Virus-like Particles Produced in Plants: A Promising Platform for Recombinant Vaccine Development
<p>An overview of the transient expression of recombinant proteins in plants.</p> "> Figure 2
<p>Some widely used plant transient expression systems. The T-DNA regions of plant expression vectors based on the genomes of turnip vein-clearing virus (TVCV) and crucifer-infecting TMV (cr-TMV) (magnICON), cowpea mosaic virus (CPMV) (pEAQ), bean yellow dwarf virus (BeYDV), and potato virus X (PVX) (pEff). RB and LB, the left and right T-DNA; <span class="html-italic">target</span>, gene of interest; Act2, Arabidopsis actin 2 promoter; 35S, the promoter of cauliflower mosaic virus RNA; Nos-T, the terminator of the <span class="html-italic">A. tumefaciens</span> nopaline synthase gene; Term, the terminator of transcription; <span class="html-italic">p19</span>, the gene of tomato bushy stunt virus silencing suppressor; LIR, long intergenic region; SIR, short intergenic region; Rep/RepA, replication proteins from BeYDV; <span class="html-italic">RDRP</span>, RNA-dependent RNA polymerase gene; Sgp1, the first promoter of subgenomic RNA of PVX; AMV, a translational enhancer from alfalfa mosaic virus; <span class="html-italic">p24</span>, the gene of grapevine leafroll-associated virus-2 silencing suppressor; 5′ and 3′, untranslated regions (of diverse origins).</p> "> Figure 3
<p>Scheme of transient expression in plant cells using viral expression vectors.</p> "> Figure 4
<p>General scheme of chimeric VLP formation. (<b>a</b>) Native VLPs; (<b>b</b>) chimeric VLPs obtained by genetic fusion approach; (<b>c</b>) chimeric VLPs obtained by chemical crosslinking in vitro.</p> "> Figure 5
<p>The structures of HBc (PDB 6HU4). (<b>a</b>) Monomer chains A, B, C, and D are marked in blue, green, pink, and yellow, respectively. Three-dimensional modeling was performed by SWISS-MODEL [<a href="#B130-plants-13-03564" class="html-bibr">130</a>]. (<b>b</b>) VLPs of HBc [<a href="#B131-plants-13-03564" class="html-bibr">131</a>].</p> ">
Abstract
:1. VLPs: From the Beginning to the Market
2. An Overview of the Transient Expression of Recombinant Proteins in Plants
- (i).
- Elelyso® (taliglucerase alfa), produced in carrot cells for Enzyme Replacement Therapy (ERT), replaces the deficient glucocerebrosidase enzyme with a recombinant form of the protein in patients with a confirmed diagnosis of Type 1 Gaucher disease [6]. Elelyso was first approved in May 2012.
- (ii).
- Elfabrio® (pegunigalsidase alfa), produced in tobacco cells for ERT, replaces the deficient α-galactosidase-A enzyme with a recombinant form of the protein when administered through intravenous infusion. Elfabrio®, first approved in May 2023 [7], is identified for the treatment of patients with confirmed Fabry disease. Elfabrio was first approved in May 2023 [7].
3. Construction of Chimeric VLPs
4. Plant-Derived Vaccines Based on VLPs Formed by Capsid Proteins of the Target Virus
4.1. Hepatitis B Virus
4.2. Human Papillomavirus
4.3. Influenza Virus
4.4. Severe Acute Respiratory Syndrome-Related Coronavirus-2 (SARS-CoV-2)
4.5. Foot-and-Mouth Disease Virus
4.6. Poliovirus
4.7. Dengue Virus
4.8. Hepatitis E Virus
4.9. Rotavirus
4.10. Norovirus
4.11. Rift Valley Fever Virus
4.12. Beak and Feather Disease Virus
4.13. Porcine Circovirus 2
4.14. Atlantic Cod Nervous Necrosis Virus
4.15. Bluetongue Virus
4.16. African Horse Sickness Virus
4.17. Infectious Bursal Disease Virus
4.18. Cottontail Rabbit Papillomavirus
4.19. Bovine Papillomavirus 1
4.20. Infectious Bronchitis Virus
4.21. Piscine Myocarditis Virus
5. Plant-Produced Vaccines Based on Chimeric VLPs
5.1. Hepatitis B Core Antigen as a Carrier for Foreign Antigens
5.2. Hepatitis E Virus Coat Protein as a Carrier of Foreign Antigens
5.3. The L1 Capsid Protein of Human Papillomavirus as a Carrier of the M2e Peptide of Influenza A Virus
5.4. Bluetongue Virus VP3 Protein as a Carrier for Envelope Protein Domain III of Dengue Viruses DENV1 and DENV4 and Zika Virus
5.5. Alfalfa Mosaic Virus Coat Protein as a Carrier of Plasmodium Falciparum Pfs25 Protein
5.6. Bacteriophage AP205 Capsid Protein as a Carrier for West Nile Virus Envelope Protein Domain III (WNV EDIII)
5.7. Spherical Nanoparticles Derived from Tobacco Mosaic Virus as an Epitope Presentation Platform
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pumpens, P.; Pushko, P. Virus-like Particles: A Comprehensive Guide, 1st ed.; Taylor & Francis Group: Milton, ON, Canada, 2022. [Google Scholar] [CrossRef]
- Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like Particles: Preparation, Immunogenicity and Their Roles as Nanovaccines and Drug Nanocarriers. J. Nanobiotechnol. 2021, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major Findings and Recent Advances in Virus–like Particle (VLP)-Based Vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Arora, K.; Roy, S.S.; Joseph, A.; Rastogi, R.; Arora, N.M.; Kundu, P.K. Platforms, Advances, and Technical Challenges in Virus-like Particles-Based Vaccines. Front. Immunol. 2023, 14, 1123805. [Google Scholar] [CrossRef]
- Buyel, J.F. Towards a seamless product and process development workflow for recombinant proteins produced by plant molecular farming. Biotechnol. Adv. 2024, 75, 108403. [Google Scholar] [CrossRef] [PubMed]
- Protalix Biotherapeutics. Available online: https://www.elelyso.com/ (accessed on 20 November 2024).
- Protalix Biotherapeutics. Available online: https://hcp.elfabrio.com/ (accessed on 20 November 2024).
- Huang, Z.; Elkin, G.; Maloney, B.J.; Beuhner, N.; Arntzen, C.J.; Thanavala, Y.; Mason, H.S. Virus-like Particle Expression and Assembly in Plants: Hepatitis B and Norwalk Viruses. Vaccine 2005, 23, 1851–1858. [Google Scholar] [CrossRef]
- Guerrero-Andrade, O.; Loza-Rubio, E.; Olivera-Flores, T.; Fehérvári-Bone, T.; Gómez-Lim, M.A. Expression of the Newcastle Disease Virus Fusion Protein in Transgenic Maize and Immunological Studies. Transgenic Res. 2006, 15, 455–463. [Google Scholar] [CrossRef]
- Jiang, X.L.; He, Z.M.; Peng, Z.Q.; Qi, Y.; Chen, Q.; Yu, S.Y. Cholera Toxin B Protein in Transgenic Tomato Fruit Induces Systemic Immune Response in Mice. Transgenic Res. 2007, 16, 169–175. [Google Scholar] [CrossRef]
- Rybicki, E.P. Plant-Produced Vaccines: Promise and Reality. Drug Discov. Today 2009, 14, 16–24. [Google Scholar] [CrossRef]
- Esquirol, L.; McNeale, D.; Venturi, M.; Sainsbury, F. Production and Purification of Virus-Like Particles by Transient Expression in Plants. Methods Mol. Biol. 2023, 2671, 387–402. [Google Scholar] [CrossRef]
- Komarova, T.V.; Baschieri, S.; Donini, M.; Marusic, C.; Benvenuto, E.; Dorokhov, Y.L. Transient Expression Systems for Plant-Derived Biopharmaceuticals. Expert Rev. Vaccines 2010, 9, 859–876. [Google Scholar] [CrossRef]
- How Plants Could Produce a COVID-19 Vaccine. Medicago Uses Plants as Bioreactors to Create Vaccines and Therapeutic Antibodies. Available online: https://www.nature.com/articles/d42473-020-00253-2 (accessed on 9 December 2024).
