Selecting South American Popcorn Germplasm for Bipolaris maydis Resistance at Contrasting Nitrogen Levels
<p>Severity means of Southern Corn Leaf Blight (<span class="html-italic">Bipolaris maydis</span>) in popcorn inbred lines (G) evaluated at low (LN) and optimal (ON) levels of nitrogen (N). The superscript characters in the sources of variation (G, N, and interaction G × N) refer to the statistical significance of the effects in the ANOVA: ns (not significant); * (significant at 0.05 error probability); and ** (significant at 0.01 error probability). Bars followed by the same letter in the same nitrogen condition and same assay did not differ statistically from each other according to the Scott-Knott algorithm at a 5% probability.</p> "> Figure 2
<p>Number of popcorn inbred lines considered resistant (R) and susceptible (S) to <span class="html-italic">Bipolaris maydis</span> in each origin population, considering optimal nitrogen levels (ON) and low nitrogen levels (LN) in field experiments.</p> "> Figure 3
<p>Averages of Southern Corn Leaf Blight severity (caused by <span class="html-italic">Bipolaris maydis</span>) for groups of popcorn inbred lines classified as resistant (R), susceptible (S), and controls (R and S) in environments under low and optimal nitrogen fertilization levels. The bars represent confidence intervals based on <span class="html-italic">t</span>-tests at a 5% probability of error.</p> "> Figure 4
<p>Detached leaves of the susceptible control (L80) and resistant controls (P7, P2, and L75) in response to <span class="html-italic">Bipolaris maydis</span>.</p> "> Figure 5
<p>Precipitation (mm) and maximum, average, and minimum temperatures (°C) observed during the experimental period in the 2018–2019 crop year. Source: National Institute of Meteorology/Brazil (INMET).</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Characterization of Environments in Relation to Nitrogen Availability
4.2. Evaluated Traits
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pereira Filho, I.A.; Borghi, E. Milho-pipoca é um novo atrativo para o produtor? Rev. Campo Negócios 2019. Available online: https://revistacampoenegocios.com.br/milho-pipoca-e-um-novo-atrativo-para-o-produtor/ (accessed on 26 August 2024).
- Kurosawa, R.N.F.; Amaral Junior, A.T.; Vivas, M.; de Almeida, R.N.; Vivas, J.M.; de Lima, V.J.; da Silveira, S.F. Diallel analysis for resistance to northern leaf blight in popcorn under contrasting nitrogen availability. Agron. J. 2021, 113, 1029–1038. [Google Scholar] [CrossRef]
- Kurosawa, R.N.F.; do Amaral Júnior, A.T.; Vivas, J.M.; Vivas, M.; Kamphorst, S.H.; de Lima, V.J.; de Almeida, R.N. Selection of popcorn hybrids resistant to southern corn leaf blight grown in distinct N availability. Eur. J. Plant Pathol. 2020, 158, 485–493. [Google Scholar] [CrossRef]
- Lemmens, M.; Buerstmayr, H.; Krska, R.; Schuhmacher, R.; Grausgruber, H.; Ruckenbauer, P. The effect of inoculation treatment and long-term application of moisture on Fusarium head blight symptoms and deoxynivalenol contamination in wheat grains. Eur. J. Plant Pathol. 2004, 110, 299–308. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Marburger, D.; Gaska, J.; Diallo, T.; Lauer, J.G.; Conley, S. Corn, soybean, and wheat yield response to crop rotation, nitrogen rates, and foliar fungicide application. Crop Sci. 2017, 57, 983–992. [Google Scholar] [CrossRef]
- Saluci, J.C.; Vivas, M.; de Almeida, R.N.; Dutra, I.P.; Carlos, M.C.; Amaral Júnior, A.T.; Scapim, C.A. Potential of Popcorn S4 Lines for Resistance To Southern Corn Leaf Blight. Func. Plant Breed. J. 2020, 2, 79–87. [Google Scholar] [CrossRef]
