Rapid Detection of Adulteration in Minced Lamb Meat Using Vis-NIR Reflectance Spectroscopy
"> Figure 1
<p>The near infrared spectra of chicken, duck, pork and lamb. (<b>a</b>) The near infrared spectra of chicken, duck, pork and lamb in 350–1000 nm wavelength, (<b>b</b>) the near infrared spectra of chicken, duck, pork and lamb in 1000–1700 nm wavelength.</p> "> Figure 2
<p>The near-infrared spectra of lamb adulterated with different proportions of chicken, duck and pork in 350–1000 nm wavelength. (<b>a</b>) Lamb adulterated with different proportions of chicken; (<b>b</b>) lamb adulterated with different proportions of duck; (<b>c</b>) lamb adulterated with different proportions of pork.</p> "> Figure 3
<p>The near-infrared spectra of lamb adulterated with different proportions of chicken, duck and pork in 1000–1700 nm wavelength. (<b>a</b>) Lamb adulterated with different proportions of chicken; (<b>b</b>) lamb adulterated with different proportions of duck; (<b>c</b>) lamb adulterated with different proportions of pork.</p> "> Figure 4
<p>Quantitative prediction model of adulterated chicken in lamb. The green line represents the trend line of the predicted value of the correction set, and the red line represents the trend line of the true value of the correction set.</p> "> Figure 5
<p>Quantitative prediction model of adulterated duck in lamb. The green line represents the trend line of the predicted value of correction set, and the red line represents the trend line of the true value of the correction set.</p> "> Figure 6
<p>Quantitative prediction model of adulterated pork in lamb. The green line represents the trend line of the predicted value of the correction set, and the red line represents the trend line of the true value of the correction set.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Spectra Acquisition
2.3. Spectral Data Preprocessing
2.4. Near-Infrared Model Development
2.5. Model Evaluation
2.6. Data Processing
3. Results and Discussion
3.1. Original Spectral Analysis of Adulterated Meat with Different Proportions in Two Bands
3.2. Screening of Characteristic Wavelength Ranges
3.3. Construction of Lamb/Non-Lamb Identification Model
3.4. Construction of Foreign Bodies Kind Identification Model of Adulterated Meat
3.5. Construction of Quantitative Prediction Model for Adulteration of Lamb
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 1 September 2024).
- Ballin, N.Z. Authentication of meat and meat products. Meat Sci. 2010, 86, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of minced beef adulteration with turkey meat by UVevis, NIR and MIR spectroscopy. LWT Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Zheng, X.C.; Li, Y.Y.; Wei, W.S.; Peng, Y. Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging. Meat Sci. 2019, 149, 55–62. [Google Scholar] [CrossRef]
- Ong, S.B.; Zuraini, M.I.; Jurin, W.G.; Jurin, Y.K.; Cheah, R.; Tunung, L.C.; Chai, Y.; Haryani, F. Meat molecular detection: Sensitivity of polymerase chain reaction-restriction fragment length polymorphism in species differentiation of meat from animal origin. ASEAN Food J. 2007, 14, 51–59. [Google Scholar]
- Li, T.T.; Jalbani, Y.M.; Zhang, G.L.; Zhao, Z.Y.; Wang, Z.Y.; Zhao, X.Y.; Chen, A.L. Detection of goat meat adulteration by real-time PCR based on a reference primer. Food Chem. 2019, 277, 554–557. [Google Scholar] [CrossRef]
- Perestam, A.T.; Fujisaki, K.K.; Nava, O.; Hellberg, R.S. Comparison of real-time PCR and ELISA-based methods for the detection of beef and pork in processed meat products. Food Control 2017, 71, 346–352. [Google Scholar] [CrossRef]
- Jiang, X.; Rao, Q.; Mittl, K.; Hsieh, Y.-H.P. Monoclonal antibody-based sandwich ELISA for the detection of mammalian meats. Food Control 2020, 10, 107045. [Google Scholar] [CrossRef]
- Orduna, A.R.; Husby, E.; Yang, C.T.; Ghosh, D.; Beaudry, F. Detection of meat species adulteration using high-resolution mass spectrometry and a proteogenomics strategy. Food Addit. Contam. 2017, 34, 1110–1120. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Li, H.; Zhao, W.; Guo, W.; Wang, S. Simultaneous determination of heat stable peptides for eight animal and plant species in meat products using UPLC-MS/MS method. Food Chem. 2018, 245, 125–131. [Google Scholar] [CrossRef]