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions. Mol. Plant Microbe Interact. 2008, 21, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Gleba, Y.Y.; Tusé, D.; Giritch, A. Plant Viral Vectors for Delivery by Agrobacterium. Curr. Top. Microbiol. Immunol. 2014, 375, 155–192. [Google Scholar] [CrossRef]
- Gleba, Y.; Klimyuk, V.; Marillonnet, S. Magnifection—A New Platform for Expressing Recombinant Vaccines in Plants. Vaccine 2005, 23, 2042–2048. [Google Scholar] [CrossRef] [PubMed]
- Klimyuk, V.; Pogue, G.; Herz, S.; Butler, J.; Haydon, H. Production of Recombinant Antigens and Antibodies in Nicotiana benthamiana Using ‘Magnifection’ Technology: GMP-Compliant Facilities for Small- and Large-Scale Manufacturing. Curr. Top. Microbiol. Immunol. 2014, 375, 127–154. [Google Scholar] [CrossRef]
- Marillonnet, S.; Giritch, A.; Gils, M.; Kandzia, R.; Klimyuk, V.; Gleba, Y. In Planta Engineering of Viral RNA Replicons: Efficient Assembly by Recombination of DNA Modules Delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA 2004, 101, 6852–6857. [Google Scholar] [CrossRef]
- Mor, T.S.; Moon, Y.S.; Palmer, K.E.; Mason, H.S. Geminivirus Vectors for High-Level Expression of Foreign Proteins in Plant Cells. Biotechnol. Bioeng. 2003, 81, 430–437. [Google Scholar] [CrossRef]
- Diamos, A.G.; Mason, H.S. Modifying the Replication of Geminiviral Vectors Reduces Cell Death and Enhances Expression of Biopharmaceutical Proteins in Nicotiana Benthamiana Leaves. Front. Plant Sci. 2019, 9, 1974. [Google Scholar] [CrossRef]
- Sainsbury, F.; Thuenemann, E.C.; Lomonossoff, G.P. PEAQ: Versatile Expression Vectors for Easy and Quick Transient Expression of Heterologous Proteins in Plants. Plant Biotechnol. J. 2009, 7, 682–693. [Google Scholar] [CrossRef]
- Mardanova, E.S.; Blokhina, E.A.; Tsybalova, L.M.; Peyret, H.; Lomonossoff, G.P.; Ravin, N.V. Efficient Transient Expression of Recombinant Proteins in Plants by the Novel PEff Vector Based on the Genome of Potato Virus X. Front. Plant Sci. 2017, 8, 247. [Google Scholar] [CrossRef]
- Chase, O.; Javed, A.; Byrne, M.J.; Thuenemann, E.C.; Lomonossoff, G.P.; Ranson, N.A.; López-Moya, J.J. CryoEM and Stability Analysis of Virus-like Particles of Potyvirus and Ipomovirus Infecting a Common Host. Commun. Biol. 2023, 6, 433. [Google Scholar] [CrossRef]
- Thuenemann, E.C.; Byrne, M.J.; Peyret, H.; Saunders, K.; Castells-Graells, R.; Ferriol, I.; Santoni, M.; Steele, J.F.C.; Ranson, N.A.; Avesani, L.; et al. A Replicating Viral Vector Greatly Enhances Accumulation of Helical Virus-like Particles in Plants. Viruses 2021, 13, 885. [Google Scholar] [CrossRef] [PubMed]
- Saunders, K.; Thuenemann, E.C.; Shah, S.N.; Peyret, H.; Kristianingsih, R.; Lopez, S.G.; Richardson, J.; Lomonossoff, G.P. The Use of a Replicating Virus Vector For in Planta Generation of Tobacco Mosaic Virus Nanorods Suitable For Metallization. Front. Bioeng. Biotechnol. 2022, 10, 877361. [Google Scholar] [CrossRef] [PubMed]
- Saunders, K.; Thuenemann, E.C.; Peyret, H.; Lomonossoff, G.P. The Tobacco Mosaic Virus Origin of Assembly Sequence Is Dispensable for Specific Viral RNA Encapsidation but Necessary for Initiating Assembly at a Single Site. J. Mol. Biol. 2022, 434, 167873. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, E.A.; Mardanova, E.S.; Zykova, A.A.; Stepanova, L.A.; Shuklina, M.A.; Tsybalova, L.M.; Ravin, N.V. Plant-Produced Nanoparticles Based on Artificial Self-Assembling Peptide Bearing the Influenza M2e Epitope. Plants 2023, 12, 2228. [Google Scholar] [CrossRef]
- Zahmanova, G.G.; Mazalovska, M.; Takova, K.H.; Toneva, V.T.; Minkov, I.N.; Mardanova, E.S.; Ravin, N.V.; Lomonossoff, G.P. Rapid High-Yield Transient Expression of Swine Hepatitis e Orf2 Capsid Proteins in Nicotiana Benthamiana Plants and Production of Chimeric Hepatitis e Virus-like Particles Bearing the M2e Influenza Epitope. Plants 2020, 9, 29. [Google Scholar] [CrossRef]
- Mardanova, E.S.; Vasyagin, E.A.; Kotova, K.G.; Zahmanova, G.G.; Ravin, N.V. Plant-Produced Chimeric Hepatitis E Virus-like Particles as Carriers for Antigen Presentation. Viruses 2024, 16, 1093. [Google Scholar] [CrossRef]
- Norkunas, K.; Harding, R.; Dale, J.; Dugdale, B. Improving Agroinfiltration-Based Transient Gene Expression in Nicotiana benthamiana. Plant Methods 2018, 14, 71. [Google Scholar] [CrossRef]
- Bazzini, A.A.; Mongelli, V.C.; Hopp, H.E.; Del Vas, M.; Asurmendi, S. A Practical Approach to the Understanding and Teaching of RNA Silencing in Plants. Electron. J. Biotechnol. 2007, 10, 178–190. [Google Scholar] [CrossRef]
- Lu, R.; Martin-Hernandez, A.M.; Peart, J.R.; Malcuit, I.; Baulcombe, D.C. Virus-Induced Gene Silencing in Plants. Methods 2003, 30, 296–303. [Google Scholar] [CrossRef]
- Arzola, L.; Chen, J.; Rattanaporn, K.; Maclean, J.M.; McDonald, K.A. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein. Int. J. Mol. Sci. 2011, 12, 4975–4990. [Google Scholar] [CrossRef]
- Voinnet, O.; Pinto, Y.M.; Baulcombe, D.C. Suppression of Gene Silencing: A General Strategy Used by Diverse DNA and RNA Viruses of Plants. Proc. Natl. Acad. Sci. USA 1999, 96, 14147–14152. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.S.; Dell’Orco, M.; Saldarelli, P.; Turturo, C.; Minafra, A.; Martelli, G.P. Identification of an RNA-Silencing Suppressor in the Genome of Grapevine Virus A. J. Gen. Virol. 2006, 87, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, L.; Szittya, G.; Silhavy, D.; Burgyán, J. Molecular Mechanism of RNA Silencing Suppression Mediated by P19 Protein of Tombusviruses. EMBO J. 2004, 23, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.C.; Kasschau, K.D.; Prokhnevsky, A.I.; Gopinath, K.; Pogue, G.P.; Carrington, J.C.; Dolja, V.V. Suppressor of RNA Silencing Encoded by Beet Yellows Virus. Virology 2003, 306, 203–209. [Google Scholar] [CrossRef]
- Chiba, M.; Reed, J.C.; Prokhnevsky, A.I.; Chapman, E.J.; Mawassi, M.; Koonin, E.V.; Carrington, J.C.; Dolja, V.V. Diverse Suppressors of RNA Silencing Enhance Agroinfection by a Viral Replicon. Virology 2006, 346, 7–14. [Google Scholar] [CrossRef]
- Voinnet, O.; Lederer, C.; Baulcombe, D.C. A Viral Movement Protein Prevents Spread of the Gene Silencing Signal in Nicotiana Benthamiana. Cell 2000, 103, 157–167. [Google Scholar] [CrossRef]
- Thomas, C.L.; Leh, V.; Lederer, C.; Maule, A.J. Turnip Crinkle Virus Coat Protein Mediates Suppression of RNA Silencing in Nicotiana benthamiana. Virology 2003, 306, 33–41. [Google Scholar] [CrossRef]
- González, I.; Martínez, L.; Rakitina, D.V.; Lewsey, M.G.; Atencio, F.A.; Llave, C.; Kalinina, N.O.; Carr, J.P.; Palukaitis, P.; Canto, T. Cucumber Mosaic Virus 2b Protein Subcellular Targets and Interactions: Their Significance to RNA Silencing Suppressor Activity. Mol. Plant Microbe Interact. 2010, 23, 294–303. [Google Scholar] [CrossRef]
- Anandalakshmi, R.; Pruss, G.J.; Ge, X.; Marathe, R.; Mallory, A.C.; Smith, T.H.; Vance, V.B. A Viral Suppressor of Gene Silencing in Plants. Proc. Natl. Acad. Sci. USA 1998, 95, 13079–13084. [Google Scholar] [CrossRef]
- Chen, Q.; Lai, H. Plant-Derived Virus-like Particles as Vaccines. Hum. Vaccin. Immunother. 2013, 9, 26–49. [Google Scholar] [CrossRef]
