermal integration analysis. Case Stud. Therm. Eng. 2023, 43, 102813. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Wang, T.; Tao, S.; Zhang, D.; Ren, S.; Ma, B.; Zhang, C. Research on the design and alignment method of the optic-mechanical system of an ultra-compact fully freeform space camera. Sensors 2023, 23, 9399. [Google Scholar] [CrossRef]
- Hosseinionari, H.; Seethaler, R. The integration of model predictive control and deep reinforcement learning for efficient thermal control in thermoforming processes. J. Manuf. Process 2024, 115, 82–93. [Google Scholar] [CrossRef]
- Lu, P.; Gao, T.; Chen, Q.; Ren, X. Energy saving thermal management of space remote sensor and validation. Energies 2023, 16, 864. [Google Scholar] [CrossRef]
- Gao, T.; Yang, T.; Zhao, S. Experimental research on temperature controlling performance of loop heat pipe in vacuum and low temperature environment. Spacecr. Recovery Remote Sens. 2019, 40, 38–47. [Google Scholar]
- Yang, T.; Zhao, S.; Gao, T.; Zhao, Z.M.; Zhao, Y.; Li, C.L. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources. J. Astronaut. 2021, 42, 798–806. [Google Scholar]
- Li, S.; Chen, L.; Wu, Y. Thermal design of detector for the solar X-Ray and extreme ultraviolet imager. J. Thermophys. Heat Transf. 2019, 33, 285–291. [Google Scholar] [CrossRef]
- Yang, J.; Shen, X.; Yang, W.; Kim, J.K. Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications. Prog. Mater. Sci. 2023, 133, 101054. [Google Scholar] [CrossRef]
- Wu, L.; Wang, W.; Lu, J.; Sun, R.; Wong, C.P. Study of the interfacial adhesion properties of a novel self-healable siloxane polymer material via molecular dynamics simulation. Appl. Surf. Sci. 2022, 583, 152471. [Google Scholar] [CrossRef]
- Weng, G.; Yang, X.; Wang, Z.; Xu, Y.; Liu, R. Hydrogel electrolyte enabled high-performance flexible aqueous zinc ion energy storage systems toward wearable electronics. Small 2023, 19, 2303949. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Sun, F.; Li, Y.; Li, L.; Liu, M.; Wang, S.; Wang, Y.; Li, T.; Liu, L.; Feng, S.; et al. Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for flexible bioelectronics. Nano-Micro Lett. 2023, 15, 139. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Lou, Z.; Zhang, L.; Guo, H.; Wang, Z.; Guo, C.; Fukuda, K.; Ma, S.; Wang, G.; Someya, T.; et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv. Mater. 2023, 35, 2206793. [Google Scholar] [CrossRef]
- Benas, J.S.; Liang, F.C.; Venkatesan, M.; Yan, Z.L.; Chen, W.C.; Han, S.T.; Zhou, Y.; Kuo, C.C. Recent development of sustainable self-healable electronic skin applications. a review with insight. Chem. Eng. J. 2023, 466, 142945. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Zhang, S.; Tang, B. Advanced phase change materials from natural perspectives: Structural design and functional applications. Adv. Sci. 2023, 10, 2207652. [Google Scholar] [CrossRef]
- Zeng, S.; Li, X.; Li, M.; Zheng, J.; Shiju, E.; Yang, W.; Zhao, B.; Guo, X.; Zhang, R. Flexible PVDF/CNTs/Ni@CNTs composite films possessing excellent electromagnetic interference shielding and mechanical properties under heat treatment. Carbon 2019, 155, 34–43. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Hou, X.; Qin, Y.; Song, G.; Wei, X.; Kong, X.; Zhang, Z.; Do, H.; Greer, J.C.; et al. Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials. Compos. Sci. Technol. 2021, 212, 108883. [Google Scholar] [CrossRef]
- Uppal, A.; Kong, W.; Rana, A.; Wang, R.Y.; Rykaczewski, K. Enhancing thermal transport in silicone composites via bridging liquid metal fillers with reactive metal co-fillers and matrix viscosity tuning. ACS Appl. Mater. Interfaces 2021, 13, 43348–43355. [Google Scholar] [CrossRef]
- Hao, X.; Wan, S.; Zhao, Z.; Zhu, L.; Peng, D.; Yue, M.; Kuang, J.; Cao, W.; Liu, G.; Wang, Q. Enhanced thermal conductivity of epoxy composites by introducing 1D AlN whiskers and constructing directionally aligned 3D AlN filler skeletons. ACS Appl. Mater. Interfaces 2023, 15, 2124–2133. [Google Scholar] [CrossRef]
- Lim, G.; Bok, G.; Kim, Y.S.; Kim, Y. Fabrication of h-BN filled epoxy-based thermally conductive adhesive tapes containing cyclic carbonate-terminated oligomers. Electron. Mater. Lett. 2022, 18, 145–152. [Google Scholar] [CrossRef]
- Abo-Zahhad, E.M.; Hachicha, A.A.; Said, Z.; Ghenai, C.; Ookawara, S. Thermal management system for high, dense, and compact power electronics. Energy Convers. Manag. 2022, 268, 115975. [Google Scholar] [CrossRef]
