Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development
<p>Tomato flower buds at different developmental stages from cv Saladette. Young buds ranging from 2 mm to 8 mm in length correspond to the phases in which microsporogenesis and microgametogenesis processes occur in anthers, while pollination and fertilization take place at anthesis stage.</p> "> Figure 2
<p>Phenotypic alterations in tomato flowers exposed to prolonged heat stress (hs) conditions. (<b>A</b>,<b>B</b>) Young flower buds of 8 mm in length and flowers at anthesis stage harvested from tomato plants (cv Saladette) grown under normal temperature (ct: 26 °C/19 °C; day/night). (<b>C</b>,<b>D</b>) Flower buds and opened flowers from plants exposed to prolonged high temperature conditions (hs: 36 °C/26 °C; day/night). Abnormal anthers and style elongation are observed in flowers treated with hs.</p> "> Figure 3
<p>Cytological alterations in tomato anthers and pollen grains after 3 days of mild hs of 36 °C. Panels (<b>A</b>,<b>B</b>,<b>E</b>,<b>F</b>) show sections of anthers from young flower buds (<b>A</b>,<b>E</b>) and pollen grains from flowers at anthesis stage (<b>B</b>,<b>F</b>) harvested from tomato plants (cv Saladette). (<b>A</b>) Anthers from plants grown under control conditions (ct: 26 °C/19 °C; day/night) with normally developed endothecium, tapetum and microspores. (<b>E</b>) Similar anthers from plants grown at high temperature (hs: 36°C/26°C; day/night) in which tapetum and most of microspores are degenerated. (<b>B</b>) Normally developed pollen grains with densely stained cytoplasm in pollen sac. (<b>F</b>) Pollen sac of anthers treated with hs in which pollen grains are degenerated or show abnormal vacuolization. (C,D,G,H) Scanning electron micrographs of mature pollen grains. (<b>C</b>,<b>D</b>) Well hydrated pollen grains and the exine with tiny spinules, respectively, from plants grown at normal temperatures. (<b>G</b>,<b>H</b>) Not hydrated pollen grains and tapetum debris (<b>G</b>) and an irregular exine surface with tapetum debris (H) from pollen grains in anthers treated with hs.</p> ">
Abstract
:1. Introduction
2. Heat Stress Effects on Developing Pollen Grains and Anther Tissues
3. Transcriptional Adjustments in Male Reproductive Organs in Response to High Temperatures
Tissues | Species | Transcriptome profiling methods | Number of genes differentially expressed | References |
---|---|---|---|---|
Anther at the stage of pollen mother cells in meiotic division | Barley | 22K Barley1 GeneChip | 3353 | [24] |
Anthers during microsporogenesis | Rice | Agilent 22K rice oligo Microarray | 1185 | [41] |
Anthers at the stage of meiosis | Rice | 4×44K rice oligo | 2449 | [42] |
Panicle at the 5-leaf stage corresponding to pollen mother cells undergoing meiotic division | Barley | SAGE libraries | 31 | [43] |
Developing microspores at post-meiotic stages, vacuolated and early binucleate microspores | Tomato | cDNA-AFLP Affymetrix GeneChip | 104 | [38] |
Developing meiotic anthers | Tomato | cDNA-AFLP 90K Custom Tomato Array 1.0chip | 181 | [39] |
4. Hsf and Hsp: Key Components in the hs Response in Anthers and Developing Pollen Grains
5. Proteomic Changes in Response to hs in Anther and Pollen Grains
6. Metabolic Changes in Anthers and Pollen Grains upon hs
7. Genetic Variations in Pollen Thermotolerance
8. Conclusions and Future Perspectives
Conflict of Interest
References
- Warrag, M.O.A.; Hall, A.E. Reproductive responses of cowpea [Vigna. unguiculata L. (Walp.)] to heat stress. II. Response to night air temperature. Field Crops Res. 1984, 8, 17–33. [Google Scholar] [CrossRef]