- Fischer, R.; Buyel, J.F. Molecular Farming—The Slope of Enlightenment. Biotechnol. Adv. 2020, 40, 107519. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; van Eerde, A.; Rimstad, E.; Bock, R.; Branza-Nichita, N.; Yakovlev, I.A.; Clarke, J.L. Plant-Made Vaccines against Viral Diseases in Humans and Farm Animals. Front. Plant Sci. 2023, 14, 1170815. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaraj, B.; I. Bulaon, C.J.; Phoolcharoen, W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. Plants 2020, 9, 842. [Google Scholar] [CrossRef] [PubMed]
- Eidenberger, L.; Kogelmann, B.; Steinkellner, H. Plant-based biopharmaceutical engineering. Nat. Rev. Bioeng. 2023, 1, 426–439. [Google Scholar] [CrossRef]
- Ward, B.J.; Makarkov, A.; Séguin, A.; Pillet, S.; Trépanier, S.; Dhaliwall, J.; Libman, M.D.; Vesikari, T.; Landry, N. Efficacy, Immunogenicity, and Safety of a Plant-Derived, Quadrivalent, Virus-like Particle Influenza Vaccine in Adults (18–64 Years) and Older Adults (≥65 Years): Two Multicentre, Randomised Phase 3 Trials. Lancet 2020, 396, 1491–1503. [Google Scholar] [CrossRef]
- Pillet, S.; Aubin, É.; Trépanier, S.; Poulin, J.F.; Yassine-Diab, B.; Ter Meulen, J.; Ward, B.J.; Landry, N. Humoral and Cell-Mediated Immune Responses to H5N1 Plant-Made Virus-like Particle Vaccine Are Differentially Impacted by Alum and GLA-SE Adjuvants in a Phase 2 Clinical Trial. NPJ Vaccines 2018, 3, 3. [Google Scholar] [CrossRef]
- Benvenuto, E.; Broer, I.; D’Aoust, M.A.; Hitzeroth, I.; Hundleby, P.; Menassa, R.; Oksman-Caldentey, K.M.; Peyret, H.; Salgueiro, S.; Saxena, P.; et al. Plant Molecular Farming in the Wake of the Closure of Medicago Inc. Nat. Biotechnol. 2023, 41, 893–894. [Google Scholar] [CrossRef]
- Howard, J.A.; Hood, E.E. Commercial Plant-Produced Recombinant Protein Products, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 15–25. [Google Scholar] [CrossRef]
- Kündig, T.M.; Klimek, L.; Schendzielorz, P.; Renner, W.A.; Senti, G.; Bachmann, M.F. Is The Allergen Really Needed in Allergy Immunotherapy? Curr. Treat. Options Allergy 2015, 2, 72–82. [Google Scholar] [CrossRef]
- Kheirvari, M.; Liu, H.; Tumban, E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023, 15, 1109. [Google Scholar] [CrossRef]
- Blokhina, E.A.; Kuprianov, V.V.; Stepanova, L.A.; Tsybalova, L.M.; Kiselev, O.I.; Ravin, N.V.; Skryabin, K.G. A Molecular Assembly System for Presentation of Antigens on the Surface of HBc Virus-like Particles. Virology 2013, 435, 293–300. [Google Scholar] [CrossRef]
- Thuenemann, E.; Lenzi, P.; Love, A.; Taliansky, M.; Becares, M.; Zuniga, S.; Enjuanes, L.; Zahmanova, G.; Minkov, I.; Matic, S.; et al. The Use of Transient Expression Systems for the Rapid Production of Virus-like Particles in Plants. Curr. Pharm. Des. 2013, 19, 5564–5573. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Santi, L.; LePore, K.; Kilbourne, J.; Arntzen, C.J.; Mason, H.S. Rapid, High-Level Production of Hepatitis B Core Antigen in Plant Leaf and Its Immunogenicity in Mice. Vaccine 2006, 24, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Mechtcheriakova, I.A.; Eldarov, M.A.; Nicholson, L.; Shanks, M.; Skryabin, K.G.; Lomonossoff, G.P. The Use of Viral Vectors to Produce Hepatitis B Virus Core Particles in Plants. J. Virol. Methods 2006, 131, 10–15. [Google Scholar] [CrossRef]
- Sainsbury, F.; Lomonossoff, G.P. Extremely High-Level and Rapid Transient Protein Production in Plants without the Use of Viral Replication. Plant Physiol. 2008, 148, 1212–1218. [Google Scholar] [CrossRef]
- Peyret, H.; Gehin, A.; Thuenemann, E.C.; Blond, D.; El Turabi, A.; Beales, L.; Clarke, D.; Gilbert, R.J.C.; Fry, E.E.; Stuart, D.I.; et al. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins. PLoS ONE 2015, 10, e0120751. [Google Scholar] [CrossRef]
- Peyret, H.; Ponndorf, D.; Meshcheriakova, Y.; Richardson, J.; Lomonossoff, G.P. Covalent Protein Display on Hepatitis B Core-like Particles in Plants through the in vivo use of the SpyTag/SpyCatcher System. Sci. Rep. 2020, 10, 17095. [Google Scholar] [CrossRef]
- Warzecha, H.; Mason, H.S.; Lane, C.; Tryggvesson, A.; Rybicki, E.; Williamson, A.-L.; Clements, J.D.; Rose, R.C. Oral Immunogenicity of Human Papillomavirus-Like Particles Expressed in Potato. J. Virol. 2003, 77, 8702–8711. [Google Scholar] [CrossRef]
- Varsani, A.; Williamson, A.L.; Rose, R.C.; Jaffer, M.; Rybicki, E.P. Expression of Human Papillomavirus Type 16 Major Capsid Protein in Transgenic Nicotiana tabacum cv. Xanthi. Arch. Virol. 2003, 148, 1771–1786. [Google Scholar] [CrossRef]
- Varsani, A.; Williamson, A.-L.; de Villiers, D.; Becker, I.; Christensen, N.D.; Rybicki, E.P. Chimeric Human Papillomavirus Type 16 (HPV-16) L1 Particles Presenting the Common Neutralizing Epitope for the L2 Minor Capsid Protein of HPV-6 and HPV-16. J. Virol. 2003, 77, 8386–8393. [Google Scholar] [CrossRef]
- Biemelt, S.; Sonnewald, U.; Galmbacher, P.; Willmitzer, L.; Müller, M. Production of Human Papillomavirus Type 16 Virus-Like Particles in Transgenic Plants. J. Virol. 2003, 77, 9211–9220. [Google Scholar] [CrossRef]
- Kohl, T.O.; Hitzeroth, I.I.; Christensen, N.D.; Rybicki, E.P. Expression of HPV-11 L1 Protein in Transgenic Arabidopsis Thaliana and Nicotiana tabacum. BMC Biotechnol. 2007, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Fernández-San Millán, A.; Ortigosa, S.M.; Hervás-Stubbs, S.; Corral-Martínez, P.; Seguí-Simarro, J.M.; Gaétan, J.; Coursaget, P.; Veramendi, J. Human Papillomavirus L1 Protein Expressed in Tobacco Chloroplasts Self-Assembles into Virus-like Particles That Are Highly Immunogenic. Plant Biotechnol. J. 2008, 6, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Li, W.S.; Lei, T.; Zheng, J.; Zhang, Z.; Yan, X.F.; Wang, Z.Z.; Wang, Y.L.; Si, L.S. Expression of Human Papillomavirus Type 16 L1 Protein in Transgenic Tobacco Plants. Acta Biochim. Biophys. Sin. 2005, 37, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Varsani, A.; Williamson, A.-L.; Stewart, D.; Rybicki, E.P. Transient Expression of Human Papillomavirus Type 16 L1 Protein in Nicotiana benthamiana Using an Infectious Tobamovirus Vector. Virus Res. 2006, 120, 91–96. [Google Scholar] [CrossRef]
- Maclean, J.; Koekemoer, M.; Olivier, A.J.; Stewart, D.; Hitzeroth, I.I.; Rademacher, T.; Fischer, R.; Williamson, A.L.; Rybicki, E.P. Optimization of Human Papillomavirus Type 16 (HPV-16) L1 Expression in Plants: Comparison of the Suitability of Different HPV-16 L1 Gene Variants and Different Cell-Compartment Localization. J. Gen. Virol. 2007, 88, 1460–1469. [Google Scholar] [CrossRef]
- Matić, S.; Masenga, V.; Poli, A.; Rinaldi, R.; Milne, R.G.; Vecchiati, M.; Noris, E. Comparative Analysis of Recombinant Human Papillomavirus 8L1 Production in Plants by a Variety of Expression Systems and Purification Methods. Plant Biotechnol. J. 2012, 10, 410–421. [Google Scholar] [CrossRef]
- Noris, E. Self-Assembling Plant-Derived Vaccines against Papillomaviruses. Methods Mol. Biol. 2018, 1776, 85–95. [Google Scholar] [CrossRef]
- Naupu, P.N.; van Zyl, A.R.; Rybicki, E.P.; Hitzeroth, I.I. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-like Particles (VLPS). Vaccines 2020, 8, 740. [Google Scholar] [CrossRef]
- Lamprecht, R.L.; Kennedy, P.; Huddy, S.M.; Bethke, S.; Hendrikse, M.; Hitzeroth, I.I.; Rybicki, E.P. Production of Human Papillomavirus Pseudovirions in Plants and Their Use in Pseudovirion-Based Neutralisation Assays in Mammalian Cells. Sci. Rep. 2016, 6, 20431. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/ (accessed on 20 November 2024).