- Huber, D.M.; Watson, R.D. Nitrogen Form and Plant Disease. Annu. Rev. Phytopathol. 1974, 12, 139–165. [Google Scholar] [CrossRef]
- Scharf, P.C.; Kitchen, N.R.; Sudduth, K.A.; Davis, J.G.; Hubbard, V.C.; Lory, J.A. Field-scale variability in optimal nitrogen fertilizer rate for corn. Agron. J. 2005, 97, 452–461. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Bi, Y.M.; Rothstein, S.J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 2011, 62, 1499–1509. [Google Scholar] [CrossRef]
- Bhandari, R.R.; Aryal, L.; Sharma, S.; Acharya, M.; Pokhrel, A.; Apar, G.C.; Kaphle, S.; Sahadev, K.C.; Shari, B.; Bhattarai, K.; et al. Screening of Maize Genotypes against Southern Leaf Blight (Bipolaris maydis) during Summer Season in Nepal. World J. Agric. Res. 2017, 5, 31–41. [Google Scholar]
- Rijal, T.R.; Koirala, K.B.; Karki, M. Evaluation of Maize Genotypes against Southern Leaf Blight (Bipolaris maydis) During Summer Seasons at Rampur, Chitwan. Int. J. Appl. Sci. Biotechnol. 2017, 5, 532–536. [Google Scholar] [CrossRef]
- Ali, F.; Rahman, H.; Durrishahwar, N.F.I.; Munir, M.; Ullah, H. Genetic Analysis of Maturity and Morphological Traits under Maydis Leaf Blight (MLB) Epiphytoticsin Maize (Zea mays L.). J. Agric. Biol. Sci. 2011, 6, 13–19. [Google Scholar]
- Byrnes, K.J.; Pataky, J.K.; White, D.G. Relationship Between Yield of Three Maize Hybrids and Severity of Southrn Leaf Blight Causade by Race O of Bipolaris maydis. Plant Dis. 1989, 73, 834–840. [Google Scholar] [CrossRef]
- Mubeen, S.; Rafique, M.; Munis, M.F.H.; Chaudhary, H.J. Study of southern corn leaf blight (SCLB) on maize genotypes and its effect on yield. J. Saudi Soc. Agric. Sci. 2017, 16, 210–217. [Google Scholar] [CrossRef]
- Mueller, D.S.; Wise, K.A.; Sisson, A.J.; Allen, T.W.; Bergstrom, G.C.; Bissonnette, K.M.; Bradley, C.A.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; et al. Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Prog. 2020, 21, 238–247. [Google Scholar] [CrossRef]
- Balint-Kurti, P.L.; Johal, G.S. Maize disease resistance. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 229–250. [Google Scholar]
- Neuffer, M.G.; Coe, E.H.; Wessler, S.R. Mutants of Maize; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1997. [Google Scholar]
- Berilli, A.P.C.G.; Pereira, M.G.; Gonçalves, L.S.A.; da Cunha, K.S.; Ramos, H.C.C.; Souza Filho, G.A.; do Amaral, A.T. Use of molecular markers in reciprocal recurrent selection of maize increases heterosis effects. Genet. Mol. Res. 2011, 10, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, R.N.F.; Vivas, M.; Amaral Júnior, A.T.; Ribeiro, R.M.; Miranda, S.B.; Pena, G.F.; Leite, J.T.; Mora, F. Popcorn germplasm resistance to fungal diseases caused by Exserohilum turcicum and Bipolaris maydis. Bragantia 2018, 77, 36–47. [Google Scholar] [CrossRef]
- Santos, J.S.; Vivas, M.; Amaral, A.T.; Ribeiro, R.M.; Mafra, G.S.; Pena, G.F. Gene effects from Bipolaris maydis incidence and severity on popcorn. Rev. Bras. Ciênc. Agrar. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Rossi, E.A.; Ruiz, M.; Bonamico, N.C.; Balzarini, M.G. Identifying inbred lines with resistance to endemic diseases in exotic maize germplasm. Crop Sci. 2020, 60, 3141–3150. [Google Scholar] [CrossRef]
- Wu, Y.; San Vicente, F.; Huang, K.; Dhliwayo, T.; Costich, D.E.; Semagn, K.; Sudha, N.; Olsen, M.; Prasanna, B.M.; Zhang, X.; et al. Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs. Theor. Appl. Genet. 2016, 129, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Biswas, S. Evaluation of some inbred lines against southern corn leaf blight of maize under natural condition during kharif season of West Bengal. J. Pharmacogn. Phytochem. 2020, 9, 2526–2528. [Google Scholar]
