Research on Valve Life Prediction Based on PCA-PSO-LSSVM
<p>Scratched seal. (<b>a</b>) Minor scratches. (<b>b</b>) Severe scratches.</p> "> Figure 2
<p>Worn seals. (<b>a</b>) Slight wear. (<b>b</b>) Heavy wear.</p> "> Figure 3
<p>Shear fracture and tear off-of sealing ring. (<b>a</b>) Shear fracture of the seal. (<b>b</b>) Tear off of the sealing ring.</p> "> Figure 4
<p>PCA-PSO-LSSVM flow diagram.</p> "> Figure 5
<p>Statistical chart of the actual situation of the valve. (<b>a</b>) Valve type; (<b>b</b>) Conveying medium; (<b>c</b>) Affiliated pipelines; (<b>d</b>) Function and Location; (<b>e</b>) Sealing materials; (<b>f</b>) Connection method; (<b>g</b>) Leakage classification; (<b>h</b>) Usage time.</p> "> Figure 5 Cont.
<p>Statistical chart of the actual situation of the valve. (<b>a</b>) Valve type; (<b>b</b>) Conveying medium; (<b>c</b>) Affiliated pipelines; (<b>d</b>) Function and Location; (<b>e</b>) Sealing materials; (<b>f</b>) Connection method; (<b>g</b>) Leakage classification; (<b>h</b>) Usage time.</p> "> Figure 6
<p>Principal component contribution rate histogram.</p> "> Figure 7
<p>PCA-PSO-LSSVM prediction result graph.</p> "> Figure 8
<p>PSO-LSSVM prediction result graph.</p> "> Figure 9
<p>Comparison of relative error results of PCA-PSO-LSSVM and PSO-LSSVM.</p> "> Figure 10
<p>Prediction result graph of LSSVM.</p> "> Figure 11
<p>Comparison of relative error results of PSO-LSSVM and LSSVM.</p> ">
Abstract
:1. Introduction
2. Method
2.1. Principle of Principal Component Analysis
2.2. Least Squares Support Vector Machine
2.3. Particle Swarm Optimization Algorithm
2.4. PCA-PSO-LSSVM Model Construction
3. Data Forecasting and Discussion
3.1. Test Data
3.2. Principal Component Analysis
3.3. Model Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaewwaewnoi, W.; Prateepasen, A.; Kaewtrakulpong, P. Investigation of the relationship between internal fluid leakage through a valve and the acoustic emission generated from the leakage. Measurement 2010, 43, 274–282. [Google Scholar] [CrossRef]
- Li, Z.L.; Zhang, H.F.; Tan, D.J.; Chen, X.; Lei, H.X. A novel acoustic emission detection module for leakage recognition in a gas pipeline valve. Process Saf. Environ. Prot. 2017, 105, 32–40. [Google Scholar] [CrossRef]
- Zhou, M.F.; Zhang, Q.; Liu, Y.W.; Sun, X.F.; Cai, Y.J. Haitian Pan. An Integration Method Using Kernel Principal Component Analysis and Cascade Support Vector Data Description for Pipeline Leak Detection with Multiple Operating Modes. Processes 2019, 7, 648. [Google Scholar] [CrossRef]
- Kamali, M.R.; Mirshady, A.A. Total organic carbon content determined from well-logs using ΔLogR and Neuro Fuzzy techniques. J. Pet. Sci. Eng. 2004, 45, 141–148. [Google Scholar] [CrossRef]
- Tan, M.J.; Song, X.D.; Yang, X.; Wu, Q.Z. Support-vector-regression machine technology for total organic carbon content prediction from wireline logs in organic shale: A comparative study. J. Nat. Gas Sci. Eng. 2015, 26, 792–802. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Sources 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Deepak, V.; Pranav, V.S.; Lakshmi, B.S.; Vishnu, K. Lifetime Prediction of Lithium-Ion Battery Using Machine Learning for E-Vehicles. J. Phys. Conf. Ser. 2021, 1916, 012200. [Google Scholar]
- Su, N.K.H.; Juwono, F.H.; Wong, W.K.; Chew, I.M. Review on Machine Learning Methods for Remaining Useful Lifetime Prediction of Lithium-ion Batteries. In Proceedings of the International Conference on Green Energy, Computing and Sustainable Technology (GECOST), Miri Sarawak, Malaysia, 26–28 October 2022. [Google Scholar]
- De Cooman, T.; Vandecasteele, K.; Varon, C.; Hunyadi, B.; Cleeren, E.; van Paesschen, W.; van Huffel, S. Personalizing heart rate-based seizure detection using supervised SVM transfer learning. Front. Neurol. 2020, 11, 145. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Chen, Y.; Zhang, Y. Fault diagnosis of high voltage circuit breaker based on multi-classification relevance vector machine. J. Electr. Eng. Technol. 2020, 15, 413–420. [Google Scholar] [CrossRef]
