Pipe Flow of Viscoplastic Fluids and Analytical Predictions of Concrete Pumping Based on the Shear-Stress-Dependent Parabolic Model
<p>Graphical representation of the different scenarios described by the parabolic model given in Equation (<a href="#FD7-processes-11-01745" class="html-disp-formula">7</a>).</p> "> Figure 2
<p>Relationship between the true yield stress of the parabolic model <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>τ</mi> <mn>0</mn> </msub> <mo>/</mo> <msubsup> <mi>τ</mi> <mrow> <mn>0</mn> </mrow> <mi mathvariant="normal">B</mi> </msubsup> </mfenced> </semantics></math> and the dimensionless number, <math display="inline"><semantics> <mi>α</mi> </semantics></math>.</p> "> Figure 3
<p>The Poiseuille number (Po) is shown as a function of the Bingham number (Bi) for different dimensionless <math display="inline"><semantics> <mi>β</mi> </semantics></math> values (see Equation (<a href="#FD45-processes-11-01745" class="html-disp-formula">45</a>)) for the Hagen–Poiseuille pipe flow of a single fluid that follows the Parabolic model.</p> "> Figure 4
<p>Influence of <math display="inline"><semantics> <msub> <mi>c</mi> <mi>C</mi> </msub> </semantics></math>-parameter of the bulk concrete: (<b>a</b>) on shear rate vs. shear stress curves predicted by the Parabolic model; (<b>b</b>) on shear stress vs. shear rate curves predicted by the Parabolic model. Unless otherwise specified in the figure, the following values were used: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="script">P</mi> <mo>/</mo> <mi>L</mi> <mo>=</mo> <mn>60</mn> <mspace width="0.166667em"/> <mi>kPa</mi> <mo>/</mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>.</p> "> Figure 5
<p>Shear rate vs. shear stress curves predicted by the Parabolic model: (<b>a</b>) influence of <math display="inline"><semantics> <msub> <mi>a</mi> <mi>C</mi> </msub> </semantics></math>-parameter of the bulk concrete; (<b>b</b>) influence of <math display="inline"><semantics> <msub> <mi>b</mi> <mi>C</mi> </msub> </semantics></math>-parameter of the bulk concrete. Unless otherwise specified in the figure, the following values were used: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="script">P</mi> <mo>/</mo> <mi>L</mi> <mo>=</mo> <mn>60</mn> <mspace width="0.166667em"/> <mi>kPa</mi> <mo>/</mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>Influence of <math display="inline"><semantics> <msub> <mi>c</mi> <mi>C</mi> </msub> </semantics></math>-parameter of the bulk concrete: (<b>a</b>) on the velocity distribution; (<b>b</b>) on the shear rate distribution predicted by the Parabolic model. Unless otherwise specified in the figure, the following values were used: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="script">P</mi> <mo>/</mo> <mi>L</mi> <mo>=</mo> <mn>60</mn> <mspace width="0.166667em"/> <mi>kPa</mi> <mo>/</mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>(<b>a</b>) Influence of <math display="inline"><semantics> <msub> <mi>c</mi> <mi>C</mi> </msub> </semantics></math>-parameter on volume flow rate vs. pressure loss per unit pipe for the single fluid flow predicted by the Parabolic model; (<b>b</b>) contour plot of the volumetric flow rate <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> </semantics></math> as a function of the pressure loss per unit pipe length, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="script">P</mi> <mo>/</mo> <mi>L</mi> </mrow> </semantics></math>, as the x-axis and <math display="inline"><semantics> <msub> <mi>c</mi> <mi>C</mi> </msub> </semantics></math>-parameter on the y-axis. Unless otherwise specified in the figure, the following values were used: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>.</p> "> Figure 8