- Aregbesola, E.; Ortega-Beltran, A.; Falade, T.; Jonathan, G.; Hearne, S.; Bandyopadhyay, R. A detached leaf assay to rapidly screen for resistance of maize to Bipolaris maydis, the causal agent of southern corn leaf blight. Eur. J. Plant Pathol. 2020, 156, 133–145. [Google Scholar] [CrossRef]
- Dai, Y.; Gan, L.; Ruan, H.; Shi, N.; Du, Y.; Chen, F.; Yang, X. Characterization of natural isolates of Bipolaris maydis associated with mating types, genetic diversity, and pathogenicity in Fujian Province, China. Plant Dis. 2020, 104, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Snoeijers, S.S.; Pérez-García, A.; Joosten, M.H.A.J.; de Wit, P.J.G.M. The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur. J. Plant Pathol. 2000, 106, 493–506. [Google Scholar] [CrossRef]
- Santos, A.; Amaral Junior, A.T.; Fritsche-Neto, R.; Kamphorst, S.H.; Ferreira, F.R.A.; Amaral, J.F.T.; Vivas, J.M.S.; Santos, P.H.A.D.; Lima, V.J.; Kahn, S. Relative importance of gene effects for nitrogen-use efficiency in popcorn. PLoS ONE 2019, 14, e0222726. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Amaral Junior, A.T.; Kamphorst, S.H.; Gonçalves, G.M.B.; Santos, P.H.A.D.; Vivas, J.M.S.; Mafra, G.S.; Khan, S.; Oliveira, F.T.; Schmitt, K.F.M. Evaluation of Popcorn Hybrids for Nitrogen Use Efficiency and Responsiveness. Agronomy 2020, 10, 485. [Google Scholar] [CrossRef]
- Khan, S.; Amaral Júnior, A.T.; Ferreira, F.R.; Kamphorst, S.H.; Gonçalves, G.M.B.; Freitas, M.S.F.; Silveira, V.; Souza Filho, G.A.; Amaral Junior, F.T.; Smith, R.E.B.; et al. Limited nitrogen and plant growth stages discriminate well nitrogen use, uptake and utilization efficiency in popcorn. Plants 2020, 9, 893. [Google Scholar] [CrossRef]
- Worku, M.; Bänziger, M.; Erley, G.S.; Friesen, D.; Diallo, A.O.; Horst, W.J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Sci. 2007, 47, 519–528. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding, 3rd ed.; Springer: Ames, IA, USA, 2010; 664p. [Google Scholar] [CrossRef]
- Feher, W. Principles of Cultivar Development: Theory and Technique; Macmillian Publishing Company: New York, NY, USA, 1991; 536p, Available online: https://dr.lib.iastate.edu/handle/20.500.12876/4343 (accessed on 10 November 2024).
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55. [Google Scholar] [CrossRef]
- Santana, G.S.; Espolador, F.G.; Granato, I.S.C.; Mendonça, L.F.; Fritsche-Neto, R.; Borém, A. Population structure analysis and identification of genomic regions under selection associated with low-nitrogen tolerance in tropical maize lines. PLoS ONE 2000, 15, e0239900. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, L.D.F.; Granato, Í.S.C.; Alves, F.C.; Morais, P.P.P.; Vidotti, M.S.; Fritsche-Neto, R. Accuracy and simultaneous selection gains for N-stress tolerance and N-use efficiency in maize tropical lines. Sci. Agric. 2017, 74, 481–488. [Google Scholar] [CrossRef]
- Gallais, A.; Hirel, B. An approach to the genetics of nitrogen use efficiency in maize. J. Exp. Bot. 2004, 55, 295–306. [Google Scholar] [CrossRef] [PubMed]
- James, C. Manual of Assessment Keys for Plant Diseases; American Phytopathological Society: St. Paul, MN, USA, 1971. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing [Software]. Version 4.3.1 (Beagle Scouts), R Core Team: Vienna, Austria, 2017. Available online: http://www.r-project.org (accessed on 10 November 2024).