- Monterroso, V.A.; Wien, H.C. Flower and pod abscission due to heat stress in beans. J. Am. Soc. Hortic. Sci. 1990, 115, 631–634. [Google Scholar]
- Peet, M.M.; Sato, S.; Gardner, R.G. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 1998, 21, 225–231. [Google Scholar] [CrossRef]
- Erickson, A.N.; Markhart, A.H. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 2002, 25, 123–130. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Stommel, J.R. Pollen viability and fruit set of tomato genotypes under optimum and high-temperature regimes. HortScience 1995, 30, 115–117. [Google Scholar]
- Rudich, J.; Zamski, E.; Regev, Y. Genotype variation for sensitivity to high temperature in the tomato: Pollination and fruit set. Bet. Gaz. 1977, 138, 448–452. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M.R. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Senthil-Kumar, M.; Kumar, G.; Srikanthbabu, V.; Udayakumar, M. Assessment of variability in acquired thermotolerance: Potential option to study genotypic response and the relevance of stress genes. J. Plant Physiol. 2007, 164, 111–125. [Google Scholar] [CrossRef]
- Kotak, S.; Larkindale, J.; Lee, U.; von Koskull-Döring, P.; Vierling, E.; Scharf, K.D. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 2007, 10, 310–316. [Google Scholar] [CrossRef]
- Larkindale, J.; Vierling, E. Core genome responses involved in acclimation to high temperature. Plant Physiol. 2008, 146, 748–761. [Google Scholar] [CrossRef]
- Goldberg, R.B.; Beals, T.P.; Sanders, P.M. Anther development: Basic principles and practical applications. Plant Cell 1993, 10, 1217–1229. [Google Scholar]
- Ma, H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 2005, 56, 393–434. [Google Scholar] [CrossRef]
- Scott, R.J.; Spielman, M.; Dickinson, H.G. Stamen structure and function. Plant Cell 2004, 16, S46–S60. [Google Scholar] [CrossRef]
- Owen, H.A.; Makaroff, C.A. Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 1995, 185, 7–21. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nishimura, M.; Hara-Nishimura, I.; Noguchi, T. Behavior of vacuoles during microspore and pollen development in Arabidopsis thaliana. Plant Cell Physiol. 2003, 44, 1192–1201. [Google Scholar] [CrossRef]
- Borg, M.; Brownfield, L.; Twell, D. Male gametophyte development: A molecular perspective. J. Exp. Bot. 2009, 60, 1465–1478. [Google Scholar] [CrossRef]
- Pacini, E. Types and meaning of pollen carbohydrate reserves. Sex. Plant Reprod. 1996, 9, 362–366. [Google Scholar] [CrossRef]
- Schwacke, R.; Grallath, S.; Breitkreuz, K.E.; Stransky, E.; Stransky, H.; Frommer, W.B.; Rentsch, D. LeProT1, a transporter for proline, glycine betaine, and {Gamma}-amino butyric acid in tomato pollen. Plant Cell 1999, 11, 377–391. [Google Scholar]
- Kim, S.Y.; Hong, C.B.; Lee, I. Heat hock stress causes stage-specific male sterility in Arabidopsis thaliana. J. Plant Res. 2001, 114, 301–307. [Google Scholar] [CrossRef]
- Sakata, T.; Higashitani, A. Male sterility accompanied with abnormal anther development in plants—genes and environmental stresses with special reference to high temperature injury. Int. J. Plant Dev. Biol. 2008, 2, 42–51. [Google Scholar]
- Iwahori, S. High temperature injuries in tomato. V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature. J. Jpn. Soc. Hortic. Sci. 1966, 35, 379–386. [Google Scholar] [CrossRef]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill) under chronic, mild heat stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar] [CrossRef]