- Ross, A.; Brunius, C.; Chevallier, O.; Dervilly, G.; Elliott, C.; Guitton, Y.; Prenni, J.E.; Savolainen, O.; Hemeryck, L.; Vidkjær, N.H.; et al. Making complex measurements of meat composition fast: Application of rapid evaporative ionisation mass spectrometry to measuring meat quality and fraud. Meat Sci. 2021, 181, 10833. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Sun, D.W.; Elmasry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Haque, M.E.; Ali, M.R. Hyperspectral imaging technique for offal quantification in minced meat. J. Bangladesh Agric. 2014, 12, 189–194. [Google Scholar] [CrossRef]
- Ropodi, A.I.; Pavlidis, D.E.; Mohareb, F.; Panagou, E.; Nychas, G.-J. Multispectral image analysis approach to detect adulteration of beef and pork in raw meats. Food Res. Int. 2015, 67, 12–18. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 2016, 170, 8–15. [Google Scholar] [CrossRef]
- GB/T 38164-2019; Common Methods for Detecting Animal Derived Components in Livestock and Poultry, Real-Time Fluorescence PCR Method. Chinese Standard: Beijing, China, 2019.
- GB/T 35918-2018; Gene Barcode Technology for Animal Origin Detection in Animal Products, Sanger Sequencing Method. Chinese Standard: Beijing, China, 2018.
- Qu, F.; Ren, D.; He, Y.; Nie, P.; Lin, L.; Cai, C.; Dong, T. Predicting pork freshness using multi-index statistical information fusion method based on near infrared spectroscopy. Meat Sci. 2018, 146, 59–67. [Google Scholar] [CrossRef]
- Kapper, C.; Klont, R.E.; Verdonk, J.M.A.J.; Williams, P.C.; Urlings, H.A.P. Prediction of pork quality with near infrared spectroscopy (NIRS) 2. Feasibility and robustness of NIRS measurements under production plant conditions. Meat Sci. 2012, 91, 300–305. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Marlon, M.R.; Qi, Y.W.; Klette, R. Detection of Red-Meat Adulteration by Deep Spectral–Spatial Features in Hyperspectral Images. J. Imaging. 2018, 4, 2–20. [Google Scholar]
- Leng, T.; Li, F.; Xiong, L.; Xiong, Q.; Zhu, M.; Chen, Y. Quantitative detection of binary and ternary adulteration of minced beef meat with pork and duck meat by NIR combined with chemometrics. Food Control 2020, 113, 107203. [Google Scholar] [CrossRef]
- Wang, P.P. Study on the Breed Discrimination and Quality Determination of Lamb by Near Infrared Spectroscopy; Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences: Beijing, China, 2012. [Google Scholar]
- Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Kęszycka, M.; Cullen, P.J.; Sullivan, C. Developments and challenges in online NIR spectroscopy for meat processing. Compr. Rev. Food Sci. Food. 2017, 16, 1172–1187. [Google Scholar] [CrossRef]
- Savoia, S.; Albera, A.; Brugiapaglia, A.; Di Stasio, L.; Ferragina, A.; Cecchinato, A.; Bittante, G. Prediction of meat quality traits in the abattoir using portable and hand-held near-infrared spectrometers. Meat Sci. 2020, 161, 108017. [Google Scholar] [CrossRef]
- López-Maestresalas, A.; Insausti, K.; Jaren, C.; Pérez-Roncal, C.; Urrutia, O.; Beriain, M.J.; Arazuri, S. Detection of minced lamb and beef fraud using NIR spectroscopy. Food Control 2019, 98, 465–473. [Google Scholar] [CrossRef]
- Jiang, H.; Yoon, S.C.; Zhuang, H.; Wang, W.; Yang, Y. Evaluation of factors in development of Vis/NIR spectroscopy models for discriminating PSE, DFD and normal broiler breast meat. Br. Poult. Sci. 2017, 6, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Mamani-Linares, L.W.; Gallo, C.; Alomar, D. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Sci. 2012, 90, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Guo, B.; Tang, P.; Yin, X.; Pan, F.; Zhao, J.; Huang, L.; Zhang, D. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Spectrochim. Acta Part A 2020, 230, 118005. [Google Scholar] [CrossRef] [PubMed]
- SB/T 11093-2014; Ministry of Commerce Market Operation Department, Ministry of Commerce Circulation Industry Promotion Center, Huashan Reserves Commodity Management Center; Central Reserve Frozen Rolled Mutton [Standard]. Ministry of Commerce, Vanijya Bhawan: New Delhi, India, 2014.