<p>Volume flow rate vs. pressure loss per unit pipe length for the dual fluid flow predicted by the Parabolic model: (<b>a</b>) influence of <math display="inline"><semantics> <msub> <mi>c</mi> <mi>C</mi> </msub> </semantics></math>-parameter of the bulk concrete with <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> for the fluid in the lubrication layer; (<b>b</b>) influence of <math display="inline"><semantics> <msub> <mi>c</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> </semantics></math>-parameter of the fluid in the lubrication layer with <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> for the bulk concrete. Unless otherwise specified in the figure, the following values were used: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mn>3.5</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mn>0.2</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>ℓ</mo> <mo>=</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>.</p> "> Figure 9
<p>Contour plots of the volumetric flow rate <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> </semantics></math> as a function of the pressure loss per unit pipe length, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="script">P</mi> <mo>/</mo> <mi>L</mi> </mrow> </semantics></math>, as the x-axis and <span class="html-italic">a</span>-parameter on the y-axis: (<b>a</b>) <math display="inline"><semantics> <msub> <mi>a</mi> <mi>C</mi> </msub> </semantics></math>-parameter of the bulk concrete on the y-axis; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>a</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> </semantics></math>-parameter of the fluid in the lubrication layer on the y-axis. Unless otherwise specified in the figure, the following values were used: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mn>3.5</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mn>0.2</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>ℓ</mo> <mo>=</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>.</p> "> Figure 10
<p>Contour plots of the volumetric flow rate <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> </semantics></math> as a function of the pressure loss per unit pipe length, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi mathvariant="script">P</mi> <mo>/</mo> <mi>L</mi> </mrow> </semantics></math>, as the x-axis and <span class="html-italic">b</span>-parameter on the y-axis: (<b>a</b>) <math display="inline"><semantics> <msub> <mi>b</mi> <mi>C</mi> </msub> </semantics></math>-parameter of the bulk concrete on the y-axis; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>b</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> </semantics></math>-parameter of the fluid in the lubrication layer on the y-axis. Unless otherwise specified in the figure, the following values were used: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mn>3.5</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mn>0.2</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>ℓ</mo> <mo>=</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>.</p> "> Figure 11
<p>The graphical user interface of a Wolfram-based demonstration App that presents the volume flow rate vs. pressure loss per unit pipe length curve for the dual-fluid pipe flow of the Parabolic model (See Equation (<a href="#FD53-processes-11-01745" class="html-disp-formula">53</a>)). The following values were used for the computational app in the figure: <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mi>C</mi> </msub> <mo>=</mo> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mi>C</mi> </msub> <mo>=</mo> <mo>−</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>6</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>6</mn> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>b</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mn>0.2</mn> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>c</mi> <mrow> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">L</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mo>·</mo> <mspace width="0.166667em"/> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>5</mn> </mrow> </msup> <mspace width="0.166667em"/> <msup> <mi>Pa</mi> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>62.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>ℓ</mo> <mo>=</mo> <mn>1.5</mn> <mspace width="0.166667em"/> <mi>mm</mi> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Theoretical Framework and Derivations
2.1. Analysis of the Parabolic Model
2.2. Hagen–Poiseuille Equation for Non-Newtonian Pipe Flow: Single Fluid
