Impacts of Leaf Damage Intensity on Ant–Plant Protection Mutualism and Plant Fitness
"> Figure 1
<p>Variation in the sugar concentration of the extrafloral nectar produced by the extrafloral nectaries in <span class="html-italic">Banisteriopsis malifolia</span> (Malpighiaceae) plants under two conditions: without simulated herbivory (Control) and with simulated herbivory (T15, T50). T15—plants with 15% simulated herbivory; T50—plants with 50% simulated herbivory. Different letters represent statistical difference by the estimated marginal mean. The figures display boxplots with raw data represented as colored points and the mean indicated by a black point.</p> "> Figure 2
<p>Interaction between treatments and sugar concentration of extrafloral nectar produced by extrafloral nectaries on ant abundance in <span class="html-italic">Banisteriopsis malifolia</span> (Malpighiaceae) plants without (Control) and with simulated herbivory (T15, T50). The data points represent raw data.</p> "> Figure 3
<p>Interaction between treatments and (<b>a</b>) abundance and (<b>b</b>) ant richness in relation to the total number of samaras produced, in <span class="html-italic">Banisteriopsis malifolia</span> (Malpighiaceae) plants, under control conditions (no simulated herbivory) and with simulated herbivory (T15, T50). Data points represent raw values.</p> "> Figure 4
<p>Variation in the (<b>a</b>) difference (in days) between simulated herbivory and the appearance of the first inflorescence, (<b>b</b>) difference (in days) between simulated herbivory and the blooming of the first flower, and (<b>c</b>) total number of inflorescences per plant in <span class="html-italic">Banisteriopsis malifolia</span> (Malpighiaceae) plants under two conditions: without simulated herbivory (Control) and with simulated herbivory treatments (T15 and T50), with 25 replicates per treatment. Different letters in (<b>a</b>–<b>c</b>) represent statistical difference by the estimated marginal mean. The figures display boxplots with raw data represented as colored points and the mean indicated by a black point.</p> "> Figure 5
<p>Variation in (<b>a</b>) bud height, (<b>b</b>) bud diameter, (<b>c</b>) flower width, and (<b>d</b>) flower length (in millimeters) in <span class="html-italic">Banisteriopsis malifolia</span> (Malpighiaceae) plants under two conditions: without simulated herbivory (Control) and with simulated herbivory treatments (T15 and T50), with 25 replicates per treatment. Different letters in (<b>a</b>–<b>c</b>) represent statistical difference by the estimated marginal mean. The figures display boxplots with raw data represented as colored points and the mean indicated by a black point.</p> "> Figure 6
<p>Variation in (<b>a</b>) inflorescence size (in centimeters), (<b>b</b>) log of the number of flowers per inflorescence, and (<b>c</b>) flowers produced as a function of inflorescence size in <span class="html-italic">Banisteriopsis malifolia</span> (Malpighiaceae) plants under two conditions: without simulated herbivory (Control) and with simulated herbivory treatments (T15 and T50), with 25 replicates per treatment. Different letters in (<b>a</b>–<b>c</b>) represent statistical difference by the estimated marginal mean. The figures display boxplots with raw data represented as colored points and the mean indicated by a black point.</p> "> Figure 7
<p>Variation in (<b>a</b>) the area of samarids collected (measured in centimeters) and (<b>b</b>) the number of samaras produced per flower in <span class="html-italic">Banisteriopsis malifolia</span> (Malpighiaceae) plants under two conditions: without simulated herbivory (Control) and with simulated herbivory treatments (T15 and T50), with 25 replicates per treatment. Different letters represent statistical difference by the estimated marginal mean. The figures display boxplots with raw data represented as colored points and the mean indicated by a black point.</p> "> Figure 8