- Sato, S.; Peet, M.M.; Thomas, J.F. Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill exposed to moderately elevated temperatures. J. Exp. Bot. 2002, 53, 1187–1195. [Google Scholar] [CrossRef]
- Oshino, T.; Abiko, M.; Saito, R.; Ichiishi, E.; Endo, M.; Kawagishi-Kobayashi, M.; Higashitani, A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol. Genet. Genomics 2007, 278, 31–42. [Google Scholar] [CrossRef]
- Mariani, C.; de Beuckeleer, M.; Truettner, J.; Leemans, J.; Goldberg, R.B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 1990, 347, 737–741. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Schmidt, A.; Schmid, M.W.; Grossniklaus, U. Analysis of plant germline development by high-throughput RNA profiling: Technical advances and new insights. Plant J. 2012, 70, 18–29. [Google Scholar] [CrossRef]
- Honys, D.; Twell, D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 2004, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.Q.; Xu, W.Y.; Deng, Z.Y.; Su, Z.; Xue, Y.; Wang, T. Genome scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics. 2010, 11, 338. [Google Scholar]
- Xin, H.P.; Sun, M.X. What we have learned from transcript profile analyses of male and female gametes in flowering plants. Sci. China Life Sci. 2010, 53, 927–933. [Google Scholar] [CrossRef]
- Hu, T.-X.; Miao, Y.U.; Zhao, J. Techniques of cell type-specific transcriptome analysis and application in researches of sexual plant reproduction. Front. Biol. 2011, 6, 31–39. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Q.; Yin, W.; Xu, H.; Wilson, Z.A.; Wei, C.; Pan, S.; Zhang, D. PMRD: A curated database for genes and mutants involved in plant male reproduction. BMC Plant Biol. 2012, 12, 215. [Google Scholar] [CrossRef]
- Yang, H.; Lu, P.; Wang, Y.; Ma, H. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: The complexity and evolution of the meiotic process. Plant J. 2011, 65, 503–516. [Google Scholar] [CrossRef]
- Zimmermann, P.; Hirsch-Hoffmann, M.; Hennig, L.; Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136, 4335. [Google Scholar] [CrossRef]
- Pina, C.; Pinto, F.; Feijo, J.A.; Becker, J.D. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 2005, 138, 744–756. [Google Scholar] [CrossRef]
- Honys, D.; Twell, D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003, 132, 640–652. [Google Scholar] [CrossRef]
- McCormick, S. Control of male gametophyte development. Plant Cell 2004, 16, S142–S153. [Google Scholar] [CrossRef]
- Frank, G.; Pressman, E.; Ophir, R.; Althan, L.; Shaked, R.; Freedman, M.; Shen, S.; Firon, N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot. 2009, 60, 3891–3908. [Google Scholar] [CrossRef]
- Bita, C.E.; Zenoni, S.; Vriezen, W.H.; Mariani, C.; Pezzotti, M.; Gerats, T. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics 2011, 12, 384. [Google Scholar] [CrossRef]
- Alba, R.; Fei, Z.; Payton, P.; Liu, Y.; Moore, S.L.; Debbie, P.; Cohn, J.; D’Ascenzo, M.; Gordon, J.S.; Rose, J.K.; et al. ESTs, cDNA microarrays, and gene expression profiling: Tools for dissecting plant physiology and development. Plant J. 2004, 39, 697–714. [Google Scholar] [CrossRef]
- Endo, M.; Tsuchiya, T.; Hamada, K.; Kawamura, S.; Yano, K.; Ohshima, M.; Higashitani, A.; Watanabe, M.; Kawagishi-Kobayashi, M. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development. Plant Cell Physiol. 2009, 50, 1911–1922. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Liu, A.; Zou, J.; Zhou, X.; Xiang, J.; Rerksiri, W.; Peng, Y.; Xiong, X.; Chen, X. Expression profile in rice panicle: Insights into heat response mechanism at reproductive stage. PLoS One 2012, 7, e49652. [Google Scholar]