- D’Aoust, M.A.; Lavoie, P.O.; Couture, M.M.J.; Trépanier, S.; Guay, J.M.; Dargis, M.; Mongrand, S.; Landry, N.; Ward, B.J.; Vézina, L.P. Influenza Virus-like Particles Produced by Transient Expression in Nicotiana benthamiana Induce a Protective Immune Response against a Lethal Viral Challenge in Mice. Plant Biotechnol. J. 2008, 6, 930–940. [Google Scholar] [CrossRef]
- D’Aoust, M.A.; Couture, M.M.J.; Charland, N.; Trépanier, S.; Landry, N.; Ors, F.; Vézina, L.P. The Production of Hemagglutinin-Based Virus-like Particles in Plants: A Rapid, Efficient and Safe Response to Pandemic Influenza. Plant Biotechnol. J. 2010, 8, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Pillet, S.; Racine, T.; Nfon, C.; Di Lenardo, T.Z.; Babiuk, S.; Ward, B.J.; Kobinger, G.P.; Landry, N. Plant-Derived H7 VLP Vaccine Elicits Protective Immune Response against H7N9 Influenza Virus in Mice and Ferrets. Vaccine 2015, 33, 6282–6289. [Google Scholar] [CrossRef] [PubMed]
- Landry, N.; Pillet, S.; Favre, D.; Poulin, J.F.; Trépanier, S.; Yassine-Diab, B.; Ward, B.J. Influenza Virus-like Particle Vaccines Made in Nicotiana benthamiana Elicit Durable, Poly-Functional and Cross-Reactive T Cell Responses to Influenza HA Antigens. Clin. Immunol. 2014, 154, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Makarkov, A.I.; Chierzi, S.; Pillet, S.; Murai, K.K.; Landry, N.; Ward, B.J. Plant-Made Virus-like Particles Bearing Influenza Hemagglutinin (HA) Recapitulate Early Interactions of Native Influenza Virions with Human Monocytes/Macrophages. Vaccine 2017, 35, 4629–4636. [Google Scholar] [CrossRef]
- Le Mauff, F.; Mercier, G.; Chan, P.; Burel, C.; Vaudry, D.; Bardor, M.; Vézina, L.P.; Couture, M.; Lerouge, P.; Landry, N. Biochemical Composition of Haemagglutinin-Based Influenza Virus-like Particle Vaccine Produced by Transient Expression in Tobacco Plants. Plant Biotechnol. J. 2015, 13, 717–725. [Google Scholar] [CrossRef]
- Landry, N.; Ward, B.J.; Trépanier, S.; Montomoli, E.; Dargis, M.; Lapini, G.; Vézina, L.-P. Preclinical and Clinical Development of Plant-Made Virus-Like Particle Vaccine against Avian H5N1 Influenza. PLoS ONE 2010, 5, e15559. [Google Scholar] [CrossRef]
- Pillet, S.; Aubin, É.; Trépanier, S.; Bussière, D.; Dargis, M.; Poulin, J.F.; Yassine-Diab, B.; Ward, B.J.; Landry, N. A Plant-Derived Quadrivalent Virus like Particle Influenza Vaccine Induces Cross-Reactive Antibody and T Cell Response in Healthy Adults. Clin. Immunol. 2016, 168, 72–87. [Google Scholar] [CrossRef]
- Pillet, S.; Couillard, J.; Trépanier, S.; Poulin, J.F.; Yassine-Diab, B.; Guy, B.; Ward, B.J.; Landry, N. Immunogenicity and Safety of a Quadrivalent Plant-Derived Virus like Particle Influenza Vaccine Candidate—Two Randomized Phase II Clinical Trials in 18 to 49 and 50 Years Old Adults. PLoS ONE 2019, 14, e0216533. [Google Scholar] [CrossRef]
- Smith, T.; O’Kennedy, M.M.; Wandrag, D.B.R.; Adeyemi, M.; Abolnik, C. Efficacy of a Plant-Produced Virus-like Particle Vaccine in Chickens Challenged with Influenza A H6N2 Virus. Plant Biotechnol. J. 2020, 18, 502–512. [Google Scholar] [CrossRef]
- Moon, K.B.; Jeon, J.H.; Choi, H.; Park, J.S.; Park, S.J.; Lee, H.J.; Park, J.M.; Cho, H.S.; Moon, J.S.; Oh, H.; et al. Construction of SARS-CoV-2 Virus-like Particles in Plant. Sci. Rep. 2022, 12, 1005. [Google Scholar] [CrossRef]
- O’Kennedy, M.M.; Abolnik, C.; Smith, T.; Motlou, T.; Goosen, K.; Sepotokele, K.M.; Roth, R.; du Preez, I.; Truyts, A.; Stark, H.C.; et al. Immunogenicity of Adjuvanted Plant-Produced SARS-CoV-2 Beta Spike VLP Vaccine in New Zealand White Rabbits. Vaccine 2023, 41, 2261–2269. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, Y.; Chapman, R.; Abolnik, C.; Smith, T.; Schäfer, G.; Hermanus, T.; du Preez, I.; Goosen, K.; Sepotokele, K.M.; Gers, S.; et al. Protective Efficacy of a Plant-Produced Beta Variant RSARS-CoV-2 VLP Vaccine in Golden Syrian Hamsters. Vaccine 2024, 42, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.J.; Gobeil, P.; Séguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.Y.; Couture, M.; D’Aoust, M.A.; Dhaliwall, J.; Finkle, C.; et al. Phase 1 Randomized Trial of a Plant-Derived Virus-like Particle Vaccine for COVID-19. Nat. Med. 2021, 27, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Belsham, G.J. Distinctive Features of Foot-and-Mouth Disease Virus, a Member of the Picornavirus Family; Aspects of Virus Protein Synthesis, Protein Processing and Structure. Prog. Biophys. Mol. Biol. 1993, 60, 241–260. [Google Scholar] [CrossRef]
- Ruiz, V.; Baztarrica, J.; Rybicki, E.P.; Meyers, A.E.; Wigdorovitz, A. Minimally Processed Crude Leaf Extracts of Nicotiana benthamiana Containing Recombinant Foot and Mouth Disease Virus-like Particles Are Immunogenic in Mice. Biotechnol. Rep. 2018, 20, e00283. [Google Scholar] [CrossRef]
- Fox, H.; Knowlson, S.; Minor, P.D.; Macadam, A.J. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-Replicating Vaccines. PLoS Pathog. 2017, 13, e1006117. [Google Scholar] [CrossRef]
- Marsian, J.; Fox, H.; Bahar, M.W.; Kotecha, A.; Fry, E.E.; Stuart, D.I.; Macadam, A.J.; Rowlands, D.J.; Lomonossoff, G.P. Plant-Made Polio Type 3 Stabilized VLPs-A Candidate Synthetic Polio Vaccine. Nat. Commun. 2017, 8, 245. [Google Scholar] [CrossRef]
- Ponndorf, D.; Meshcheriakova, Y.; Thuenemann, E.C.; Dobon Alonso, A.; Overman, R.; Holton, N.; Dowall, S.; Kennedy, E.; Stocks, M.; Lomonossoff, G.P.; et al. Plant-Made Dengue Virus-like Particles Produced by Co-Expression of Structural and Non-Structural Proteins Induce a Humoral Immune Response in Mice. Plant Biotechnol. J. 2021, 19, 745–756. [Google Scholar] [CrossRef]
- Mardanova, E.S.; Takova, K.H.; Toneva, V.T.; Zahmanova, G.G.; Tsybalova, L.M.; Ravin, N.V. A Plant-Based Transient Expression System for the Rapid Production of Highly Immunogenic Hepatitis E Virus-like Particles. Biotechnol. Lett. 2020, 42, 2441–2446. [Google Scholar] [CrossRef]
- Dennehy, P.H. Rotavirus Infection: A Disease of the Past? Infect. Dis. Clin. N. Am. 2015, 29, 617–635. [Google Scholar] [CrossRef]
- Shoja, Z.; Jalilvand, S.; Latifi, T.; Roohvand, F. Rotavirus VP6: Involvement in Immunogenicity, Adjuvant Activity, and Use as a Vector for Heterologous Peptides, Drug Delivery, and Production of Nano-Biomaterials. Arch. Virol. 2022, 167, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, G.J.; Bryant, C.J.; Voogd, C.; Greenberg, H.B.; Gardner, R.C.; Bellamy, A.R. Rotavirus VP6 Expressed by PVX Vectors in Nicotiana benthamiana Coats PVX Rods and Also Assembles into Viruslike Particles. Virology 2000, 270, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, N.; Lavoie, P.O.; D’Aoust, M.A.; Couture, M.M.J.; Dargis, M.; Trépanier, S.; Hoshino, S.; Koike, T.; Arai, M.; Tsutsui, N. Development and Characterization of a Plant-Derived Rotavirus-like Particle Vaccine. Vaccine 2021, 39, 4979–4987. [Google Scholar] [CrossRef]
- Lopman, B.; Zambon, M.; Brown, D.W. The Evolution of Norovirus, the “Gastric Flu”. PLoS Med. 2008, 5, 0187–0189. [Google Scholar] [CrossRef]
- Siebenga, J.J.; Vennema, H.; Renckens, B.; de Bruin, E.; van der Veer, B.; Siezen, R.J.; Koopmans, M. Epochal Evolution of GGII.4 Norovirus Capsid Proteins from 1995 to 2006. J. Virol. 2007, 81, 9932–9941. [Google Scholar] [CrossRef]
- Mathew, L.G.; Herbst-Kralovetz, M.M.; Mason, H.S. Norovirus Narita 104 Virus-like Particles Expressed in Nicotiana benthamiana Induce Serum and Mucosal Immune Responses. Biomed. Res. Int. 2014, 2014, 807539. [Google Scholar] [CrossRef]