- Bonin, M.D.N.; Silva, S.D.L.E.; Bünger, L.; Ross, D.; Feijó, G.L.D.; Gomes, R.d.C.; Rennó, F.P.; Santana, M.H.d.A.; de Rezende, F.M.; Ítavo, L.C.V.; et al. Predicting the shear value and intramuscular fat in meat from Nellore cattle using Vis-NIR spectroscopy. Meat Sci. 2020, 163, 108077. [Google Scholar]
- Kamruzzaman, M.; Makino, Y.; Oshita, S.; Liu, S. Assessment of Visible Near-Infrared Hyperspectral Imaging as a Tool for Detection of Horsemeat Adulteration in Minced Beef. Food Bioprocess Technol. 2015, 8, 1054–1062. [Google Scholar] [CrossRef]
- Barbina, D.F.; ElMasrya, G.; Suna, D.W.; Allen, P. Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Anal. Chim. Acta 2012, 719, 30–42. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Xue, H.T.; Ma, Q.Y.; Li, Y.; Zhou, Q.; Sun, J.; Wang, W. Potential of two-dimensional correlation-based dual-band visible/near infrared spectroscopy to predict total volatile basic nitrogen content in meat. J. Food Compos. Anal. 2024, 133, 106451. [Google Scholar] [CrossRef]
- An, J.Y.; Li, Y.L.; Zhang, C.Z.; Zhang, D. Rapid nondestructive prediction of multiple quality attributes for different commercial meat cut types using optical system. Food Sci. Anim. Resour. 2022, 42, 655–671. [Google Scholar] [CrossRef]
- Sahar, A.; Allen, P.; Sweeney, T.; Cafferky, J.; Downey, G.; Cromie, A.; Hamill, M.R. Online Prediction of Physico-Chemical Quality Attributes of Beef Using Visible—Near-Infrared Spectroscopy and Chemometrics. Foods 2019, 8, 525. [Google Scholar] [CrossRef]
- Cozzolinoa, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Huang, K.P. Study on the Parameters of Mutton Freshness by Near Infrared Spectroscopy. Ph.D. Thesis, Shihezi University, Xinjiang, China, 2017. [Google Scholar]
- Lu, Y.X.; Zhai, R.; Wu, F. Research progress on detection technology of meat adulteration. Acta Metrol. Sin. 2003, 44, 1000–1008. [Google Scholar]
- Pu, H.; Sun, D.W.; Ma, J. Hierarchical variable selection for predicting chemical constituents in lamb meats using hyperspectral imaging. J. Food Eng. 2014, 143, 44–52. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of Miniaturized and Portable Near Infrared Spectroscopy (NIRS) for Inspection and Control of Meat and Meat Products. J. Food Eng. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Fan, Y.X. Rapid Detection of Minced Pork Quality and Safety Based on Visible and Near Infrared Spectroscopy. Master’s Thesis, Zhejiang University, Hangzhou, China, 2011. [Google Scholar]
