Response Surface Optimization of Culture Conditions for Cyclic Lipopeptide MS07 from Bacillus siamensis Reveals Diverse Insights Targeting Antimicrobial and Antibiofilm Activity
"> Figure 1
<p>Phylogenetic tree created on almost full 16S rRNA gene sequences displaying interactions among CBSMS07 and a few closely associated taxa of the genus <span class="html-italic">Bacillus.</span> Here, the percentage amounts at the nodes are the quantities of the bootstrap assistance value based on 1000 resampled datasets retrieved from GenBank. The bar symbolizes 0.01 substitutions per nucleotide place.</p> "> Figure 2
<p>Response surface method plots (3D) displaying the distinct and combined impacts of the variables on the bacteriocin activity (AU/mL). (<b>a</b>) The interaction effect between NaCl and peptone concentrations (gL<sup>−1</sup>) on actual bacteriocin activity (AU/mL); (<b>b</b>) the interaction effect between NaCl and mannitol concentrations (gL<sup>−1</sup>) on actual bacteriocin activity (AU/mL); (<b>c</b>) the interaction effect between peptone and mannitol concentrations (gL<sup>−1</sup>) on actual bacteriocin activity (AU/mL).</p> "> Figure 3
<p>Gel filtration elution summary of peptide MS07 from (<b>a</b>) the Sephadex G-50 (2.5 × 85 cm) and (<b>b</b>) the DEAE-Sephadex A-50 column (1.5 × 37 cm). Stability of (<b>c</b>) pH and (<b>d</b>) temperature on the activity of peptide MS07.</p> "> Figure 4
<p>(<b>a</b>) Tricine-SDS-PAGE; Lane 1: standard protein indicator, Lane 2: purified MS07 after desalting. (<b>b</b>) In situ analysis (bioassay) against <span class="html-italic">Mycobacterium smegmatis</span> ATCC 9341; Lane 1: protein standard marker point, Lane 2: activity of purified MS07. (<b>c</b>) MALDI-TOF/MS showing m/z = 1067.675, 1102.762, and 1118.721 corresponding to lipopeptides. (<b>d</b>) Intact molecular weight determination by MALDI-TOF; purified MS07: 6099.689 Da, dimer ion: 12,195.175 Da.</p> "> Figure 5
<p>(<b>a</b>) Killing kinetics of MS07 with different MIC concentrations against <span class="html-italic">Escherichia coli</span> compared with the growth control (GC) for 24 h. (<b>b</b>) The synergistic effect of MS07 with melittin improved the killing kinetics against <span class="html-italic">Escherichia coli</span> for 24 h compared to it acting alone.</p> "> Figure 6
<p>(<b>a</b>) Bacteria treated with a combination of MS07 and oxacillin (MS07 + OXA); combination of MS07 and ampicillin (MS07 + Ampicillin; to verify biofilm development, microbial cells in MH broth accompanied by 0.2% glucose were placed in TCPs 96 well plates and incubated for 24 h at 37 °C; the results are presented as the mean ± the standard deviation. (<b>b</b>) The viability of <span class="html-italic">Pseudomonas aeruginosa</span> and <span class="html-italic">Escherichia coli</span> biofilm was decreased after 24 h at an elevated concentration of peptide MS07. ANOVA test, *** <span class="html-italic">p</span> ˂ 0.001, ** <span class="html-italic">p</span> ˂ 0.01, * <span class="html-italic">p</span> ˂ 0.05. (<b>c</b>) Effect of MS07 on <span class="html-italic">Pseudomonas aeruginosa</span> biofilm. Representative confocal microscopy images determined the formation of <span class="html-italic">Pseudomonas aeruginosa</span> biofilm after shaking for 72 h. The plane surface image of the biofilm exhibited a distinct structure with green fluorescence. Treatment with MS07 significantly reduced biofilm formation in a dose-dependent manner.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Bacterial Isolates and Nutrition Media