2.3. Hagen–Poiseuille Equation for Non-Newtonian Pipe Flow: Coaxial Flow of Two Immiscible Fluids
3. Results and Discussion
3.1. Parabolic Model: Shear Stress and Shear Rate Distribution
3.2. Single-Fluid Model
3.2.1. Shear Rate and Velocity Distribution
3.2.2. Volumetric Flow Rate vs. Pressure Loss
3.3. Dual Fluid Model
3.4. Computational Apps for the Parabolic Model
4. Limitations of the Present Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVC | Conventional Vibrated Concrete |
LL | Lubrication Layer |
MLT | Mass, Length, and Time |
ODE | Ordinary Differential Equation |
SIPM | Shear-Induced Particle Migration |
SCC | Self-Compacting Concrete or Self-Consolidating Concrete |
References
- Huilgol, R.R.; Georgiou, G.C. Fluid Mechanics of Viscoplasticity; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Nguyen, Q.; Boger, D. Measuring the flow properties of yield stress fluids. Annu. Rev. Fluid Mech. 1992, 24, 47–88. [Google Scholar] [CrossRef]
- Barnes, H.A. The yield stress—A review or ‘παντα ρει’—everything flows? J. Non-Newton. Fluid Mech. 1999, 81, 133–178. [Google Scholar] [CrossRef]
- Balmforth, N.J.; Frigaard, I.A.; Ovarlez, G. Yielding to stress: Recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 2014, 46, 121–146. [Google Scholar] [CrossRef]
- Coussot, P. Yield stress fluid flows: A review of experimental data. J. Non-Newton. Fluid Mech. 2014, 211, 31–49. [Google Scholar] [CrossRef]
- Bonn, D.; Denn, M.M.; Berthier, L.; Divoux, T.; Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 2017, 89, 035005. [Google Scholar] [CrossRef] [Green Version]
- Bingham, E.C. An Investigation of the Laws of Plastic Flow; Number 278; US Government Printing Office: Washington, DC, USA, 1917. [Google Scholar]
- Bingham, E.C. Fluidity and Plasticity; McGraw-Hill: New York, NY, USA, 1922; Volume 2. [Google Scholar]
- Markovitz, H. Rheology: In the beginning. J. Rheol. 1985, 29, 777–798. [Google Scholar] [CrossRef]
- Mewis, J.; Wagner, N.J. Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Kalyon, D.M. Apparent slip and viscoplasticity of concentrated suspensions. J. Rheol. 2005, 49, 621–640. [Google Scholar] [CrossRef]
- Chhabra, R.P. Non-Newtonian fluids: An introduction. In Rheology of Complex Fluids; Springer: Cham, Switzerland, 2010; pp. 3–34. [Google Scholar]
- Zhou, X.; Li, Z.; Fan, M.; Chen, H. Rheology of semi-solid fresh cement pastes and mortars in orifice extrusion. Cem. Concr. Compos. 2013, 37, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, R.; Suleiman, N.; Wilson, D. In-situ measurement of the critical stress of viscoplastic soil layers. J. Food Eng. 2021, 303, 110568. [Google Scholar] [CrossRef]
- Derkach, S.R. Rheology of emulsions. Adv. Colloid Interface Sci. 2009, 151, 1–23. [Google Scholar] [CrossRef]
- Omirbekov, S.; Davarzani, H.; Sabyrbay, B.; Colombano, S.; Ahmadi-Senichault, A. Experimental study of rheological behavior of foam flow in capillary tubes. J. Non-Newton. Fluid Mech. 2022, 302, 104774. [Google Scholar] [CrossRef]
- Vinay, G.; Wachs, A.; Agassant, J.F. Numerical simulation of non-isothermal viscoplastic waxy crude oil flows. J. Non-Newton. Fluid Mech. 2005, 128, 144–162. [Google Scholar] [CrossRef]
- Guedes, R. Viscoplastic analysis of fiber reinforced polymer matrix composites under various loading conditions. Polym. Compos. 2009, 30, 1601–1610. [Google Scholar] [CrossRef]
- Roussel, N.; Coussot, P. “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow. J. Rheol. 2005, 49, 705–718. [Google Scholar] [CrossRef]
- Roussel, N. Rheology of fresh concrete: From measurements to predictions of casting processes. Mater. Struct. 2007, 40, 1001–1012. [Google Scholar] [CrossRef]
- Roussel, N. (Ed.) Understanding the Rheology of Concrete; Woodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Yuan, Q.; Shi, C.; Jiao, D. Rheology of Fresh Cement-Based Materials: Fundamentals, Measurements, and Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- De Schutter, G.; Feys, D. Pumping of fresh concrete: Insights and challenges. RILEM Tech. Lett. 2016, 1, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Feys, D.; De Schutter, G.; Fataei, S.; Martys, N.S.; Mechtcherine, V. Pumping of concrete: Understanding a common placement method with lots of challenges. Cem. Concr. Res. 2022, 154, 106720. [Google Scholar] [CrossRef]