- Abiko, M.; Akibayashi, K.; Sakata, T.; Kimura, M.; Kihara, M.; Kazutoshi Itoh, K.; Asamizu, E.; Sato, S.; Takahashi, H.; Higashitani, A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex. Plant Reprod. 2005, 18, 91–100. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, X.; Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006, 20, 1790–1799. [Google Scholar] [CrossRef]
- Cecchetti, V.; Altamura, M.M.; Falasca, G.; Costantino, P.; Cardarelli, M. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 2008, 20, 1760–1774. [Google Scholar] [CrossRef]
- Plackett, A.R.; Thomas, S.G.; Wilson, Z.A.; Hedden, P. Gibberellin control of stamen development: A fertile field. Trends Plant Sci. 2011, 16, 568–578. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Dobrovolskaya, A.; Voronkov, A.; Rakitin, V. Ethylene is involved in the control of male gametophyte development and germination in petunia. J. Plant Growth Reg. 2010, 30, 64–73. [Google Scholar]
- Chibi, F.; Mattilla, A.J. The involvement of ethylene in vitro maturation of mid-binucleate pollen of Nicotiana tabacum. J. Exp. Bot. 2010, 45, 529–532. [Google Scholar] [CrossRef]
- Feng, X.L.; Ni, W.M.; Elge, S.; Mueller-Roeber, B.; Xu, Z.H.; Xue, H.W. Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol. Biol. 2006, 61, 215–226. [Google Scholar] [CrossRef]
- Sakata, T.; Oshino, T.; Miura, S.; Tomabechi, M.; Tsunaga, Y.; Higashitani, N.; Miyazawa, Y.; Takahashi, H.; Watanabe, M.; Higashitani, A. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 8569–8574. [Google Scholar] [CrossRef]
- Firon, N.; Pressman, E.; Meir, S.; Khoury, R.; Altahan, L. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants 2012, pls024. [Google Scholar]
- Scharf, K.D.; Berberich, T.; Ebersberger, I.; Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta 2012, 1819, 104–119. [Google Scholar] [CrossRef]
- Sun, W.; van Montagu, M.; Verbruggen, N. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 2002, 1577, 1–9. [Google Scholar] [CrossRef]
- Von Koskull-Döring, P.; Scharf, K.D.; Nover, L. The diversity of plant heat stress transcription factors. Trends Plant Sci. 2007, 12, 452–457. [Google Scholar] [CrossRef]
- Hong, S.W.; Vierling, E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Natl. Acad. Sci. USA 2000, 97, 4392–4397. [Google Scholar] [CrossRef]
- Mascarenhas, J.P.; Crone, E.C. Pollen and the heat shock response. Sex. Plant. Reprod. 1996, 9, 370–374. [Google Scholar] [CrossRef]
- Pelham, H.R. A regulatory upstream promoter element in the Drosophila Hsp 70 heat-shock gene. Cell 1982, 30, 517–528. [Google Scholar] [CrossRef]
- Volkov, R.A.; Panchuk, I.I.; Schöffl, F. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco. Plant Mol. Biol. 2005, 57, 487–502. [Google Scholar] [CrossRef]
- Giorno, F.; Wolters-Arts, M.; Grillo, S.; Scharf, K.D.; Vriezen, W.H.; Mariani, C. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 2010, 61, 453–462. [Google Scholar] [CrossRef]
- Bukau, B.; Weissman, J.; Horwich, A. Molecular chaperones and protein quality control. Cell 2006, 125, 443–451. [Google Scholar] [CrossRef]
- Prahlad, V.; Morimoto, R.I. Integrating the stress response: Lessons for neurodegenerative diseases from C. elegans. Trends Cell Boil. 2009, 19, 52–61. [Google Scholar] [CrossRef]
- Nover, L.; Neumann, D.; Scharf, K.D. Heat Shock and Other Stress Response Systems of Plants; Berlin Springer Verlag: Berlin, Germany, 1989. [Google Scholar]