<p>Treatments with simulated leaf herbivory in <span class="html-italic">Banisteriopsis malifolia</span>. (<b>A</b>) Control Group—leaves without any experimental manipulation, leaf damage less than 5%. (<b>B</b>) Group T15—leaves with 15% damage. (<b>C</b>) Group T50—leaves with 50% damage. Photos by the author.</p> "> Figure 9
<p>(<b>A</b>) Bud in pre-anthesis, the arrows indicate the directions that the height (blue arrow) and diameter (pink arrow) of the buds were measured. (<b>B</b>) Open flower, the arrows indicate how the width (red arrow) and length (black arrow) of the flowers were measured after anthesis. (<b>C</b>) Fruit (samaras). Photos by the author.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Nectar Volume, Sugar Concentration, and Ant Abundance and Richness Under Different Damage Treatments
2.2. Impact of Simulated Herbivory on Flowering Time and Number of Inflorescences Produced
2.3. Impact of Leaf Damage on Reproductive Success
3. Discussion
4. Materials and Methods
4.1. Study Area and Species Studied
4.2. Experimental Design
4.3. Extrafloral Nectaries and Ants
4.4. Floral Traits
4.5. Reproductive Success
4.6. Statistical Analysis
4.6.1. Nectar Volume and Sugar Concentration, and Ant Abundance and Richness
4.6.2. Flowering Time and Number of Inflorescences Produced
4.6.3. Reproductive Success and Plant Fitness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labandeira, C. The Origin of Herbivory on Land: Initial Patterns of Plant Tissue Consumption by Arthropods. Insect Sci. 2007, 14, 259–275. [Google Scholar] [CrossRef]
- Labandeira, C.C. Early History of Arthropod and Vascular Plant Associations. Annu. Rev. Earth Planet. Sci. 1998, 26, 329–377. [Google Scholar] [CrossRef]
- Schoonhoven, L.M.; van Loon, J.J.A.; Dicke, M. Insect-Plant Biology; Schoonhoven, L.M., van Loon, J.J.A., Dicke, M., Eds.; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Melati, B.G.; Leal, L.C. Aggressive bodyguards are not always the best: Preferential interaction with more aggressive ant species reduces reproductive success of plant bearing extrafloral nectaries. PLoS ONE 2018, 13, e0199764. [Google Scholar] [CrossRef]
- Calixto, E.S.; Del-Claro, K.; Lange, D.; Bronstein, J. Time Course of Inducibility of Indirect Responses in an Ant-Defended Plant. Ecology 2023, 104, e4029. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal; Artmed: Porto Alegre, Brazil, 2009. [Google Scholar]
- Karban, R. The Ecology and Evolution of Induced Resistance against Herbivores. Funct. Ecol. 2011, 25, 339–347. [Google Scholar] [CrossRef]
- Cozzolino, S.; Fineschi, S.; Litto, M.; Scopece, G.; Trunschke, J.; Schiestl, F.P. Herbivory Increases Fruit Set in Silene latifolia: A Consequence of Induced Pollinator-Attracting Floral Volatiles? J. Chem. Ecol. 2015, 41, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.L.; Ivers, N.A.; Richardson, L.I.; López-Uribe, M.M.; Jha, S. Simulation of early season herbivory via mechanical damage affects flower production in pumpkin (Cucurbita pepo ssp. pepo). Ann. Bot. 2024, 134, 815–826. [Google Scholar] [CrossRef]
- Carper, A.L.; Adler, L.S.; Irwin, R.E. Effects of Florivory on Plant-Pollinator Interactions: Implications for Male and Female Components of Plant Reproduction. Am. J. Bot. 2016, 103, 1061–1070. [Google Scholar] [CrossRef]
- Lucas-Barbosa, D. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions. Trends Plant Sci. 2016, 21, 125–133. [Google Scholar] [CrossRef]