2.3. Bioprocess Design and Optimization by the Response Surface Methodology
2.4. Purification of Peptide MS07
2.5. Tricine-SDS Polyacrylamide Gel Electrophoresis and Bioassay
2.6. Intact Molecular Weight Determination by MALDI-TOF
2.7. Stability and Solubility of Peptide MS07
2.8. Antimicrobial Inhibitory Spectrum
2.9. Time-Kill Kinetics Assay
2.10. Synergism of Peptide MS07 with Melittin
2.11. Antibiofilm Properties of Peptide MS07
2.12. Viability Assessment of Biofilm Cells with MS07
2.13. Inhibition of Bacterial Biofilm Imaging by Confocal Microscopy
3. Results
3.1. Strain Identification and Culture Media
3.2. Box–Behnken Design and Response Surface Analysis
3.3. Purification and Molecular Weight Determination of MS07
3.4. Molecular Weight Determination by MALDI-TOF
3.5. Stability and Solubility Study of MS07
3.6. Antimicrobial Spectrum, Time-Kill Kinetics Assay, and Synergistic Effect of MS07
3.7. Antibiofilm Activity of Peptide MS07
3.8. Viability Assays of Biofilm Cells Treated with MS07
3.9. Anti-Biofilm Action of Peptide MS07 Determined by Confocal Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.T.; Fischbach, M.A. New Ways to Squash Superbugs. Sci. Am. 2009, 301, 44–51. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.F.; Abdelkhalek, A.; Seleem, M.N. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci. Rep. 2016, 6, 29707. [Google Scholar] [CrossRef] [PubMed]
- Molchanova, N.; Hansen, P.R.; Franzyk, H. Advances in development of antimicrobial peptidomimetics as potential drugs. Molecules 2017, 22, 1430. [Google Scholar] [CrossRef] [Green Version]
- Pfalzgraff, A.; Brandenburg, K.; Weindl, G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front. Pharmacol. 2018, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, H.; Hamill, P.; Hancock, R.E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Sumi, C.D.; Yang, B.W.; Yeo, I.-C.; Hahm, Y.T. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol. 2015, 61, 93–103. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updates 2016, 26, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 2017, 61, e02340-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalingam, B.; Parandhaman, T.; Das, S.K. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. [Google Scholar] [CrossRef]
- Sinha, R.; Shukla, P. Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives. Protein Peptide Lett. 2019, 26, 79–87. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.; Omar, N.B.; Gálvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, P.; Jose, P.A.; Amiya, R.; Jebakumar, S.R.D. Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity. Front. Microbiol 2015, 5, 753. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Bolaños, J.; Téllez-Martínez, M.; Miranda-López, R.; Jiménez-Islas, H. An experimental strategy validated to design cost-effective culture media based on response surface methodology. Prep. Biochem. Biotech. 2017, 47, 578–588. [Google Scholar] [CrossRef]
- Han, Y.; Li, Z.; Miao, X.; Zhang, F. Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochem. 2008, 43, 1088–1093. [Google Scholar] [CrossRef]