- Krishna, P. Plant responses to heat stress. In Plant Responses to Abiotic Stress; Springer: Berlin/Heidelber, Germany, 2003; pp. 73–101. [Google Scholar]
- Baniwal, S.K.; Bharti, K.; Chan, K.Y.; Fauth, M.; Ganguli, A.; Kotak, S.; Mishra, S.K.; Nover, L.; Port, M.; Scharf, K.D.; et al. Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 2004, 29, 471–487. [Google Scholar] [CrossRef]
- Wehmeyer, N.; Vierling, E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 2000, 122, 1099–1108. [Google Scholar] [CrossRef]
- Dafny-Yelin, M.; Tzfira, T.; Vainstein, A.; Adam, Z. Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis. Plant Mol. Biol. 2008, 67, 363–373. [Google Scholar] [CrossRef]
- heoran, I.S.; Ross, A.R.S.; Olson, D.J.H.; Sawhney, V.K. Proteomic analysis of tomato, (Lycopersicon. esculentum) pollen. J. Exp. Bot. 2007, 58, 3525–3535. [Google Scholar] [CrossRef]
- Bouchard, R. Characterization of expressed meiotic prophase repeat transcript clones of Lilium: Meiosis-specific expression, relatedness, and affinities to small heat-shock protein genes. Genome 1990, 33, 68–79. [Google Scholar] [CrossRef]
- Atkinson, B.G.; Raizada, M.; Bouchard, R.A.; Frappier, R.H.; Walden, D.B. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev. Genet. 1993, 14, 15–26. [Google Scholar] [CrossRef]
- Reynolds, T. Pollen embryogenesis. Plant Mol. Biol. 1997, 33, 1–10. [Google Scholar] [CrossRef]
- Schulze, W.X.; Usadel, B. Quantitation in mass-spectrometry-based proteomics. Annu. Rev. Plant Biol. 2010, 61, 491–516. [Google Scholar] [CrossRef]
- Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350. [Google Scholar]
- Holmes-Davies, R.; Tanaka, C.K.; Vensel, W.H.; Hurkman, W.J; McCormick, S. Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 2005, 5, 4864–4884. [Google Scholar] [CrossRef]
- Dai, S.; Chen, T.; Chong, K.; Xue, Y.; Liu, S.; Wang, T. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol. Cell Proteomics 2007, 6, 207–230. [Google Scholar]
- Lopez-Casado, G.; Covey, P.A.; Bedinger, P.A.; Mueller, L.A.; Thannhauser, T.W.; Zhang, S.; Fei, Z.; Giovannoni, J.J.; Rose, J.K. Enabling proteomic studies with RNA-Seq: The proteome of tomato pollen as a test case. Proteomics 2012, 12, 761–774. [Google Scholar] [CrossRef]
- Imin, N.; Kerim, T.; Weinman, J.J.; Rolfe, B.G. Characterization of rice anther proteins expressed at the young microspore stage. Proteomics 2001, 1, 1149–1161. [Google Scholar] [CrossRef]
- Kerim, T.; Imin, N.; Weinman, J.J.; Rolfe, B.G. Proteome analysis of male gametophyte development in rice anthers. Proteomics 2003, 3, 738–751. [Google Scholar] [CrossRef]
- Imin, N.; Kerim, T.; Weinman, J.J.; Rolfe, B.G. Effect of early cold stress on the maturation of rice anthers. Proteomics 2004, 4, 1873–1882. [Google Scholar] [CrossRef]
- Imin, N.; Kerim, T.; Weinman, J.J.; Rolfe, B.G. Low temperature treatment at the young microspore stage induces protein changes in rice anthers. Mol. Cell Proteomics 2006, 5, 274–292. [Google Scholar]
- Gorman, S.W.; McCormick, S. Male sterility in tomato. Crit. Rev. Plant Sci. 1997, 16, 31–53. [Google Scholar]
- Emmanuel, E.; Levy, A.A. Tomato mutants as tools for functional genomics. Curr. Opin. Plant Biol. 2002, 5, 112–117. [Google Scholar] [CrossRef]
- Moffatt, B.; Somerville, C. Positive selection for male-sterile mutants of Arabidopsis lacking adenine phosphoribosyl transferase activity. Plant Physiol. 1988, 86, 1150–1154. [Google Scholar] [CrossRef]