- Diamos, A.G.; Mason, H.S. High-Level Expression and Enrichment of Norovirus Virus-like Particles in Plants Using Modified Geminiviral Vectors. Protein Expr. Purif. 2018, 151, 86–92. [Google Scholar] [CrossRef]
- Santi, L.; Batchelor, L.; Huang, Z.; Hjelm, B.; Kilbourne, J.; Arntzen, C.J.; Chen, Q.; Mason, H.S. An Efficient Plant Viral Expression System Generating Orally Immunogenic Norwalk Virus-like Particles. Vaccine 2008, 26, 1846–1854. [Google Scholar] [CrossRef]
- Mbewana, S.; Meyers, A.E.; Rybicki, E.P. Chimaeric Rift Valley Fever Virus-Like Particle Vaccine Candidate Production in Nicotiana benthamiana. Biotechnol. J. 2019, 14, e1800238. [Google Scholar] [CrossRef]
- Duvenage, L.; Hitzeroth, I.I.; Meyers, A.E.; Rybicki, E.P. Expression in Tobacco and Purification of Beak and Feather Disease Virus Capsid Protein Fused to Elastin-like Polypeptides. J. Virol. Methods 2013, 191, 55–62. [Google Scholar] [CrossRef]
- Regnard, G.L.; Rybicki, E.P.; Hitzeroth, I.I. Recombinant Expression of Beak and Feather Disease Virus Capsid Protein and Assembly of Virus-like Particles in Nicotiana benthamiana. Virol. J. 2017, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Gunter, C.J.; Regnard, G.L.; Rybicki, E.P.; Hitzeroth, I.I. Immunogenicity of Plant-produced Porcine Circovirus-like Particles in Mice. Plant Biotechnol. J. 2019, 17, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Min, K.; Kim, N.H.; Kim, J.; Park, M.; Kang, H.; Sohn, E.-J.; Lee, S. Porcine Circovirus 2 Capsid Protein Produced in N. Benthamiana Forms Virus-like Particles That Elicit Production of Virus-Neutralizing Antibodies in Guinea Pigs. New Biotechnol. 2021, 63, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Marsian, J.; Hurdiss, D.L.; Ranson, N.A.; Ritala, A.; Paley, R.; Cano, I.; Lomonossoff, G.P. Plant-Made Nervous Necrosis Virus-Like Particles Protect Fish Against Disease. Front. Plant Sci. 2019, 10, 880. [Google Scholar] [CrossRef]
- Thuenemann, E.C.; Meyers, A.E.; Verwey, J.; Rybicki, E.P.; Lomonossoff, G.P. A Method for Rapid Production of Heteromultimeric Protein Complexes in Plants: Assembly of Protective Bluetongue Virus-like Particles. Plant Biotechnol. J. 2013, 11, 839–846. [Google Scholar] [CrossRef]
- van Zyl, A.R.; Meyers, A.E.; Rybicki, E.P. Transient Bluetongue Virus Serotype 8 Capsid Protein Expression in Nicotiana benthamiana. Biotechnol. Rep. 2016, 9, 15–24. [Google Scholar] [CrossRef]
- Mokoena, N.B.; Moetlhoa, B.; Rutkowska, D.A.; Mamputha, S.; Dibakwane, V.S.; Tsekoa, T.L.; O’Kennedy, M.M. Plant-Produced Bluetongue Chimaeric VLP Vaccine Candidates Elicit Serotype-Specific Immunity in Sheep. Vaccine 2019, 37, 6068–6075. [Google Scholar] [CrossRef]
- Dennis, S.J.; Meyers, A.E.; Guthrie, A.J.; Hitzeroth, I.I.; Rybicki, E.P. Immunogenicity of Plant-produced African Horse Sickness Virus-like Particles: Implications for a Novel Vaccine. Plant Biotechnol. J. 2018, 16, 442–450. [Google Scholar] [CrossRef]
- Dennis, S.J.; O’Kennedy, M.M.; Rutkowska, D.; Tsekoa, T.; Lourens, C.W.; Hitzeroth, I.I.; Meyers, A.E.; Rybicki, E.P. Safety and Immunogenicity of Plant-Produced African Horse Sickness Virus-like Particles in Horses. Vet. Res. 2018, 49, 105. [Google Scholar] [CrossRef]
- Rutkowska, D.A.; Mokoena, N.B.; Tsekoa, T.L.; Dibakwane, V.S.; O’Kennedy, M.M. Plant-Produced Chimeric Virus-like Particles—A New Generation Vaccine against African Horse Sickness. BMC Vet. Res. 2019, 15, 432. [Google Scholar] [CrossRef]
- Fearon, S.H.; Dennis, S.J.; Hitzeroth, I.I.; Rybicki, E.P.; Meyers, A.E. Humoral and Cell-Mediated Immune Responses to Plant-Produced African Horse Sickness Virus VP7 Quasi-Crystals. Virus Res. 2021, 294, 198284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, X.; Gao, Y.; Qi, X. The Over-40-Years-Epidemic of Infectious Bursal Disease Virus in China. Viruses 2022, 14, 2253. [Google Scholar] [CrossRef] [PubMed]
- Marusic, C.; Drissi Touzani, C.; Bortolami, A.; Donini, M.; Zanardello, C.; Lico, C.; Rage, E.; Fellahi, S.; El Houadfi, M.; Terregino, C.; et al. The Expression in Plants of an Engineered VP2 Protein of Infectious Bursal Disease Virus Induces Formation of Structurally Heterogeneous Particles That Protect from a Very Virulent Viral Strain. PLoS ONE 2021, 16, e0247134. [Google Scholar] [CrossRef] [PubMed]
- Kohl, T.; Hitzeroth, I.I.; Stewart, D.; Varsani, A.; Govan, V.A.; Christensen, N.D.; Williamson, A.-L.; Rybicki, E.P. Plant-Produced Cottontail Rabbit Papillomavirus L1 Protein Protects against Tumor Challenge: A Proof-of-Concept Study. Clin. Vaccine Immunol. 2006, 13, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Pietersen, I.; van Zyl, A.; Rybicki, E.; Hitzeroth, I. Novel Production of Bovine Papillomavirus Pseudovirions in Tobacco Plants. Pathogens 2020, 9, 996. [Google Scholar] [CrossRef]
- Love, A.J.; Chapman, S.N.; Matic, S.; Noris, E.; Lomonossoff, G.P.; Taliansky, M. In Planta Production of a Candidate Vaccine against Bovine Papillomavirus Type 1. Planta 2012, 236, 1305–1313. [Google Scholar] [CrossRef]
- Rafique, S.; Jabeen, Z.; Pervaiz, T.; Rashid, F.; Luo, S.; Xie, L.; Xie, Z. Avian infectious bronchitis virus (AIBV) review by continent. Front. Cell Infect. Microbiol. 2024, 14, 1325346. [Google Scholar] [CrossRef]
- Sepotokele, K.M.; O’Kennedy, M.M.; Wandrag, D.B.R.; Abolnik, C. Optimization of Infectious Bronchitis Virus-like Particle Expression in Nicotiana benthamiana as Potential Poultry Vaccines. PLoS ONE 2023, 18, e0288970. [Google Scholar] [CrossRef]
- Sepotokele, K.M.; O’Kennedy, M.M.; Hayes, M.C.; Wandrag, D.B.R.; Smith, P.; Abolnik, C. Efficacy of a Plant-Produced Infectious Bronchitis Virus-like Particle Vaccine in Specific Pathogen-Free Chickens. Poult. Sci. 2023, 102, 102953. [Google Scholar] [CrossRef]
- Su, H.; van Eerde, A.; Steen, H.S.; Heldal, I.; Haugslien, S.; Ørpetveit, I.; Wüstner, S.C.; Inami, M.; Løvoll, M.; Rimstad, E.; et al. Establishment of a Piscine Myocarditis Virus (PMCV) Challenge Model and Testing of a Plant-Produced Subunit Vaccine Candidate against Cardiomyopathy Syndrome (CMS) in Atlantic Salmon Salmo Salar. Aquaculture 2021, 541, 736806. [Google Scholar] [CrossRef]
- Clarke, B.E.; Newton, S.E.; Carroll, A.R.; Francis, M.J.; Appleyard, G.; Syred, A.D.; Highfield, P.E.; Rowlands, D.J.; Brown, F. Improved Immunogenicity of a Peptide Epitope after Fusion to Hepatitis B Core Protein. Nature 1987, 330, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Sominskaya, I.; Skrastina, D.; Petrovskis, I.; Dishlers, A.; Berza, I.; Mihailova, M.; Jansons, J.; Akopjana, I.; Stahovska, I.; Dreilina, D.; et al. A VLP Library of C-Terminally Truncated Hepatitis B Core Proteins: Correlation of RNA Encapsidation with a Th1/Th2 Switch in the Immune Responses of Mice. PLoS ONE 2013, 8, e75938. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, S.; Meisel, H.; Muselmann, C.; Koletzki, D.; Gelderblom, H.R.; Borisova, G.; Krüger, D.H.; Pumpens, P.; Ulrich, R. Characterization of Potential Insertion Sites in the Core Antigen of Hepatitis B Virus by the Use of a Short-Sized Model Epitope. Intervirology 1999, 42, 51–56. [Google Scholar] [CrossRef]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling Protein Tertiary and Quaternary Structure Using Evolutionary Information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef]
- Protein Data Bank. Available online: https://www.rcsb.org/3d-view/jsmol/6hu4/1 (accessed on 20 November 2024).