- Wu, H.Y.; Jia, L.C.; Yan, D.X.; Gao, J.; Zhang, X.P.; Ren, P.G.; Li, Z.M. Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 2018, 156, 87–94. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Liang, C.; Song, P.; Han, Y.; Han, Y.; Gu, J.; Kong, J.; Pan, D.; Guo, Z. Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 2019, 141, 506–514. [Google Scholar] [CrossRef]
- Tung, W.S.; Bird, V.; Composto, R.J.; Clarke, N.; Winey, K.I. Polymer chain conformations in CNT/PS nanocomposites from small angle neutron scattering. Macromolecules 2013, 46, 5345–5354. [Google Scholar] [CrossRef]
- Han, W.; Song, W.; Shen, Y.; Ge, C.; Zhang, R.; Zhang, X. Multiwalled carbon nanotubes encapsulated polystyrene: A facile one-step synthesis, electrical and thermal properties. J. Mater. Sci. 2019, 54, 6227–6237. [Google Scholar] [CrossRef]
- Hong, W.T.; Tai, N.H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam. Relat. Mater. 2008, 17, 1577–1581. [Google Scholar] [CrossRef]
- Gou, Y.J.; Liu, Z.L.; Zhang, G.M.; Li, Y.X. Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease. Int. J. Heat Mass Transf. 2014, 74, 358–367. [Google Scholar]
- Strozzi, M.; Elishakoff, I.E.; Bochicchio, M.; Cocconcelli, M.; Rubini, R.; Radi, E. A comparison of shell theories for vibration analysis of single-walled carbon nanotubes based on an anisotropic elastic shell model. Nanomaterials 2023, 13, 1390. [Google Scholar] [CrossRef]
- Ghavanloo, E.; Fazelzadeh, S.A. Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Model. 2012, 36, 4988–5000. [Google Scholar] [CrossRef]
- Mora, A.; Verma, P.; Kumar, S. Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Comp. Part B-Eng. 2020, 183, 107600. [Google Scholar] [CrossRef]
- Kasraie, M.; Krieg, A.S.; Abbott, A.C.; Gawde, A.; Eisele, T.C.; King, J.A.; Odegard, G.M.; Baur, J.W.; Abadi, P.P.S.S. Carbon nanotube as a conductive rheological modifier for carbon fiber-reinforced epoxy 3D printing inks. Comp. Part B-Eng. 2024, 282, 111583. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, B.; Zhou, Y.; Essawy, H.; Zhao, C.; Wu, Z.; Zhou, X.; Hou, D.; Du, G. Gelatinized starch-furanic hybrid as a biodegradable thermosetting resin for fabrication of foams for building materials. Carbohydr. Polym. 2022, 298, 120157. [Google Scholar]
- Zhao, J.; Zhang, J.; Wang, L.; Li, J.; Feng, T.; Fan, J.; Chen, L.; Gu, J. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 2020, 22, 100486. [Google Scholar] [CrossRef]
- GJB 1033-1990; Method for Thermal Balace Test of Satellites. China Defense Industry Publishing House: Beijing, China, 1991.
Samples | Temperature of Weight Loss (°C) | THRI (°C) | |
---|---|---|---|
T5 | T30 | ||
WPU | 116.3 | 306.1 | 112.8 |
SWCNTs/WPU-1 | 276.7 | 334.8 | 152.7 |
SWCNTs/WPU-2 | 284.1 | 337.4 | 154.9 |
SWCNTs/WPU-3 | 288.1 | 338.9 | 156.1 |
SWCNTs/WPU-4 | 272.8 | 332.7 | 151.3 |
Samples | Tensile Strength (MPa) | Young’s Modulus (MPa) |
---|---|---|
p-SWCNTs/WPU-1 | 26.3 ± 1.2 | 2.51 ± 0.19 |
p-SWCNTs/WPU-2 | 23.2 ± 1.8 | 2.52 ± 0.17 |
p-SWCNTs/WPU-3 | 19.9 ± 1.1 | 2.34 ± 0.09 |
p-SWCNTs/WPU-4 | 16.4 ± 0.9 | 2.17 ± 0.13 |
Sample | Heat Pipe Temperature (°C) | Point Temperature of External Heat Pipe (°C) | Center Point Temperature of Radiator (°C) | Temperature Difference of External Heat Pipe with Middle Point Radiator (°C) |
---|---|---|---|---|
Thermal balance test value | −1.5~0.3 | −8.7~−7.7 | −14.9~−14.1 | 6.3 |
In-orbit flight value | −1.6~0.2 | −8.9~−7.9 | −15.3~−14.5 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Wang, Y.; Yang, B.; Ji, F.; Jiang, H.; Li, L. Fabrication of Flexible SWCNTs/Polyurethane Coatings for Efficient Electric and Thermal Management of Space Optical Remote Sensors. Processes 2024, 12, 2650. https://doi.org/10.3390/pr12122650
Yang H, Wang Y, Yang B, Ji F, Jiang H, Li L. Fabrication of Flexible SWCNTs/Polyurethane Coatings for Efficient Electric and Thermal Management of Space Optical Remote Sensors. Processes. 2024; 12(12):2650. https://doi.org/10.3390/pr12122650
Chicago/Turabian StyleYang, Huiqiao, Yueting Wang, Bo Yang, Fulong Ji, Haitong Jiang, and Lei Li. 2024. "Fabrication of Flexible SWCNTs/Polyurethane Coatings for Efficient Electric and Thermal Management of Space Optical Remote Sensors" Processes 12, no. 12: 2650. https://doi.org/10.3390/pr12122650
APA StyleYang, H., Wang, Y., Yang, B., Ji, F., Jiang, H., & Li, L. (2024). Fabrication of Flexible SWCNTs/Polyurethane Coatings for Efficient Electric and Thermal Management of Space Optical Remote Sensors. Processes, 12(12), 2650. https://doi.org/10.3390/pr12122650