- Muhammad, A.R.; Liang, Z.M.; Salim, H.; Mohammad, Z.K.; Ozgur, K.; Li, B.Q. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J. Hydrology 2020, 586, 124371. [Google Scholar]
- Zhang, L.; Li, K.; Du, D.; Guo, Y.; Fei, M.; Yang, Z. A sparse learning machine for real-time SOC estimation of li-ion batteries. IEEE Access 2020, 8, 156165–156176. [Google Scholar] [CrossRef]
- Fan, W.; Si, F.; Ren, S.; Yu, C.; Cui, Y.; Wang, P. Integration of continuous restricted Boltzmann machine and SVR in NOx emissions prediction of a tangential firing boiler. Chemom. Intell. Lab. Syst. 2019, 195, 103870. [Google Scholar] [CrossRef]
- Wang, H.; Peng, M.-J.; Hines, J.W.; Zheng, G.-Y.; Liu, Y.-K.; Upadhyaya, B.R. A hybrid fault diagnosis methodology with support vector machine and improved particle swarm optimization for nuclear power plants. ISA Trans. 2019, 95, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.S.; Li, X.T.; Wu, Q.M.J.; Li, J.; Sun, X.M. Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis. Comput. Mater. Contin. 2017, 53, 357–372. [Google Scholar]
- Al-Anazi, A.F.; Gates, I.D. Support vector regression to predict porosity and permeability: Effect of sample size. Comput. Geosci. 2012, 39, 64–76. [Google Scholar] [CrossRef]
- Al-Anazi, A.; Gates, I. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Eng. Geol. 2010, 114, 267–277. [Google Scholar] [CrossRef]
- Al-Anazi, A.; Gates, I. Support vector regression for porosity prediction in a heterogeneous reservoir: A comparative study. Comput. Geosci. 2010, 36, 1494–1503. [Google Scholar] [CrossRef]
- El-Sebakhy, E.A. Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. J. Petrol. Sci. Eng. 2009, 64, 25–34. [Google Scholar] [CrossRef]
- Chapelle, O.; Vapnik, V.; Bengio, Y. Model selection for small sample regression. Mach. Learn. 2002, 48, 9–23. [Google Scholar] [CrossRef]
- Ghosh, A.; Chatterjee, P. Prediction of cotton yarn properties using support vector machine. Fibers Polym. 2010, 11, 84–88. [Google Scholar] [CrossRef]
- Li, B.; Tian, X.T. An effective PSO-LSSVM-based approach for surface roughness prediction in high-speed precision milling. IEEE Access 2021, 9, 80006–80014. [Google Scholar] [CrossRef]
Reason | Result |
---|---|
| Poor sealing leads to valve leakage or continuous discharge of small flow rate |
| |
| |
| |
|
Main Failure Mode | The Specific Embodiment of Failure Form |
---|---|
Sphere damage |
|
Damaged valve seat seal |
|
Main Ingredient | Eigenvalues | Contribution Rate/% | Cumulative Contribution Rate/% |
---|---|---|---|
1 | 2.37657 | 33.95104 | 33.95104 |
2 | 2.00350 | 28.62149 | 62.57253 |
3 | 1.26736 | 18.10506 | 80.67759 |
4 | 0.62783 | 8.96897 | 89.64656 |
5 | 0.50074 | 7.15337 | 96.79993 |
6 | 0.22401 | 3.20007 | 99.99995 |
7 | 7.18 × 10−17 | 1.03 × 10−15 | 100 |
Method | MRE | RMSE |
---|---|---|
PCA-PSO-LSSVM | 16.57% | 1.2636 |
PSO-LSSVM | 19.72% | 3.7837 |
LSSVM | 36.69% | 6.8780 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.; Tan, P.; Qin, L.; Huang, Z. Research on Valve Life Prediction Based on PCA-PSO-LSSVM. Processes 2023, 11, 1396. https://doi.org/10.3390/pr11051396
Shi M, Tan P, Qin L, Huang Z. Research on Valve Life Prediction Based on PCA-PSO-LSSVM. Processes. 2023; 11(5):1396. https://doi.org/10.3390/pr11051396
Chicago/Turabian StyleShi, Mingjiang, Peipei Tan, Liansheng Qin, and Zhiqiang Huang. 2023. "Research on Valve Life Prediction Based on PCA-PSO-LSSVM" Processes 11, no. 5: 1396. https://doi.org/10.3390/pr11051396
APA StyleShi, M., Tan, P., Qin, L., & Huang, Z. (2023). Research on Valve Life Prediction Based on PCA-PSO-LSSVM. Processes, 11(5), 1396. https://doi.org/10.3390/pr11051396