- Jinendiran, S.; Kumar, B.D.; Dahms, H.-U.; Arulanandam, C.D.; Sivakumar, N. Optimization of submerged fermentation process for improved production of β-carotene by Exiguobacterium acetylicum S01. Heliyon 2019, 5, e01730. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Cont. 2019, 8, 76. [Google Scholar] [CrossRef]
- Macia, M.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microb. 2018, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Müsken, M.; Pawar, V.; Schwebs, T.; Bähre, H.; Felgner, S.; Weiss, S.; Häussler, S. Breaking the vicious cycle of antibiotic killing and regrowth of biofilm-residing Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e01635-18. [Google Scholar]
- Spoering, A.L.; Lewis, K. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 2001, 183, 6746–6751. [Google Scholar] [CrossRef] [Green Version]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.C.; Silva, S.P.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics 2020, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Hirt, H.; Gorr, S.-U. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 4903–4910. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.; Choi, Y.S.; Kim, Y.K.; Yoo, J.C. Immobilization of an alkaline endopolygalacturonase purified from Bacillus paralicheniformis exhibits bioscouring of cotton fabrics. Bioproc. Biosyst. Eng. 2018, 41, 1425–1436. [Google Scholar] [CrossRef]
- Lechevalier, H. A practival guide to generic identification of actinomycetes. Bergey’s Man. Syst. Bacteriol. 1989, 4, 2344–2347. [Google Scholar]
- Yun, T.Y.; Feng, R.J.; Zhou, D.B.; Pan, Y.Y.; Chen, Y.F.; Wang, F.; Yin, L.Y.; Zhang, Y.D.; Xie, J.H. Optimization of fermentation conditions through response surface methodology for enhanced antibacterial metabolite production by Streptomyces sp. 1-14 from cassava rhizosphere. PLoS ONE 2018, 13, 11. [Google Scholar] [CrossRef]
- Kanmani, P.; Yuvaraj, N.; Paari, K.; Pattukumar, V.; Arul, V. Optimization of media components for enhanced production of Streptococcus phocae PI80 and its bacteriocin using response surface methodology. Braz. J. Microbiol. 2011, 42, 716–720. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Schägger, H. Tricine–sds-page. Nat. Protoc. 2006, 1, 16. [Google Scholar] [CrossRef]
- Regmi, S.; Choi, Y.H.; Choi, Y.S.; Kim, M.R.; Yoo, J.C. Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy. Folia Microbiol. 2017, 62, 127–138. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163. [Google Scholar] [CrossRef]
- Almaaytah, A.; Qaoud, M.T.; Khalil Mohammed, G.; Abualhaijaa, A.; Knappe, D.; Hoffmann, R.; Al-Balas, Q. Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmaceuticals 2018, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Weir, M.D.; Fouad, A.F.; Xu, H.H. Time-kill behaviour against eight bacterial species and cytotoxicity of antibacterial monomers. J. Dent. 2013, 41, 881–891. [Google Scholar] [CrossRef] [Green Version]
- Giacometti, A.; Cirioni, O.; Barchiesi, F.; Fortuna, M.; Scalise, G. In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1999, 44, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Saising, J.; Dube, L.; Ziebandt, A.-K.; Voravuthikunchai, S.P.; Nega, M.; Götz, F. Activity of gallidermin on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Antimicrob. Agents Chemother. 2012, 56, 5804–5810. [Google Scholar] [CrossRef] [Green Version]