- Bhadula, S.K.; Sawhney, V.K. Amylolytic activity and carbohydrate levels during the stamen ontogeny of a male fertile, and a “Gibberellin-Sensitive” male sterile mutant of Tomato (Lycopersicon esculentum). J. Exp. Bot. 1989, 40, 789–794. [Google Scholar] [CrossRef]
- Bhadula, S.K.; Sawhney, V.K. Esterase activity and isozymes during the ontogeny of stamens of male fertile Lycopersicon esculentum Mill., a male sterile stamenless-2 mutant and the low temperature-reverted mutant. Plant Sci. 1987, 52, 187–194. [Google Scholar] [CrossRef]
- Sawhney, V.K. Photoperiod-sensitive male-sterile mutant in tomato and its potential use in hybrid seed production. J. Hortic. Sci. Biotechnol. 2004, 79, 138–141. [Google Scholar]
- Sheoran, I.S.; Ross, A.R.; Olson, D.J.; Sawhney, V.K. Differential expression of proteins in the wild type and 7B-1 male-sterile mutant anthers of tomato (Solanum lycopersicum): A proteomic analysis. J. Proteomics 2009, 71, 624–636. [Google Scholar] [CrossRef]
- agadish, S.V.; Muthurajan, R.; Oane, R.; Wheeler, T.R.; Heuer, S.; Bennett, J.; Craufurd, P.Q. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 143–156. [Google Scholar] [CrossRef]
- Goetz, M.; Godt, D.E.; Guivarc’h, A.; Kahmann, U.; Chriqui, D.; Roitsch, T. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc. Natl. Acad. Sci. USA 2001, 98, 6522–6527. [Google Scholar]
- Polowick, P.L.; Sawhney, V.K. An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). Can. J. Bot. 1993, 71, 1048–1055. [Google Scholar] [CrossRef]
- Datta, R.; Chamusco, K.C.; Chourey, P.S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol. 2002, 130, 1645–1656. [Google Scholar] [CrossRef]
- Oliver, S.N.; van Dongen, J.T.; Alfred, S.C.; Mamun, E.A.; Zhao, X.C.; Saini, H.S.; Fernandes, S.F.; Blanchard, C.L.; Sutton, B.G.; Geigenberger, P.; et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ. 2005, 28, 1534–1551. [Google Scholar] [CrossRef]
- Pressman, E.; Peet, M.M.; Pharr, D.M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anthers. Ann. Bot. 2002, 90, 631–636. [Google Scholar] [CrossRef]
- Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [CrossRef]
- Firon, N.; Shaked, R.; Peet, M.M.; Phari, D.M.; Zamskı, E.; Rosenfeld, K.; Althan, L.; Pressman, N.E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hortic. 2006, 109, 212–217. [Google Scholar] [CrossRef]
- Zanor, M.I.; Osorio, S.; Nunes-Nesi, A.; Carrari, F.; Lohse, M.; Usadel, B.; Kühn, C.; Bleiss, W.; Giavalisco, P.; Willmitzer, L.; et al. RNA interference of LIN5 in Solanum lycopersicum confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol. 2009, 150, 1204–1218. [Google Scholar] [CrossRef]
- Chiang, H.H.; Dandekar, A.M. Regulation of proline accumulation in Arabidopsis during development and in response to dessication. Plant Cell Environ. 1995, 18, 1280–1290. [Google Scholar]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Mansour, M. Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiol. Biochem. 1998, 36, 767–772. [Google Scholar] [CrossRef]
- Hong-qu, Z.; Croes, A.F. Proline metabolism in pollen: Degradation of proline during germination and early tube growth. Planta 1983, 159, 46–49. [Google Scholar] [CrossRef]
- Mattioli, R.; Biancucci, M.; Lonoce, C.; Costantino, P.; Trovato, M. Proline is required for male gametophyte development in Arabidopsis. BMC Plant Biol. 2012, 12, 236. [Google Scholar] [CrossRef]
- Song, J.; Nada, K.; Tachibana, S. Suppression of S-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibitionof pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant Cell Physiol. 2002, 43, 619–627. [Google Scholar] [CrossRef]