- Liang, J.; Hao, S.Y.; Zhao, X.M.; Li, L.L.; Kang, J.; Nian, F.; Zhang, Z.J.; Tang, D.F. Construction of an adulteration identification model for beef and mutton based on near-infrared spectroscopy. J. Gansu Agri. Univ. 2023, 1, 19–29. [Google Scholar]
- Fengou, L.C.; Panagiotis, T.; George-John, E.N. Rapid Detection of Minced Pork and Chicken Adulteration in Fresh, Stored and Cooked Ground Meat. Food Control 2021, 125, 108002. [Google Scholar] [CrossRef]
- Feng, J.X.; Li, Z.G.; Zhang, X.S. Identification and analysis of chicken adulteration in chilled mutton by near-infrared spectroscopy. Food Sci. Technol. 2022, 47, 284–290. [Google Scholar]
Mixture Type | Group | Proportion of Chicken/Duck/Pork (%) | Proportion of Lamb (%) | Proportion of Lamb Fat (%) |
---|---|---|---|---|
Lamb mixed with chicken | 0% Chicken/Pure lamb | 0 | 90 | 10 |
10% Chicken | 10 | 80 | 10 | |
30% Chicken | 30 | 60 | 10 | |
50% Chicken | 50 | 40 | 10 | |
70% Chicken | 70 | 20 | 10 | |
90% Chicken | 90 | 0 | 10 | |
Lamb mixed with duck | 0% Duck/Pure lamb | 0 | 90 | 10 |
10% Duck | 10 | 80 | 10 | |
30% Duck | 30 | 60 | 10 | |
50% Duck | 50 | 40 | 10 | |
70% Duck | 70 | 20 | 10 | |
90% Duck | 90 | 0 | 10 | |
Lamb mixed with pork | 0% Pork/Pure lamb | 0 | 90 | 10 |
10% Pork | 10 | 80 | 10 | |
30% Pork | 30 | 60 | 10 | |
50% Pork | 50 | 40 | 10 | |
70% Pork | 70 | 20 | 10 | |
90% Pork | 90 | 0 | 10 |
Spectral Region (nm) | Primary Absorbing Species/Chemical Bonds | Chemical Substances Description |
---|---|---|
430 | Absorption bond related to myoglobin | Reflects trace amounts of myoglobin |
574 | Absorption of oxymyoglobin | Reflects the content of oxymyoglobin |
630 | Absorption of metmyoglobin | Reflects the content of metmyoglobin |
1000–1200 | Vibrational absorption of C-H, N-H bonds | Reflects protein variability information |
1450 | Overtone absorption of O-H bonds | Reflects water composition |
1080 | N-H bond | Reflects protein differences |
Method | Wavelength Range (nm) | Factor Number | RMSECV | Sensitivity of Lamb Adulterated with Others (%) | |||
---|---|---|---|---|---|---|---|
Pure Lamb | Chicken | Duck | Pork | ||||
Feature Band Selection | 350–1000 | 11 | 0.186 | 98.6 | 84.2 | 100 | 96.0 |
450–1000 | 12 | 0.172 | 98.6 | 100 | 100 | 100 | |
550–1000 | 12 | 0.182 | 100 | 94.7 | 100 | 96.0 | |
650–1000 | 13 | 0.205 | 98.6 | 100 | 100 | 100 | |
750–1000 | 15 | 0.214 | 94.2 | 89.5 | 72.0 | 88.0 | |
1000–1700 | 17 | 0.242 | 98.5 | 100 | 79.2 | 95.8 | |
1000–1600 | 16 | 0.234 | 98.5 | 100 | 79.2 | 95.8 | |
1000–1500 | 16 | 0.237 | 98.5 | 100 | 83.3 | 95.8 | |
1000–1400 | 14 | 0.232 | 98.5 | 100 | 83.3 | 95.8 | |