- Jacobsen, D.J.; Raguso, R.A. Lingering Effects of Herbivory and Plant Defenses on Pollinators. Curr. Biol. 2018, 28, R1164–R1169. [Google Scholar] [CrossRef]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992, 67, 283–335. [Google Scholar] [CrossRef]
- Kessler, A.; Chautá, A. The Ecological Consequences of Herbivore-Induced Plant Responses on Plant–Pollinator Interactions. Emerg. Top. Life Sci. 2020, 4, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Crawley, M.J. Herbivory: The Dynamics of Animal–Plant Interactions; Crawley, M.J., Ed.; Blackwell Science Publications: Oxford, UK, 1983. [Google Scholar]
- Futuyma, D. Biologia Evolutiva—Biogeografia. In Biologia Evolutiva; Futuyma, D.J., Ed.; Sociedade Brasileira de Genética/CNPq: Ribeirão Preto, Brazil, 1992; pp. 393–416. [Google Scholar]
- Hilário, S.D.; Imperatriz-Fonseca, V.L.; Kleinert, A.d.M.P. Flight Activity and Colony Strength in the Stingless Bee Melipona bicolor bicolor(Apidae, Meliponinae). Rev. Bras. Biol. 2000, 60, 299–306. [Google Scholar] [CrossRef] [PubMed]
- CaraDonna, P.J.; Burkle, L.A.; Schwarz, B.; Resasco, J.; Knight, T.M.; Benadi, G.; Bluthgen, N.; Dormann, C.F.; Fang, Q.; Frund, J.; et al. Seeing through the static: The temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 2021, 24, 149–161. [Google Scholar] [CrossRef]
- Oliveira, P.S.; Freitas, A.V. Ant–plant–herbivore interactions in the neotropical cerrado savanna. Naturwissenschaften 2004, 91, 557–570. [Google Scholar] [CrossRef]
- Marquis, R.J.; Moura, R.F. Escape as a Mechanism of Plant Resistance Against Herbivores. In Plant-Animal Interactions; Springer: Berlin/Heidelberg, Germany, 2021; pp. 39–57. [Google Scholar]
- Aguirrebengoa, M.; Müller, C.; Hambäck, P.A.; González-Megías, A. Density-Dependent Effects of Simultaneous Root and Floral Herbivory on Plant Fitness and Defense. Plants 2023, 12, 283. [Google Scholar] [CrossRef]
- Popa, V.I.; Georgescu, I.M.; Potor, C.D.; Hoza, D. Others Defensive Role of Extrafloral Nectaries. Sci. Pap.-Ser. B Hortic. 2020, 64, 693–700. [Google Scholar]
- Tagawa, K. Repellence of Nectar-Thieving Ants by a Physical Barrier: Adaptive Role of Petal Hairs on Menyanthes trifoliata (Menyanthaceae). J. Asia Pac. Entomol. 2018, 21, 1211–1214. [Google Scholar] [CrossRef]
- Junker, R.R.; Daehler, C.C.; Stefan, D.; Keller, A.; Blëthgen, N. Hawaiian Ant-Flower Networks: Nectar-Thieving Ants Prefer Undefended Native over Introduced Plants with Floral Defenses. Ecol. Monogr. 2011, 81, 295–311. [Google Scholar] [CrossRef]
- Coley, P.D.; Barone, J.A. Herbivory and Plant Defenses in Tropical Forests. Annu. Rev. Ecol. Syst. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Coley, P.D.; Lokvam, J.; Rudolph, K.; Bromberg, K.; Sackett, T.E.; Wright, L.; Brenes-Arguedas, T.; Dvorett, D.; Ring, S.; Clark, A.; et al. Divergent Defensive Strategies of Young Leaves in Two Species of Inga. Ecology 2005, 86, 2633–2643. [Google Scholar] [CrossRef]
- Pearse, I.S.; LoPresti, E.; Schaeffer, R.N.; Wetzel, W.C.; Mooney, K.A.; Ali, J.G.; Ode, P.J.; Eubanks, M.D.; Bronstein, J.L.; Weber, M.G. Generalising Indirect Defence and Resistance of Plants. Ecol. Lett. 2020, 23, 1137–1152. [Google Scholar] [CrossRef] [PubMed]
- Moura, R.F.; Colberg, E.; Alves-Silva, E.; Mendes-Silva, I.; Fagundes, R.; Stefani, V.; Del-Claro, K. Biotic Defenses against Herbivory. In Plant-Animal Interactions; Springer: Berlin/Heidelberg, Germany, 2021; pp. 93–118. [Google Scholar]
- Calixto, E.S.; Novaes, L.R.; dos Santos, D.F.B.; Lange, D.; Moreira, X.; Del-Claro, K. Climate Seasonality Drives Ant–Plant–Herbivore Interactions via Plant Phenology in an Extrafloral Nectary-Bearing Plant Community. J. Ecol. 2020, 109, 639–651. [Google Scholar] [CrossRef]