- Secrieru, E.; Mohamed, W.; Fataei, S.; Mechtcherine, V. Assessment and prediction of concrete flow and pumping pressure in pipeline. Cem. Concr. Compos. 2020, 107, 103495. [Google Scholar] [CrossRef]
- Choi, M.; Roussel, N.; Kim, Y.; Kim, J. Lubrication layer properties during concrete pumping. Cem. Concr. Res. 2013, 45, 69–78. [Google Scholar] [CrossRef]
- Leighton, D.; Acrivos, A. The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 1987, 181, 415–439. [Google Scholar] [CrossRef]
- Phillips, R.J.; Armstrong, R.C.; Brown, R.A.; Graham, A.L.; Abbott, J.R. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids 1992, 4, 30–40. [Google Scholar] [CrossRef]
- Spangenberg, J.; Roussel, N.; Hattel, J.; Stang, H.; Skocek, J.; Geiker, M. Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids. Cem. Concr. Res. 2012, 42, 633–641. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, Y.J.; Kwon, S.H. Prediction on pipe flow of pumped concrete based on shear-induced particle migration. Cem. Concr. Res. 2013, 52, 216–224. [Google Scholar] [CrossRef]
- Kwon, S.H.; Park, C.K.; Jeong, J.H.; Jo, S.D.; Lee, S.H. Prediction of Concrete Pumping: Part I–Development of New Tribometer for Analysis of Lubricating Layer. ACI Mater. J. 2013, 110, 647–656. [Google Scholar] [CrossRef]
- Secrieru, E.; Khodor, J.; Schröfl, C.; Mechtcherine, V. Formation of lubricating layer and flow type during pumping of cement-based materials. Constr. Build. Mater. 2018, 178, 507–517. [Google Scholar] [CrossRef]
- Kaplan, D. Pompage des Betons. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France, 1999. [Google Scholar]
- Kaplan, D.; de Larrard, F.; Sedran, T. Design of concrete pumping circuit. ACI Mater. J. 2005, 102, 110. [Google Scholar] [CrossRef]
- Kwon, S.H.; Park, C.K.; Jeong, J.H.; Jo, S.D.; Lee, S.H. Prediction of concrete pumping: Part II-analytical prediction and experimental verification. ACI Mater. J. 2013, 110, 657. [Google Scholar] [CrossRef]
- Khatib, R.; Khayat, K.H. Pumping of Flowable Concrete: Analytical Prediction and Experimental Validation. ACI Mater. J. 2021, 118, 3–16. [Google Scholar] [CrossRef]
- De Larrard, F.; Ferraris, C.F.; Sedran, T. Fresh concrete: A Herschel-Bulkley material. Mater. Struct. 1998, 31, 494–498. [Google Scholar] [CrossRef]
- Feys, D.; Verhoeven, R.; De Schutter, G. Fresh self compacting concrete, a shear thickening material. Cem. Concr. Res. 2008, 38, 920–929. [Google Scholar] [CrossRef]
- Feys, D.; Verhoeven, R.; De Schutter, G. Extension of the Poiseuille formula for shear-thickening materials and application to Self-Compacting Concrete. Appl. Rheol. 2008, 18, 62705. [Google Scholar] [CrossRef]
- Feys, D.; Verhoeven, R.; De Schutter, G. Why is fresh self-compacting concrete shear thickening? Cem. Concr. Res. 2009, 39, 510–523. [Google Scholar] [CrossRef]
- Zhaidarbek, B.; Aruzhan, T.; Galymzhan, B.; Yanwei, W. Analytical predictions of concrete pumping: Extending the Khatib–Khayat model to Herschel-–Bulkley and modified Bingham fluids. Cem. Concr. Res. 2023, 163, 107035. [Google Scholar] [CrossRef]
- Li, M.; Han, J.; Liu, Y.; Yan, P. Integration approach to solve the Couette inverse problem based on nonlinear rheological models in a coaxial cylinder rheometer. J. Rheol. 2019, 63, 55–62. [Google Scholar] [CrossRef]
- Atzeni, C.; Massidda, L.; Sanna, U. Comparison between rheological models for portland cement pastes. Cem. Concr. Res. 1985, 15, 511–519. [Google Scholar] [CrossRef]
- Li, M.; Yan, P.; Han, J.; Guo, L. Which Is an Appropriate Quadratic Rheological Model of Fresh Paste, the Modified Bingham Model or the Parabolic Model? Processes 2022, 10, 2603. [Google Scholar] [CrossRef]
- Matsuhisa, S.; Bird, R.B. Analytical and numerical solutions for laminar flow of the non-Newtonian ellis fluid. AIChE J. 1965, 11, 588–595. [Google Scholar] [CrossRef]
- Meter, D.M.; Bird, R.B. Tube flow of non-Newtonian polymer solutions: PART I. Laminar flow and rheological models. AIChE J. 1964, 10, 878–881. [Google Scholar] [CrossRef]