1000–1300 | 14 | 0.237 | 100 | 100 | 87.5 | 87.5 | |
Stepwise Regression Analysis | 350–1000 (25 Feature Wavelength) | 16 | 0.253 | 0.889 | 0.826 | 0.793 | 0.828 |
1000–1700 (13 Feature Wavelength) | 13 | 0.320 | 0.792 | 0.810 | 0.714 | 0.643 |
Wavelength (nm) | Preprocessing | Factors | R2c | Pure Lamb Group | Prediction Sensitivity of Pure Lamb/% | Prediction Sensitivity of Non-Lamb/% | |
---|---|---|---|---|---|---|---|
Err CV | RMSECV | ||||||
450–1000 | Smoothing (15) | 8 | 0.795 | 0.007 | 0.196 | 95.0 | 97.1 |
1st der | 7 | 0.891 | 0.002 | 0.172 | 100.0 | 100.0 | |
2nd der | 7 | 0.876 | 0.010 | 0.217 | 100.0 | 97.1 | |
SNV | 7 | 0.841 | 0.000 | 0.176 | 100.0 | 98.6 | |
MSC | 7 | 0.841 | 0.000 | 0.176 | 100.0 | 98.6 | |
1st der + SNV | 7 | 0.916 | 0.002 | 0.153 | 100.0 | 100.0 | |
1st der + MSC | 7 | 0.912 | 0.002 | 0.156 | 100.0 | 100.0 | |
1000–1400 | Smoothing (15) | 10 | 0.762 | 0.022 | 0.235 | 100.0 | 98.5 |
1st der | 10 | 0.759 | 0.017 | 0.238 | 98.5 | 100.0 | |
2nd der | 12 | 0.805 | 0.017 | 0.234 | 100.0 | 98.5 | |
SNV | 5 | 0.773 | 0.021 | 0.231 | 100.0 | 98.5 | |
MSC | 6 | 0.804 | 0.017 | 0.217 | 100.0 | 96.9 | |
1st der + SNV | 4 | 0.707 | 0.017 | 0.261 | 100.0 | 100.0 | |
1st der + MSC | 4 | 0.698 | 0.017 | 0.272 | 100.0 | 98.5 |
Wavelength (nm) | Preprocessing | Groups | Factors | Cross Validation Sensitivity/% | RMSECV | Prediction Sensitivity/% |
---|---|---|---|---|---|---|
450–1000 | Smoothing (15) | pure lamb | 11 | 100.0 | 0.202 | 100.0 |
lamb/chicken | 96.6 | 0.210 | 100.0 | |||
lamb/duck | 96.0 | 0.249 | 100.0 | |||
lamb/pork | 97.3 | 0.242 | 96.0 | |||
1st der | pure lamb | 10 | 100.0 | 0.182 | 100.0 | |
lamb/chicken | 98.3 | 0.182 | 100.0 | |||
lamb/duck | 96.0 | 0.218 | 100.0 | |||
lamb/pork | 97.3 | 0.220 | 100.0 | |||
2nd der | pure lamb | 14 | 100.0 | 0.215 | 100.0 | |
lamb/chicken | 94.9 | 0.211 | 89.5 | |||
lamb/duck | 97.3 | 0.226 | 92.0 | |||
lamb/pork | 94.7 | 0.244 | 96.0 | |||
SNV | pure lamb | 11 | 100.0 | 0.155 | 100.0 | |
lamb/chicken | 98.3 | 0.186 | 100.0 | |||
lamb/duck | 97.3 | 0.198 | 100.0 | |||
lamb/pork | 98.7 | 0.186 | 100.0 | |||
MSC | pure lamb | 11 | 100.0 | 0.156 | 100.0 | |
lamb/chicken | 98.3 | 0.186 | 100.0 | |||
lamb/duck | 97.3 | 0.198 | 100.0 | |||
lamb/pork | 98.7 | 0.187 | 100.0 | |||
1st der + SNV | pure lamb | 10 | 100.0 | 0.167 | 100.0 | |
lamb/chicken | 98.3 | 0.182 | 100.0 | |||
lamb/duck | 98.7 | 0.216 | 100.0 | |||
lamb/pork | 97.3 | 0.231 | 100.0 | |||
1st der + MSC | pure lamb g | 10 | 100.0 | 0.171 | 100.0 | |