- Sinha, R.; Rajam, M.V. RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. Plant Mol. Biol. 2013, 82, 169–180. [Google Scholar] [CrossRef]
- Satake, T.; Yoshida, S. High temperature induced sterility in indica rices at flowering. Jpn. J. Crop Sci. 1978, 47, 6–17. [Google Scholar] [CrossRef]
- Warrag, M.A.O.; Hall, A.E. Reproductive responses of cowpea to heat stress: Genotypic differences in tolerance to heat at flowering. Crop Sci. 1983, 23, 1088–1092. [Google Scholar] [CrossRef]
- Opeña, R.T.; Chen, J.T.; Kuo, C.G.; Chen, H.M. Genetic and Physiological Aspects of Tropical Adaptation in Tomato. In Adaptation of Food Crops to Temperature and Water Stress; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1992; pp. 257–270. [Google Scholar]
- Cao, Y.Y.; Duan, H.; Yang, L.-N.; Wang, Z.Q.; Zhou, S.-C.; Yang, J.C. Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism. Acta Agron. Sin. 2008, 34, 2134–2142. [Google Scholar] [CrossRef]
- Ismail, A.M.; Hall, A.E. Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci. 1999, 39, 1762–1768. [Google Scholar] [CrossRef]
- Cao, L.; Zhao, J.; Zhan, X.; Li, D.; He, L.; Cheng, S. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin. J Rice Sci. 2003, 17, 223–227. [Google Scholar]
- Lucas, M.R.; Ehlers, J.D.; Huynh, B.L.; Diop, N.N.; Roberts, P.A.; Close, T.J. Markers for breeding heat-tolerant cowpea. Mol. Breeding 2013, 31, 529–536. [Google Scholar] [CrossRef]
- Ye, C.R.; Argayoso, M.A.; Redona, E.D.; Sierra, S.N.; Laza, M.A.; Dilla, C.J.; Mo, Y.; Thomson, M.J.; Chin, J.; Delavina, C.B.; et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed. 2012, 131, 33–41. [Google Scholar]
- Lin, K.-H.; Yeh, W.L.; Chen, H.M.; Lo, H.F. Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature condition. Eufytica 2010, 174, 119–135. [Google Scholar]
- Grilli, G.V.G.; Braz, L.T.; Lemos, E.G.M. QTL identification for tolerance to fruit set in tomato by AFLP markers. Crop Breed. Appl. Biotechnol. 2007, 7, 234–241. [Google Scholar]
- Marfo, K.O.; Hall, A.E. Inheritance of heat tolerance during pod set in cowpea. Crop Sci. 1992, 32, 912–918. [Google Scholar] [CrossRef]
- Grover, A.; Mittal, D.; Negi, M.; Lavania, D. Generating high temperature tolerant transgenic plants: Achievements and challenges. Plant Sci. 2013, 205–206, 38–47. [Google Scholar] [CrossRef]
- Dickson, M.H. Breeding for Heat Tolerance in Green Beans and Broccoli. In Adaptation of Food Crops to Temperature and Water Stress; Kuo, C.G., Ed.; Asian Vegetable Research and Development Center: Shanhua, Taiwan, 1992; pp. 296–302. [Google Scholar]
- Ehlers, J.D.; Hall, A.E.; Patel, P.N.; Roberts, P.A.; Matthews, W.C. Registration of “California Blackeye 27” cowpea. Crop Sci. 2000, 40, 854–855. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Giorno, F.; Wolters-Arts, M.; Mariani, C.; Rieu, I. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development. Plants 2013, 2, 489-506. https://doi.org/10.3390/plants2030489
Giorno F, Wolters-Arts M, Mariani C, Rieu I. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development. Plants. 2013; 2(3):489-506. https://doi.org/10.3390/plants2030489
Chicago/Turabian StyleGiorno, Filomena, Mieke Wolters-Arts, Celestina Mariani, and Ivo Rieu. 2013. "Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development" Plants 2, no. 3: 489-506. https://doi.org/10.3390/plants2030489
APA StyleGiorno, F., Wolters-Arts, M., Mariani, C., & Rieu, I. (2013). Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development. Plants, 2(3), 489-506. https://doi.org/10.3390/plants2030489