- Bayliss, M.; Donaldson, M.I.; Pergolizzi, G.; Scott, A.E.; Nepogodiev, S.A.; Beales, L.; Whelan, M.; Rosenberg, W.; Peyret, H.; Lomonossoff, G.P.; et al. Assessments of Hepatitis B Virus-like Particles and Crm197 as Carrier Proteins in Melioidosis Glycoconjugate Vaccines. bioRxiv 2020. [Google Scholar] [CrossRef]
- Pang, E.L.; Peyret, H.; Ramirez, A.; Loh, H.S.; Lai, K.S.; Fang, C.M.; Rosenberg, W.M.; Lomonossoff, G.P. Epitope Presentation of Dengue Viral Envelope Glycoprotein Domain III on Hepatitis B Core Protein Virus-like Particles Produced in Nicotiana benthamiana. Front. Plant Sci. 2019, 10, 455. [Google Scholar] [CrossRef]
- Diamos, A.G.; Larios, D.; Brown, L.; Kilbourne, J.; Kim, H.S.; Saxena, D.; Palmer, K.E.; Mason, H.S. Vaccine Synergy with Virus-like Particle and Immune Complex Platforms for Delivery of Human Papillomavirus L2 Antigen. Vaccine 2019, 37, 137–144. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Bazzi, A.M.; Al-Ahmed, S.H.; Al-Ghaith, M.H.; Al-Tawfiq, J.A. Overview of Zika Infection, Epidemiology, Transmission and Control Measures. J. Infect. Public Health 2017, 10, 141–149. [Google Scholar] [CrossRef]
- Diamos, A.G.; Pardhe, M.D.; Sun, H.; Hunter, J.G.L.; Mor, T.; Meador, L.; Kilbourne, J.; Chen, Q.; Mason, H.S. Codelivery of Improved Immune Complex and Virus-like Particle Vaccines Containing Zika Virus Envelope Domain III Synergistically Enhances Immunogenicity. Vaccine 2020, 38, 3455–3463. [Google Scholar] [CrossRef]
- Yang, M.; Lai, H.; Sun, H.; Chen, Q. Virus-like Particles That Display Zika Virus Envelope Protein Domain III Induce Potent Neutralizing Immune Responses in Mice. Sci. Rep. 2017, 7, 7679. [Google Scholar] [CrossRef]
- Hart, J.; Tillman, G.; Kraut, M.A.; Chiang, H.-S.; Strain, J.F.; Li, Y.; Agrawal, A.G.; Jester, P.; Gnann, J.W.; Whitley, R.J. West Nile Virus Neuroinvasive Disease: Neurological Manifestations and Prospective Longitudinal Outcomes. BMC Infect. Dis. 2014, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Lai, H.; Esqueda, A.; Chen, Q. Plant-Produced Antigen Displaying Virus-Like Particles Evokes Potent Antibody Responses against West Nile Virus in Mice. Vaccines 2021, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Zahmanova, G.; Mazalovska, M.; Takova, K.; Toneva, V.; Minkov, I.; Peyret, H.; Lomonossoff, G. Efficient Production of Chimeric Hepatitis b Virus-like Particles Bearing an Epitope of Hepatitis e Virus Capsid by Transient Expression in Nicotiana benthamiana. Life 2021, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Ravin, N.V.; Kotlyarov, R.Y.; Mardanova, E.S.; Kuprianov, V.V.; Migunov, A.I.; Stepanova, L.A.; Tsybalova, L.M.; Kiselev, O.I.; Skryabin, K.G. Plant-Produced Recombinant Influenza Vaccine Based on Virus-like HBc Particles Carrying an Extracellular Domain of M2 Protein. Biochemistry 2012, 77, 33–40. [Google Scholar] [CrossRef]
- Mardanova, E.S.; Kotlyarov, R.Y.; Stuchinskaya, M.D.; Nikolaeva, L.I.; Zahmanova, G.; Ravin, N.V. High-Yield Production of Chimeric Hepatitis E Virus-Like Particles Bearing the M2e Influenza Epitope and Receptor Binding Domain of SARS-CoV-2 in Plants Using Viral Vectors. Int. J. Mol. Sci. 2022, 23, 15684. [Google Scholar] [CrossRef]
- Matić, S.; Rinaldi, R.; Masenga, V.; Noris, E. Efficient Production of Chimeric Human Papillomavirus 16 L1 Protein Bearing the M2e Influenza Epitope in Nicotiana benthamiana Plants. BMC Biotechnol. 2011, 11, 106. [Google Scholar] [CrossRef]
- Jones, R.M.; Chichester, J.A.; Mett, V.; Jaje, J.; Tottey, S.; Manceva, S.; Casta, L.J.; Gibbs, S.K.; Musiychuk, K.; Shamloul, M.; et al. A Plant-Produced Pfs25 VLP Malaria Vaccine Candidate Induces Persistent Transmission Blocking Antibodies against Plasmodium Falciparum in Immunized Mice. PLoS ONE 2013, 8, e79538. [Google Scholar] [CrossRef]
- Chichester, J.A.; Green, B.J.; Jones, R.M.; Shoji, Y.; Miura, K.; Long, C.A.; Lee, C.K.; Ockenhouse, C.F.; Morin, M.J.; Streatfield, S.J.; et al. Safety and Immunogenicity of a Plant-Produced Pfs25 Virus-like Particle as a Transmission Blocking Vaccine against Malaria: A Phase 1 Dose-Escalation Study in Healthy Adults. Vaccine 2018, 36, 5865–5871. [Google Scholar] [CrossRef]
- Stander, J.; Chabeda, A.; Rybicki, E.P.; Meyers, A.E. A Plant-Produced Virus-Like Particle Displaying Envelope Protein Domain III Elicits an Immune Response Against West Nile Virus in Mice. Front. Plant Sci. 2021, 12, 738619. [Google Scholar] [CrossRef]
- Atabekov, J.; Nikitin, N.; Arkhipenko, M.; Chirkov, S.; Karpova, O. Thermal Transition of Native Tobacco Mosaic Virus and RNA-Free Viral Proteins into Spherical Nanoparticles. J. Gen. Virol. 2011, 92, 453–456. [Google Scholar] [CrossRef]
- Ksenofontov, A.L.; Fedorova, N.V.; Badun, G.A.; Serebryakova, M.V.; Nikitin, N.A.; Evtushenko, E.A.; Chernysheva, M.G.; Bogacheva, E.N.; Dobrov, E.N.; Baratova, L.A.; et al. Surface Characterization of the Thermal Remodeling Helical Plant Virus. PLoS ONE 2019, 14, e0216905. [Google Scholar] [CrossRef] [PubMed]
- Karpova, O.; Nikitin, N.; Chirkov, S.; Trifonova, E.; Sheveleva, A.; Lazareva, E.; Atabekov, J. Immunogenic Compositions Assembled from Tobacco Mosaic Virus-Generated Spherical Particle Platforms and Foreign Antigens. J. Gen. Virol. 2012, 93, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Trifonova, E.; Nikitin, N.; Gmyl, A.; Lazareva, E.; Karpova, O.; Atabekov, J. Complexes Assembled from TMV-Derived Spherical Particles and Entire Virions of Heterogeneous Nature. J. Biomol. Struct. Dyn. 2014, 32, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Dobrov, E.N.; Nikitin, N.A.; Trifonova, E.A.; Parshina, E.Y.; Makarov, V.V.; Maksimov, G.V.; Karpova, O.V.; Atabekov, J.G. β-Structure of the Coat Protein Subunits in Spherical Particles Generated by Tobacco Mosaic Virus Thermal Denaturation. J. Biomol. Struct. Dyn. 2014, 32, 701–708. [Google Scholar] [CrossRef]
- Granovskiy, D.L.; Khudainazarova, N.S.; Evtushenko, E.A.; Ryabchevskaya, E.M.; Kondakova, O.A.; Arkhipenko, M.V.; Kovrizhko, M.V.; Kolpakova, E.P.; Tverdokhlebova, T.I.; Nikitin, N.A.; et al. Novel Universal Recombinant Rotavirus A Vaccine Candidate: Evaluation of Immunological Properties. Viruses 2024, 16, 438. [Google Scholar] [CrossRef]