- Koptur, S. Extrafloral Nectary-Mediated Interactions between Insects and Plants. In Insect-Plant Interactions; Bernays, E., Ed.; CRC Press: Boca Raton, FL, USA, 1992; pp. 81–129. [Google Scholar]
- Lange, D.; Calixto, E.S.; Del-Claro, K. Variation in Extrafloral Nectary Productivity Influences the Ant Foraging. PLoS ONE 2017, 12, e0169492. [Google Scholar] [CrossRef]
- Karban, R.; Myers, J.H. Induced Plant Responses to Herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331–348. [Google Scholar] [CrossRef]
- Zangerl, A.R. Evolution of Induced Plant Responses to Herbivores. Basic. Appl. Ecol. 2003, 103, 91–103. [Google Scholar] [CrossRef]
- Raupp, P.P.; Gonçalves, R.V.; Calixto, E.S.; Anjos, D.V. Contrasting Effects of Herbivore Damage Type on Extrafloral Nectar Production and Ant Attendance. Acta Oecologica 2020, 108, 103638. [Google Scholar] [CrossRef]
- Calixto, E.S.; Lange, D.; Bronstein, J.; Torezan-Silingardi, H.M.; Del-Claro, K. Optimal Defense Theory in an Ant-plant Mutualism: Extrafloral Nectar as an Induced Defense Is Maximized in the Most Valuable Plant Structures. J. Ecol. 2021, 109, 167–178. [Google Scholar] [CrossRef]
- Moreira, X.; Castagneyrol, B.; Abdala-Roberts, L.; Traveset, A. A Meta-Analysis of Herbivore Effects on Plant Attractiveness to Pollinators. Ecology 2019, 100, e02707. [Google Scholar] [CrossRef]
- Villamil, N.; Boege, K.; Stone, G. Ant Guards Influence the Mating System of Their Plant Hosts by Altering Pollinator Behaviour. BioRviv 2020. [Google Scholar] [CrossRef]
- Korndörfer, A.P.; Del-Claro, K. Ant Defense versus Induced Defense in Lafoensia pacari (Lythraceae), a Myrmecophilous Tree of the Brazilian Cerrado. Biotropica 2006, 38, 786–788. [Google Scholar] [CrossRef]
- Pulice, C.E.; Packer, A.A. Simulated Herbivory Induces Extrafloral Nectary Production in Prunus Avium. Funct. Ecol. 2008, 22, 801–807. [Google Scholar] [CrossRef]
- Guimarães Jr, P.R.; Rico-Gray, V.; Furtado dos Reis, S.; Thompson, J.N. Asymmetries in specialization in ant–plant mutualistic networks. Proc. R. Soc. B Biol. Sci. 2006, 273, 2041–2047. [Google Scholar] [CrossRef]
- Leal, L.C.; Nogueira, A.; Peixoto, P.E. Which traits optimize plant benefits? Meta-analysis on the effect of partner traits on the outcome of an ant–plant protective mutualism. J. Ecol. 2023, 111, 263–275. [Google Scholar] [CrossRef]
- Mothershead, K.; Marquis, R.J. Fitness Impacts of Herbivory through Indirect Effects on Plant-Pollinator Interactions in Oenothera Macrocarpa. Ecology 2000, 81, 30–40. [Google Scholar] [CrossRef]
- Trager, M.D.; Bhotika, S.; Hostetler, J.A.; Andrade, G.V.; Rodriguez-Cabal, M.A.; McKeon, C.S.; Osenberg, C.W.; Bolker, B.M. Benefits for Plants in Ant-Plant Protective Mutualisms: A Meta-Analysis. PLoS ONE 2010, 5, e14308. [Google Scholar] [CrossRef]
- Quijano-Medina, T.; Covelo, F.; Moreira, X.; Abdala-Roberts, L. Compensation to Simulated Insect Leaf Herbivory in Wild Cotton (Gossypium Hirsutum): Responses to Multiple Levels of Damage and Associated Traits. Plant Biol. 2019, 21, 805–812. [Google Scholar] [CrossRef]
- Boege, K.; Marquis, R.J. Facing Herbivory as You Grow up: The Ontogeny of Resistance in Plants. Trends Ecol. Evol. 2005, 20, 441–448. [Google Scholar] [CrossRef]
- Rusman, Q.; Poelman, E.H.; Nowrin, F.; Polder, G.; Lucas-Barbosa, D. Floral Plasticity: Herbivore-Species-Specific-Induced Changes in Flower Traits with Contrasting Effects on Pollinator Visitation. Plant Cell Environ. 2019, 42, 1882–1896. [Google Scholar] [CrossRef]
- Villamil, N.; Boege, K.; Stone, G.N. Ant-Pollinator Conflict Results in Pollinator Deterrence but No Nectar Trade-Offs. Front. Plant Sci. 2018, 9, 1093. [Google Scholar] [CrossRef]
- Villamil, N.; Boege, K.; Stone, G.N. Testing the Distraction Hypothesis: Do extrafloral nectaries reduce ant-pollinator conflict? J. Ecol. 2019, 107, 1377–1391. [Google Scholar] [CrossRef] [PubMed]