- Read, T.R.; Ceri, H.; Buret, A.; Olson, J.B.; Olson, L.M.; Storey, J.; Morck, D. The MBEC Assay System: Multiple equivalent biofilms for antibiotic and biocide susceptibility testing. Method. Enzymol. 2000, 337, 377–385. [Google Scholar]
- Jurcisek, J.A.; Dickson, A.C.; Bruggeman, M.E.; Bakaletz, L.O. In vitro biofilm formation in an 8-well chamber slide. J. Vis. Exp. JoVE 2011, 47, 2481. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Cho, S.S.; Simkhada, J.R.; Rahman, M.S.; Choi, Y.S.; Kim, C.S.; Yoo, J.C. A novel multifunctional peptide oligomer of bacitracin with possible bioindustrial and therapeutic applications from a Korean food-source Bacillus strain. PLoS ONE 2017, 12, e0176971. [Google Scholar] [CrossRef]
- Perumal, V.; Yao, Z.; Kim, J.A.; Kim, H.-J.; Kim, J.H. Purification and Characterization of a Bacteriocin, BacBS2, Produced by Bacillus velezensis BS2 Isolated from Meongge Jeotgal. J. Microbiol. Biotechnol. 2019, 29, 1033–1042. [Google Scholar] [CrossRef]
- Regmi, S.; Choi, Y.S.; Choi, Y.H.; Kim, Y.K.; Cho, S.S.; Yoo, J.C.; Suh, J.-W. Antimicrobial peptide from Bacillus subtilis CSB138: Characterization, killing kinetics, and synergistic potency. Int. Microbiol. 2017, 20, 43–53. [Google Scholar]
- Rahman, M.S.; Choi, Y.H.; Choi, Y.S.; Yoo, J.C. Glycin-rich antimicrobial peptide YD1 from B. amyloliquefaciens, induced morphological alteration in and showed affinity for plasmid DNA of E. coli. AMB Express 2017, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Appiah, T.; Boakye, Y.D.; Agyare, C. Antimicrobial activities and time-kill kinetics of extracts of selected ghanaian mushrooms. Evid-Based Compl. Alt. Med. 2017, 2017, 4534350. [Google Scholar] [CrossRef] [Green Version]
- Ferre, R.; Melo, M.N.; Correia, A.D.; Feliu, L.; Bardají, E.; Planas, M.; Castanho, M. Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100. Biophys. J. 2009, 96, 1815–1827. [Google Scholar] [CrossRef] [Green Version]
- Bagge, N.; Ciofu, O.; Skovgaard, L.T.; HØIby, N. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal β-lactamase. Apmis 2000, 108, 589–600. [Google Scholar] [CrossRef]
- Stewart, P.S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 2002, 292, 107–113. [Google Scholar] [CrossRef]
- Beaudoin, T.; Stone, T.A.; Glibowicka, M.; Adams, C.; Yau, Y.; Ahmadi, S.; Bear, C.E.; Grasemann, H.; Waters, V.; Deber, C.M. Activity of a novel antimicrobial peptide against Pseudomonas aeruginosa biofilms. Sci. Rep. 2018, 8, 14728. [Google Scholar] [CrossRef]
Code No. | Independent Variables | Low Level | Center Point | High Level |
---|---|---|---|---|
(−1) | (0) | (+1) | ||
A | Mannitol (g/L) | 10 | 15 | 20 |
B | Peptone (g/L) | 5 | 10 | 15 |
C | NaCl (g/L) | 0.05 | 0.1 | 0.15 |
D | pH | 5 | 7 | 9 |
E | Incubation period (h) | 24 | 30 | 36 |
Run | Mannitol (g/L) | Peptone (g/L) | NaCl (g/L) | Bacteriocin activity (AU/mL) | |
---|---|---|---|---|---|
A | B | C | Actual * | Predicted | |
1 | 20 | 10 | 0.15 | 10,110.00 | 9920.00 |
2 | 15 | 10 | 0.1 | 10,740.00 | 10,818.00 |
3 | 10 | 5 | 0.1 | 8400.00 | 8402.50 |
4 | 15 | 10 | 0.1 | 10,800.00 | 10,818.00 |
5 | 20 | 15 | 0.1 | 9600.00 | 9597.50 |
6 | 15 | 15 | 0.15 | 9260.00 | 9452.50 |
7 | 15 | 5 | 0.15 | 8370.00 | 8717.50 |
8 | 20 | 10 | 0.05 | 9940.00 | 10,290.00 |
9 | 15 | 5 | 0.05 | 9460.00 | 9267.50 |
10 | 10 | 15 | 0.1 | 9140.00 | 9297.50 |
11 | 10 | 10 | 0.05 | 9620.00 | 9810.00 |