- Kovalenko, A.O.; Ryabchevskaya, E.M.; Evtushenko, E.A.; Kondakova, O.A.; Ivanov, P.A.; Arkhipenko, M.V.; Nikitin, N.A.; Karpova, O.V. Dataset on Safety and Protective Efficacy Studies of COVID-19 Vaccine Candidates Based on Structurally Modified Plant Virus in Female Hamsters. Data Brief. 2023, 48, 109158. [Google Scholar] [CrossRef]
- Kovalenko, A.O.; Ryabchevskaya, E.M.; Evtushenko, E.A.; Manukhova, T.I.; Kondakova, O.A.; Ivanov, P.A.; Arkhipenko, M.V.; Gushchin, V.A.; Nikitin, N.A.; Karpova, O.V. Vaccine Candidate Against COVID-19 Based on Structurally Modified Plant Virus as an Adjuvant. Front. Microbiol. 2022, 13, 845316. [Google Scholar] [CrossRef]
- Ryabchevskaya, E.M.; Granovskiy, D.L.; Evtushenko, E.A.; Ivanov, P.A.; Kondakova, O.A.; Nikitin, N.A.; Karpova, O.V. Designing Stable Bacillus Anthracis Antigens with a View to Recombinant Anthrax Vaccine Development. Pharmaceutics 2022, 14, 806. [Google Scholar] [CrossRef]
- Granovskiy, D.L.; Ryabchevskaya, E.M.; Evtushenko, E.A.; Kondakova, O.A.; Arkhipenko, M.V.; Kravchenko, T.B.; Bakhteeva, I.V.; Timofeev, V.S.; Nikitin, N.A.; Karpova, O.V. New Formulation of a Recombinant Anthrax Vaccine Stabilised with Structurally Modified Plant Viruses. Front. Microbiol. 2022, 13, 1003969. [Google Scholar] [CrossRef]
- Nikitin, N.; Vasiliev, Y.; Kovalenko, A.; Ryabchevskaya, E.; Kondakova, O.; Evtushenko, E.; Karpova, O. Plant Viruses as Adjuvants for Next-Generation Vaccines and Immunotherapy. Vaccines 2023, 11, 1372. [Google Scholar] [CrossRef]
- Roldão, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.; Alves, P.M. Virus-like Particles in Vaccine Development. Expert Rev. Vaccines 2010, 9, 1149–1176. [Google Scholar] [CrossRef] [PubMed]
- Moradi Vahdat, M.; Hemmati, F.; Ghorbani, A.; Rutkowska, D.; Afsharifar, A.; Eskandari, M.H.; Rezaei, N.; Niazi, A. Hepatitis B Core-Based Virus-like Particles: A Platform for Vaccine Development in Plants. Biotechnol. Rep. 2021, 29, e00605. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Zhang, J.; Li, Y.M.; Ou, S.H.; Huang, G.Y.; He, Z.Q.; Ge, S.X.; Xian, Y.L.; Pang, S.Q.; Ng, M.H.; et al. A Bacterially Expressed Particulate Hepatitis E Vaccine: Antigenicity, Immunogenicity and Protectivity on Primates. Vaccine 2005, 23, 2893–2901. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Huang, S.-J.; Zhu, F.-C.; Zhang, X.-F.; Ai, X.; Yan, Q.; Wang, Z.-Z.; Yang, C.-L.; Jiang, H.-M.; Liu, X.-H.; et al. Immunogenicity and Safety of Hepatitis E Vaccine in Healthy Hepatitis B Surface Antigen Positive Adults. Hum. Vaccin. Immunother. 2013, 9, 2474–2479. [Google Scholar] [CrossRef]
- Atmar, R.L.; Bernstein, D.I.; Harro, C.D.; Al-Ibrahim, M.S.; Chen, W.H.; Ferreira, J.; Estes, M.K.; Graham, D.Y.; Opekun, A.R.; Richardson, C.; et al. Norovirus Vaccine against Experimental Human Norwalk Virus Illness. N. Engl. J. Med. 2011, 365, 2178–2187. [Google Scholar] [CrossRef]
- Nicoli, F.; Mantelli, B.; Gallerani, E.; Telatin, V.; Bonazzi, I.; Marconi, P.; Gavioli, R.; Gabrielli, L.; Lazzarotto, T.; Barzon, L.; et al. HPV-Specific Systemic Antibody Responses and Memory B Cells Are Independently Maintained up to 6 Years and in a Vaccine-Specific Manner Following Immunization with Cervarix and Gardasil in Adolescent and Young Adult Women in Vaccination Programs in Italy. Vaccines 2020, 8, 26. [Google Scholar] [CrossRef]
- Villa, L.L.; Costa, R.L.; Petta, C.A.; Andrade, R.P.; Ault, K.A.; Giuliano, A.R.; Wheeler, C.M.; Koutsky, L.A.; Malm, C.; Lehtinen, M.; et al. Prophylactic Quadrivalent Human Papillomavirus (Types 6, 11, 16, and 18) L1 Virus-like Particle Vaccine in Young Women: A Randomised Double-Blind Placebo-Controlled Multicentre Phase II Efficacy Trial. Lancet Oncol. 2005, 6, 271–278. [Google Scholar] [CrossRef]
- Zhai, L.; Peabody, J.; Pang, Y.-Y.S.; Schiller, J.; Chackerian, B.; Tumban, E. A Novel Candidate HPV Vaccine: MS2 Phage VLP Displaying a Tandem HPV L2 Peptide Offers Similar Protection in Mice to Gardasil-9. Antivir. Res. 2017, 147, 116–123. [Google Scholar] [CrossRef]
- Van Den Ende, C.; Marano, C.; Van Ahee, A.; Bunge, E.M.; De Moerlooze, L. The Immunogenicity and Safety of GSK’s Recombinant Hepatitis B Vaccine in Adults: A Systematic Review of 30 Years of Experience. Expert Rev. Vaccines 2017, 16, 811–832. [Google Scholar] [CrossRef]
- Hussain, Z. Evaluation of Immunogenicity and Reactogenicity of Recombinant DNA Hepatitis B Vaccine Produced in India. World J. Gastroenterol. 2005, 11, 7165. [Google Scholar] [CrossRef]
- Shivananda; Somani, V.; Srikanth, B.S.; Mohan, M.; Kulkarni, P.S. Comparison of Two Hepatitis B Vaccines (GeneVac-B and Engerix-B) in Healthy Infants in India. Clin. Vaccine Immunol. 2006, 13, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Towne, V.; Brown, M.; Wang, Y.; Abraham, D.; Oswald, C.B.; Gimenez, J.A.; Washabaugh, M.W.; Kennedy, R.; Sitrin, R.D. In-Depth Process Understanding of RECOMBIVAX HB® Maturation and Potential Epitope Improvements with Redox Treatment: Multifaceted Biochemical and Immunochemical Characterization. Vaccine 2011, 29, 7936–7941. [Google Scholar] [CrossRef] [PubMed]
- Kushnir, N.; Streatfield, S.J.; Yusibov, V. Virus-like Particles as a Highly Efficient Vaccine Platform: Diversity of Targets and Production Systems and Advances in Clinical Development. Vaccine 2012, 31, 58–83. [Google Scholar] [CrossRef] [PubMed]
- Pentón-Arias, E.; Aguilar-Rubido, J.C. Cuban Prophylactic and Therapeutic Vaccines for Controlling Hepatitis B. MEDICC Rev. 2021, 23, 21–29. [Google Scholar] [CrossRef]
- Hernández-Bernal, F.; Aguilar-Betancourt, A.; Aljovin, V.; Arias, G.; Valenzuela, C.; Pérez de Alejo, K.; Hernández, K.; Oquendo, O.; Figueredo, N.; Figueroa, N.; et al. Comparison of Four Recombinant Hepatitis B Vaccines Applied on an Accelerated Schedule in Healthy Adults. Hum. Vaccin. 2011, 7, 1026–1036. [Google Scholar] [CrossRef]
- Rebedea, I.; Diaconescu, I.G.; Bach, D.; Bartelsen, O.; Arndtz, N. Comparison of Thiomersal-Free and Thiomersal-Containing Formulations of a Recombinant Hepatitis B Vaccine (Hepavax-Gene®) in Healthy Adults. Vaccine 2006, 24, 5320–5326. [Google Scholar] [CrossRef]
- Biofarma. Available online: https://www.biofarma.co.id/en/our-product (accessed on 20 November 2024).