- Cruz, C.D. GENES—Software para análise de dados em estatística experimental e em genética quantitativa. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
Resistant Only in LN | Resistant Only in ON | |||||||
---|---|---|---|---|---|---|---|---|
L201 | L593 | L653 | L655 | L562 | L322 | L361 | ||
Resistant in LN and ON | Susceptible in LN and ON | |||||||
L204 | L270 | L328 | L390 | L506 | L205 | L207 | L212 | L295 |
L206 | L271 | L330 | L392 | L509 | L594 | L652 | L483 | L656 |
L214 | L272 | L332 | L393 | L510 | L561 | L232 | ||
L215 | L274 | L351 | L395 | L511 | ||||
L216 | L291 | L352 | L411 | L512 | ||||
L217 | L292 | L353 | L413 | L531 | ||||
L234 | L293 | L354 | L441 | L563 | ||||
L235 | L294 | L355 | L442 | L592 | ||||
L236 | L296 | L360 | L471 | L623 | ||||
L237 | L298 | L363 | L472 | L624 | ||||
L238 | L321 | L366 | L474 | L626 | ||||
L241 | L324 | L381 | L476 | L628 | ||||
L261 | L325 | L382 | L477 | L654 | ||||
L262 | L326 | L384 | L478 | |||||
L263 | L327 | L385 | L482 |
Inbred Lines | N | Origin Populations | Country | Institution | References (Accessed on 10 November 2024) |
---|---|---|---|---|---|
L201 to L217 | 10 | IAC 125 | BR * | IAC | https://doi.org/10.4025/actasciagron.v46i1.62929 |
L232 to L241 | 7 | BOZM 260 | BOL** | CIMMYT | https://doi.org/10.18730/GPAF* |
L261 to L274 | 7 | PARA 172 | PRY ** | CIMMYT | https://doi.org/10.18730/GCFPQ |
L291 to L298 | 7 | URUG 298 | URY ** | CIMMYT | https://doi.org/10.18730/GJQSS |
L321 to L332 | 9 | UFVM 2—Barão de Viçosa | BR * | UFV | http://arquivo.ufv.br/dft/milho/UFVM2.htm |
L351 to L366 | 9 | PR 023 | BR * | UENF | - |
L381 to L395 | 8 | SAM | USA ** | UENF | - |
L411 | 1 | CHZM 13 134 | CHL ** | CIMMYT | https://doi.org/10.18730/GTMQG |
L413 and L506 to L512 | 6 | PA 170 ROXO | PRY ** | UENF | - |
L441 and L442 | 2 | BOYA 462 | COL * | CIMMYT | https://doi.org/10.18730/GBF2F |
L471 to L483 | 8 | SE 013 | BR * | UENF | - |
L531 | 1 | ARZM 07 049 | ARG ** | CIMMYT | https://doi.org/10.18730/GQJGJ |
L561 to L563 | 3 | ARZM 05 083 | ARG ** | CIMMYT | https://doi.org/10.18730/H19ST |
L592 to L594 | 3 | RS 20 | BR * | IPAGRO | |
L623 to L628 | 4 | PA 091 | BR * | UENF | - |
L652 to L656 | 5 | ARZM 13 050 | ARG ** | CIMMYT | https://doi.org/10.18730/H1C4V |
Soil Layers | pH | P | K | Ca | Mg | Al | H + Al | Na | C | MO |
---|---|---|---|---|---|---|---|---|---|---|
H2O | mg/dm−3 | mmolc/dm−3 | g dm−3 | |||||||
0–10 cm | 5.9 | 27 | 3.3 | 15.8 | 8 | 0 | 28.5 | 1.1 | 12.4 | 21.3 |
10–20 cm | 5.8 | 28 | 2.4 | 17.6 | 8.6 | 0 | 38.1 | 0.8 | 13.4 | 23.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, Y.P.; Gonçalves, G.M.B.; Saluci, J.C.G.; Almeida, R.N.; Santos, J.S.; Pereira, H.S.; Souza, R.F.; Souza, A.L.R.; Vasconcelos, L.C.; Andrade, M.S., Jr.; et al. Selecting South American Popcorn Germplasm for Bipolaris maydis Resistance at Contrasting Nitrogen Levels. Plants 2025, 14, 302. https://doi.org/10.3390/plants14030302
Souza YP, Gonçalves GMB, Saluci JCG, Almeida RN, Santos JS, Pereira HS, Souza RF, Souza ALR, Vasconcelos LC, Andrade MS Jr., et al. Selecting South American Popcorn Germplasm for Bipolaris maydis Resistance at Contrasting Nitrogen Levels. Plants. 2025; 14(3):302. https://doi.org/10.3390/plants14030302
Chicago/Turabian StyleSouza, Yure P., Gabriel M. B. Gonçalves, Julio C. G. Saluci, Rafael N. Almeida, Juliana S. Santos, Hércules S. Pereira, Rysley F. Souza, Ana Lucia R. Souza, Luana C. Vasconcelos, Marcelo S. Andrade, Jr., and et al. 2025. "Selecting South American Popcorn Germplasm for Bipolaris maydis Resistance at Contrasting Nitrogen Levels" Plants 14, no. 3: 302. https://doi.org/10.3390/plants14030302
APA StyleSouza, Y. P., Gonçalves, G. M. B., Saluci, J. C. G., Almeida, R. N., Santos, J. S., Pereira, H. S., Souza, R. F., Souza, A. L. R., Vasconcelos, L. C., Andrade, M. S., Jr., Amaral, A. T., Jr., & Vivas, M. (2025). Selecting South American Popcorn Germplasm for Bipolaris maydis Resistance at Contrasting Nitrogen Levels. Plants, 14(3), 302. https://doi.org/10.3390/plants14030302