12 | 15 | 10 | 0.1 | 10,950.00 | 10,818.00 |
13 | 20 | 5 | 0.1 | 9380.00 | 9222.50 |
14 | 15 | 10 | 0.1 | 10,610.00 | 10,818.00 |
15 | 15 | 10 | 0.1 | 10,990.00 | 10,818.00 |
16 | 15 | 15 | 0.05 | 10,150.00 | 9802.50 |
17 | 10 | 10 | 0.15 | 9630.00 | 9280.00 |
Purification Steps | Vol. (mL) | Total Protein (mg) | Total Activity (AU) | Specific Activity (AU/mg) | Purification Fold | Recovery (%) |
---|---|---|---|---|---|---|
Cell-free supernatant | 910 | 410.45 | 350,000 | 852.72 | 1 | 100 |
Ammonium sulfate | 45 | 75.75 | 171,000 | 2257.43 | 2.64 | 48.86 |
Sephadex G-50 | 9 | 8.16 | 92,000 | 11,274.51 | 13.22 | 26.29 |
DEAE-Sephadex A-50 | 2.5 | 1.14 | 27,000 | 23,684.21 | 27.77 | 7.71 |
Bacterial Species | Minimum Biofilm Eradication Concentration. (MBEC, µM) * | Minimum Bactericidal Concentration on Biofilm (MBCb, µM) ** |
---|---|---|
Gram-negative | ||
Escherichia coli KCTC 1923 | 4 | 8 |
Pseudomonas aeruginosa KCTC 1637 | 1.5 | 6 |
Gram-positive | ||
Micrococcus luteus ATCC 9341 | 1.5 | 2 |
Microorganisms | MIC (µg/mL) | MBC (µg/mL) | ||
---|---|---|---|---|
MS07 | Bacitracin | Vancomycin | MS07 | |
Gram-negative bacteria | ||||
Alcaligenes faecalis ATCC 1004 | 32 | >128 | 64 | 640 |
Escherichia coli KCTC 1923 | 32 | >128 | 64 | 320 |
Salmonella typhimurium KCTC 1925 | 32 | 64 | 32 | 640 |
Extended-spectrum beta-lactamase V4 (Escherichia coli) | 16 | 64 | 32 | 640 |
Extended-spectrum beta-lactamase 31 | 16 | 32 | 32 | 640 |
Extended-spectrum beta-lactamase W1 | 32 | 64 | 32 | 320 |
Pseudomonas aeruginosa KCTC 1637 | 32 | >128 | >128 | 640 |
Gram-positive bacteria | ||||
Bacillus subtilis ATCC 6633 | 16 | 16 | 0.5 | 640 |
Enterococcus faecalis ATCC 29212 | 32 | 4 | 2 | 160 |
Methicillin-resistant Staphylococcus aureus B15 | 16 | 64 | 64 | 640 |
Micrococcus luteus ATCC 9341 | 16 | 32 | 2 | 320 |
Mycobacterium smegmatis ATCC 9341 | 32 | 64 | 2 | >1280 |
Staphylococcus aureus KCTC 1928 | >128 | >128 | >128 | >1280 |
Vancomycin-resistant Enterococci 4 | >128 | 64 | >128 | >1280 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.M.; Kim, Y.K.; Cho, S.S.; Jin, Y.-Y.; Suh, J.-W.; Lee, D.Y.; Yoo, J.C. Response Surface Optimization of Culture Conditions for Cyclic Lipopeptide MS07 from Bacillus siamensis Reveals Diverse Insights Targeting Antimicrobial and Antibiofilm Activity. Processes 2020, 8, 744. https://doi.org/10.3390/pr8060744
Khan MM, Kim YK, Cho SS, Jin Y-Y, Suh J-W, Lee DY, Yoo JC. Response Surface Optimization of Culture Conditions for Cyclic Lipopeptide MS07 from Bacillus siamensis Reveals Diverse Insights Targeting Antimicrobial and Antibiofilm Activity. Processes. 2020; 8(6):744. https://doi.org/10.3390/pr8060744
Chicago/Turabian StyleKhan, Md Maruf, Young Kyun Kim, Seung Sik Cho, Ying-Yu Jin, Joo-Won Suh, Dae Young Lee, and Jin Cheol Yoo. 2020. "Response Surface Optimization of Culture Conditions for Cyclic Lipopeptide MS07 from Bacillus siamensis Reveals Diverse Insights Targeting Antimicrobial and Antibiofilm Activity" Processes 8, no. 6: 744. https://doi.org/10.3390/pr8060744
APA StyleKhan, M. M., Kim, Y. K., Cho, S. S., Jin, Y.-Y., Suh, J.-W., Lee, D. Y., & Yoo, J. C. (2020). Response Surface Optimization of Culture Conditions for Cyclic Lipopeptide MS07 from Bacillus siamensis Reveals Diverse Insights Targeting Antimicrobial and Antibiofilm Activity. Processes, 8(6), 744. https://doi.org/10.3390/pr8060744