- Laurens, M.B. RTS,S/AS01 Vaccine (MosquirixTM): An Overview. Hum. Vaccin. Immunother. 2020, 16, 480–489. [Google Scholar] [CrossRef]
- Soulié, J.C.; Devillier, P.; Santarelli, J.; Goudeau, A.; Vermeulen, P.; Guellier, M.; Saliou, P.; Hillion, A.M.; Tron, F.; Huchet, J. Immunogenicity and Safety in Newborns of a New Recombinant Hepatitis B Vaccine Containing the S and Pre-S2 Antigens. Vaccine 1991, 9, 545–548. [Google Scholar] [CrossRef]
- Ma, Z.; Yi, X.; Zhang, Y. Enhanced Intracellular Accumulation of Recombinant HBsAg in CHO Cells by Dimethyl Sulfoxide. Process Biochem. 2008, 43, 690–695. [Google Scholar] [CrossRef]
- Shouval, D.; Roggendorf, H.; Roggendorf, M. Enhanced Immune Response to Hepatitis B Vaccination through Immunization with a Pre-S1/Pre-S2/S Vaccine. Med. Microbiol. Immunol. 2015, 204, 57–68. [Google Scholar] [CrossRef]
- Bovier, P.A. Recent Advances with a Virosomal Hepatitis A Vaccine. Expert Opin. Biol. Ther. 2008, 8, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Herzog, C.; Hartmann, K.; Künzi, V.; Kürsteiner, O.; Mischler, R.; Lazar, H.; Glück, R. Eleven Years of Inflexal® V—A Virosomal Adjuvanted Influenza Vaccine. Vaccine 2009, 27, 4381–4387. [Google Scholar] [CrossRef] [PubMed]
Vaccine Target | Composition of the VLP | Expression Vector | Efficiency, per Fresh Weight | Reference |
---|---|---|---|---|
Hepatitis B virus | HBcAg | MagnICON | 2380 μg/g | [57] |
HBcAg | PVX-based | N/a | [58] | |
HBcAg | CPMV-based | N/a | [59] | |
HBcAg | pEAQ-HT | 1000 μg/g | [59] | |
tandem HBcAg | pEAQ-HT | 200 μg/g | [60] | |
Human papillomavirus | HPV16 L1 | TMV-based | 20–37 μg/kg * | [69] |
HPV16 L1 | BeYDV-based | 533 μg/g | [70] | |
HPV8 L1 | pEAQ-HT | 60 μg/g | [71] | |
HPV8 L1∆C22 | pEAQ-HT | 240 μg/g | [71] | |
HPV8 L1 | MagnICON | 3.5 μg/g | [71] | |
HPV8 L1∆C22 | MagnICON | 17 μg/g | [71] | |
HPV16 L1 | pEAQ-HT | N/a | [72] | |
L1 (HPV 16, 18, 31, 33, 35, 45, 52, 58); HPV 6 and 34 | BeYDV-based | N/a | [73] | |
HPV16 L1, L2 | BeYDV-based | N/a | [74] | |
Influenza virus | HA (H1N1) | N/a | N/a | [76] |
HA (H5N1) | N/a | N/a | [76] | |
HA of H2, H3, H6, H9, H1N1 | N/a | N/a | [77] | |
HA of H7 | N/a | N/a | [78] | |
HA H5N1 (Medicago) | N/a | N/a | [50] | |
HA H7N9 (Medicago) | N/a | N/a | [78] | |
quadrivalent HA VLP | 2X35S/CPMV-HT | N/a | [78,84] | |
HA of H6 | pEAQ-HT | 95 μg/g * | [85] | |
SARS-CoV-2 | S glycoprotein | N/a | [89] | |
co-expression of M, E, and N | non-viral | N/a | [86] | |
Foot-and-mouth disease Virus | P1-2A and 3C | BeYDV-based pEAQ-HT | 3–4 μg/g * | [91] |
Poliovirus | P1 and 3CD | pEAQ-HT | 0.06 μg/g * | [93] |
Dengue virus | DENV SP and NSPs, lacking NS5 | pEAQ-HT | 2 μg/g * | [94] |
Hepatitis E virus | HEV ORF 2 (110–610 aa) | pEAQ-HT pEff | N/a 300 μg/g | [95] |
Rotavirus | VP6 | PVX-based | 50 μg/g | [98] |
VLPs composed of VP7, VP6, and VP2 of G1 | CPMV HT | 4.9 μg/g * | [99] | |
Norovirus | CAP | MagnICON | 280 μg/g | [102] |
Norovirus | CAP (GII.4) | BeYDV-based | 1000 μg/g | [103] |
CAP (GI) | BeYDV-based | 2300 μg/g | [103] | |
Norwalk virus | CP | MagnICON | 800 μg/g | [104] |
Rift Valley fever virus | Gn replaced with HA from H5N1 | pEAQ-HT | 57 μg/g * | [105] |
Beak and feather disease virus | Cap and Cap (ΔN40) | BeYDV-based | <5 μg/g * | [106] |
Porcine circovirus 2 | Cap | pEAQ-HT | 6.5 μg/g * | [108] |
Cap | non-viral | 102 μg/g * | [109] | |
Atlantic cod nervous necrosis virus | CP | pEAQ-HT | 10 μg/g * | [110] |
Bluetongue virus | BTV-8 VP2, VP3, VP5, and VP7 | pEAQ-HT | 70 μg/g * | [111] |
BTV-8 VP2, VP3, VP5, and VP7 | pEAQ-HT and BeYDV-based | N/a | [112] | |
Chimeric BTV-3 and BTV-4 VLPs | pEAQ-HT | 26 μg/g * | [113] | |
African horse sickness virus | AHSV serotype 5 VP2, VP3, VP5, and VP7 | pEAQ-HT | N/a | [114] |
AHSV chimeric VP2, VP3, VP5, and VP7 | pEAQ-HT | 16 μg/g * | [116] | |
AHSV-5 VP7 quasicrystals | BeYDV-based | N/a | [117] | |
Infectious bursal disease virus | CP VP2 | non-viral | N/a | [119] |
Cottontail rabbit papillomavirus | L1 protein | TMV-based | 0.15–0.6 μg/g | [120] |
Bovine papillomavirus 1 | BPV L1 and L1/L2 | BeYDV-based | N/a | [121] |
BPV1 L1 | pEAQ-HT | 183 μg/g * | [122] | |
Infectious bronchitis virus | S | pEAQ-HT | 17 μg/g * | [124,125] |
Piscine myocarditis virus | putative CP | pEAQ-HT | 4.8 μg/g * | [126] |
Vaccine Target | HBcAg Composition | Epitope | Insertion Position | Expression Vector | Efficiency, per Fresh Weight | Reference |
---|---|---|---|---|---|---|
Dengue virus | Tandem Hbc | EDIII, 103 a.a. | MIR | pEAQ-HT | 12–16 μg/g * | [133] |
Human papillomavirus | Tandem Hbc | L2, 14–122 a.a. | MIR | BeYDV-based | >3 mg ** | [134] |
Zika virus | Tandem Hbc | EDIII, 301–406 a.a. | MIR | BeYDV-based | [136] | |
Zika virus | HBcΔ | EDIII, 301–406 a.a. | C | BeYDV-based | [136] | |
Zika virus | HBcΔ | EDIII, 303–403 a.a. | C | MagnICON | 1824 μg/g | [137] |
West Nile virus | HBcΔ | EDIII, 296–415 a.a. | C | MagnICON | 1200 μg/g | [139] |
Hepatitis E virus | HBc | ORF2 551–607 a.a. | MIR | pEAQ-HT | 10 μg/g * | [140] |
Influenza A virus | HBc | M2e, 2–24 a.a. | N | pEff | 10% of the total soluble protein | [141] |
VLP Carrier | Vaccine Target | Epitope | Expression Vector | Efficiency, per Fresh Weight | Reference |
---|---|---|---|---|---|
Hepatitis E virus coat protein | Influenza A virus | M2e, human | pEAQ-HT, pEff | 300–400 µg/g | [29] |
Influenza A virus | 4xM2e, swine | pEff | 150–200 µg/g | [30] | |
SARS-CoV-2 | RBD, 319–524 a.a. | pEff | 80–100 µg/g | [142] | |
Human papillomavirus L1 protein | Influenza A virus | M2e, 2–24 a.a.; M2e, 2–9 a.a. | pEAQ-HT | 30–120 µg/g | [143] |
Bluetongue virus VP3 protein | Dengue viruses and Zika virus | EDIII | pEAQ-HT | 5–15 µg/g * | [94] |
Alfalfa mosaic virus coat protein | Malaria | Pfs25 | TMV-based | 50 µg/g | [144] |
Bacteriophage AP205 capsid protein | West Nile virus | EDIII | pEAQ-HT BeYDV-based | 36 µg/g * | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardanova, E.S.; Vasyagin, E.A.; Ravin, N.V. Virus-like Particles Produced in Plants: A Promising Platform for Recombinant Vaccine Development. Plants 2024, 13, 3564. https://doi.org/10.3390/plants13243564
Mardanova ES, Vasyagin EA, Ravin NV. Virus-like Particles Produced in Plants: A Promising Platform for Recombinant Vaccine Development. Plants. 2024; 13(24):3564. https://doi.org/10.3390/plants13243564
Chicago/Turabian StyleMardanova, Eugenia S., Egor A. Vasyagin, and Nikolai V. Ravin. 2024. "Virus-like Particles Produced in Plants: A Promising Platform for Recombinant Vaccine Development" Plants 13, no. 24: 3564. https://doi.org/10.3390/plants13243564
APA StyleMardanova, E. S., Vasyagin, E. A., & Ravin, N. V. (2024). Virus-like Particles Produced in Plants: A Promising Platform for Recombinant Vaccine Development. Plants, 13(24), 3564. https://doi.org/10.3390/plants13243564