lamb/chicken | 98.3 | 0.185 | 100.0 | |||
lamb/duck | 98.7 | 0.217 | 100.0 | |||
lamb/pork | 96.0 | 0.233 | 100.0 | |||
1000–1400 | Smoothing (15) | pure lamb | 10 | 98.6 | 0.239 | 100.0 |
lamb/chicken | 86.0 | 0.277 | 94.1 | |||
lamb/duck | 85.1 | 0.341 | 83.3 | |||
lamb/pork | 77.8 | 0.343 | 91.7 | |||
1st der | pure lamb | 10 | 98.6 | 0.245 | 100.0 | |
lamb/chicken | 80.0 | 0.280 | 100.0 | |||
lamb/duck | 71.6 | 0.344 | 75.0 | |||
lamb/pork | 77.8 | 0.343 | 91.7 | |||
2nd der | pure lamb | 11 | 98.6 | 0.237 | 100.0 | |
lamb/chicken | 82.0 | 0.261 | 94.1 | |||
lamb/duck | 82.4 | 0.351 | 70.8 | |||
lamb/pork | 83.3 | 0.329 | 91.7 | |||
SNV | Pure lamb | 7 | 98.6 | 0.238 | 100.0 | |
lamb/chicken | 90.0 | 0.312 | 94.1 | |||
lamb/duck | 75.7 | 0.461 | 79.2 | |||
lamb/pork | 80.6 | 0.428 | 87.5 | |||
MSC | pure lamb | 7 | 98.6 | 0.243 | 100.0 | |
lamb/chicken | 90.0 | 0.313 | 94.1 | |||
lamb/duck | 75.7 | 0.467 | 79.2 | |||
lamb/pork | 81.9 | 0.430 | 87.5 | |||
1st der + SNV | pure lamb | 13 | 98.6 | 0.447 | 100.0 | |
lamb/chicken | 86.0 | 0.476 | 100.0 | |||
lamb/duck | 85.1 | 0.424 | 83.3 | |||
lamb/pork | 91.7 | 0.746 | 91.7 | |||
1st der + MSC | pure lamb | 12 | 98.6 | 0.465 | 100.0 | |
lamb/chicken | 84.0 | 0.434 | 100.0 | |||
lamb/duck | 86.5 | 0.438 | 83.3 | |||
lamb/pork g | 91.7 | 0.636 | 87.5 |
Optimum Models | Optimum Preprocessing | PC Number | R2c | RMSEC | RMSECV | R2p | RMSEP |
---|---|---|---|---|---|---|---|
Adulterated with chicken | 1st der + SNV | 6 | 0.991 | 0.031 | 0.052 | 0.972 | 0.054 |
Adulterated with duck | SNV | 8 | 0.994 | 0.023 | 0.042 | 0.985 | 0.040 |
Adulterated with pork | MSC | 10 | 0.997 | 0.018 | 0.040 | 0.981 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, X.; Li, Y.; Chen, X.; Chen, L.; Liu, C. Rapid Detection of Adulteration in Minced Lamb Meat Using Vis-NIR Reflectance Spectroscopy. Processes 2024, 12, 2307. https://doi.org/10.3390/pr12102307
Zuo X, Li Y, Chen X, Chen L, Liu C. Rapid Detection of Adulteration in Minced Lamb Meat Using Vis-NIR Reflectance Spectroscopy. Processes. 2024; 12(10):2307. https://doi.org/10.3390/pr12102307
Chicago/Turabian StyleZuo, Xiaojia, Yanlei Li, Xinwen Chen, Li Chen, and Chang Liu. 2024. "Rapid Detection of Adulteration in Minced Lamb Meat Using Vis-NIR Reflectance Spectroscopy" Processes 12, no. 10: 2307. https://doi.org/10.3390/pr12102307
APA StyleZuo, X., Li, Y., Chen, X., Chen, L., & Liu, C. (2024). Rapid Detection of Adulteration in Minced Lamb Meat Using Vis-NIR Reflectance Spectroscopy. Processes, 12(10), 2307. https://doi.org/10.3390/pr12102307