- Dutton, E.M.; Luo, E.Y.; Cembrowski, A.R.; Shore, J.S.; Frederickson, M.E. Three’s a crowd: Trade-offs between attracting pollinators and ant bodyguards with nectar rewards in Turnera. Am. Nat. 2016, 188, 38–51. [Google Scholar] [CrossRef]
- Appolinario, V.; Schiavini, I. Levantamento Fitossociológico de Espécies Arbóreas de Cerrado (Stricto Sensu) Em Uberlândia-Minas Gerais. Bol. Herbário Ezechias Paulo Heringer 2002, 10, 57–75. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.D.; Rapini, A.; Conceiçao, A.A. Flora Da Bahia: Malpighiaceae—Banisteriopsis, Bronwenia e Diplopterys. Sitientibus Série Ciências Biológicas 2010, 10, 159–191. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Brooks, M.E.J.K.K.; van Benthem, K.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. GlmmTMB Balances Speed and Flexibility among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R. J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression; Sage Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R Packag. version 1.3.0. 2020. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
Species of Ants | Control | T15 | T50 | |||
---|---|---|---|---|---|---|
Aab 1* | Rab 2 | Aab | Rab | Aab | Rab | |
Azteca sp. | 0 | - | 2 | 14% | 0 | - |
Brachymyrmex sp. | 0 | - | 1 | 7% | 0 | - |
Camponotus sp. | 2 | 7% | 2 | 14% | 5 | 35% |
Dolichoderus sp. | 4 | 14% | 1 | 7% | 0 | - |
Ectatomma tuberculatum (Olivier, 1792) | 16 | 59% | 0 | - | 9 | 65% |
Ectatomma sp. | 2 | 7% | 0 | - | 0 | - |
Pseudomyrmex sp. | 3 | 10% | 0 | - | 0 | - |
Tapinoma sp. | 1 | 3% | 2 | 14% | 0 | - |
Wasmannia sp. | 0 | - | 6 | 44% | 0 | - |
Total | 28 | 14 | 14 |
Floral Traits | χ2 | p | R2m 1 | R2c 2 | Treatments | Mean | CI (95%) |
---|---|---|---|---|---|---|---|
LL, UL 3 | |||||||
Flower bud heights | 9.3719 | 0.009 | 0.13 | 0.58 | Control | 6.76 | 6.49, 7.03 |
T15 | 6.50 | 6.24, 6.76 | |||||
T50 | 6.15 | 5.87, 6.43 | |||||
Flower bud diameters | 5.9038 | 0.05 | 0.09 | 0.61 | Control | 5.88 | 5.63, 6.14 |
T15 | 5.46 | 5.22, 5.70 | |||||
T50 | 5.59 | 5.32, 5.85 | |||||
Flower width | 7.5617 | 0.02 | 0.13 | 0.48 | Control | 27.8 | 26.0, 29.5 |
T15 | 24.6 | 22.9, 26.2 | |||||
T50 | 25.2 | 23.3, 27.0 | |||||
Flower length | 1.8328 | 0.399 | 0.03 | 0.54 | Control | 25.2 | 23.0, 27.4 |
T15 | 23.2 | 21.2, 25.3 | |||||
T50 | 23.8 | 21.5, 26.1 | |||||
Inflorescence size | 13.232 | 0.001 | 0.09 | 0.15 | Control | 12.67 | 9.95, 15.38 |
T15 | 14.98 | 11.77,18.18 | |||||
T50 | 6.44 | 2.91, 9.98 | |||||
Flowers per inflorescence | 9.333 | 0.009 | 0.14 | 0.86 | Control | 15.62 | 11.84, 20.6 |
T15 | 11.19 | 8.32, 15.0 | |||||
T50 | 7.99 | 5.69, 11.2 | |||||
Flowers by inflorescence size | 5.988 | 0.05 | 0.05 | 0.25 | Control | 1.46 | 1.125, 1.80 |
T15 | 1.16 | 0.774, 1.54 | |||||
T50 | 1.87 | 1.437, 2.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, I.C.d.O.; Calixto, E.S.; Del-Claro, K. Impacts of Leaf Damage Intensity on Ant–Plant Protection Mutualism and Plant Fitness. Plants 2025, 14, 837. https://doi.org/10.3390/plants14060837
Pimenta ICdO, Calixto ES, Del-Claro K. Impacts of Leaf Damage Intensity on Ant–Plant Protection Mutualism and Plant Fitness. Plants. 2025; 14(6):837. https://doi.org/10.3390/plants14060837
Chicago/Turabian StylePimenta, Isabela Cristina de Oliveira, Eduardo Soares Calixto, and Kleber Del-Claro. 2025. "Impacts of Leaf Damage Intensity on Ant–Plant Protection Mutualism and Plant Fitness" Plants 14, no. 6: 837. https://doi.org/10.3390/plants14060837
APA StylePimenta, I. C. d. O., Calixto, E. S., & Del-Claro, K. (2025). Impacts of Leaf Damage Intensity on Ant–Plant Protection Mutualism and Plant Fitness. Plants, 14(6), 837. https://doi.org/10.3390/plants14060837