- Peng, Y.; Ma, K.; Unluer, C.; Li, W.; Li, S.; Shi, J.; Long, G. Method for calculating dynamic yield stress of fresh cement pastes using a coaxial cylinder system. J. Am. Ceram. Soc. 2021, 104, 5557–5570. [Google Scholar] [CrossRef]
- Huilgol, R.R. On the derivation of the symmetric and asymmetric Hele–Shaw flow equations for viscous and viscoplastic fluids using the viscometric fluidity function. J. Non-Newton. Fluid Mech. 2006, 138, 209–213. [Google Scholar] [CrossRef]
- Gerhart, P.M.; Gerhart, A.L.; Hochstein, J.I. Munson, Young and Okiishi’s Fundamentals of Fluid Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena. Revised 2nd ed.; John Wiley & Sons: New York. NY, USA, 2006. [Google Scholar]
- Wang, Y. Steady isothermal flow of a Carreau–Yasuda model fluid in a straight circular tube. J. Non-Newton. Fluid Mech. 2022, 310, 104937. [Google Scholar] [CrossRef]
- Buckingham, E. On plastic flow through capillary tubes. Proc. Am. Soc. Test. Mater. 1921, 21, 1154–1156. [Google Scholar]
- Chhabra, R.P.; Richardson, J.F. Non-Newtonian Flow and Applied Rheology: Engineering Applications, 2nd ed.; Butterworth-Heinemann: Amsterdam, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Morrison, F.A. An Introduction to Fluid Mechanics; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Feys, D.; De Schutter, G.; Verhoeven, R. Parameters influencing pressure during pumping of self-compacting concrete. Mater. Struct. 2013, 46, 533–555. [Google Scholar] [CrossRef]
- Tavangar, T.; Hosseinpoor, M.; Yahia, A.; Khayat, K.H. Computational Investigation of Concrete Pipe Flow: Critical Review. ACI Mater. J. 2021, 118, 203–215. [Google Scholar] [CrossRef]
- Matthäus, C.; Weger, D.; Kränkel, T.; Carvalho, L.S.; Gehlen, C. Extrusion of lightweight concrete: Rheological investigations. In Rheology and Processing of Construction Materials; Springer: Cham, Switzerland, 2019; pp. 409–416. [Google Scholar]
- Mooney, M. Explicit formulas for slip and fluidity. J. Rheol. 1931, 2, 210–222. [Google Scholar] [CrossRef]
- Oldroyd, J. The interpretation of observed pressure gradients in laminar flow of non-Newtonian liquids through tubes. J. Colloid Sci. 1949, 4, 333–342. [Google Scholar] [CrossRef]
- Jastrzebski, Z.D. Entrance effects and wall effects in an extrusion rheometer during flow of concentrated suspensions. Ind. Eng. Chem. Fundamen. 1967, 6, 445–454. [Google Scholar] [CrossRef]
- Bertola, V.; Bertrand, F.; Tabuteau, H.; Bonn, D.; Coussot, P. Wall slip and yielding in pasty materials. J. Rheol. 2003, 47, 1211–1226. [Google Scholar] [CrossRef]
- Ghahramani, N.; Georgiou, G.C.; Mitsoulis, E.; Hatzikiriakos, S.G. JG Oldroyd’s early ideas leading to the modern understanding of wall slip. J. Non-Newton. Fluid Mech. 2021, 293, 104566. [Google Scholar] [CrossRef]
Physical Quality | Symbol | SI Unit | Dimension |
---|---|---|---|
Shear rate | |||
Shear stress | |||
Yield stress | |||
a-parameter | a | ||
b-parameter | b | ||
c-parameter | c |
Quality | Symbol | Unit | Dimensionless Variable |
---|---|---|---|
Radial distance | r | R | |
Shear stress | |||
Shear rate | |||
a-parameter | a | ||
b-parameter | b | ||
c-parameter | c | ||
Plug radius | R | ||
Velocity | u |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhaidarbek, B.; Savitskaya, K.; Wang, Y. Pipe Flow of Viscoplastic Fluids and Analytical Predictions of Concrete Pumping Based on the Shear-Stress-Dependent Parabolic Model. Processes 2023, 11, 1745. https://doi.org/10.3390/pr11061745
Zhaidarbek B, Savitskaya K, Wang Y. Pipe Flow of Viscoplastic Fluids and Analytical Predictions of Concrete Pumping Based on the Shear-Stress-Dependent Parabolic Model. Processes. 2023; 11(6):1745. https://doi.org/10.3390/pr11061745
Chicago/Turabian StyleZhaidarbek, Balnur, Kristina Savitskaya, and Yanwei Wang. 2023. "Pipe Flow of Viscoplastic Fluids and Analytical Predictions of Concrete Pumping Based on the Shear-Stress-Dependent Parabolic Model" Processes 11, no. 6: 1745. https://doi.org/10.3390/pr11061745
APA StyleZhaidarbek, B., Savitskaya, K., & Wang, Y. (2023). Pipe Flow of Viscoplastic Fluids and Analytical Predictions of Concrete Pumping Based on the Shear-Stress-Dependent Parabolic Model. Processes, 11(6), 1745. https://doi.org/10.3390/pr11061745