The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa
<p>Phylogenetic tree of <span class="html-italic">AMTs</span> and their colinear relationship among <span class="html-italic">C. watsonii</span>, <span class="html-italic">C. suecicum</span>, and <span class="html-italic">C. quinoa</span>: (<b>A</b>) Phylogenetic tree of the AMT proteins of six plant species (<span class="html-italic">A. thaliana</span>, <span class="html-italic">O. sativa</span>, <span class="html-italic">S. lycopersicum</span>, <span class="html-italic">P. richocarpa</span>, <span class="html-italic">C. sinensis</span> var. sinensis, and <span class="html-italic">C. quinoa</span>). Each group is represented by a different color, and the CqAMT proteins are marked with red dots. (<b>B</b>) Reservation and loss of the <span class="html-italic">AMT</span> genes among <span class="html-italic">C. watsonii</span> (<span class="html-italic">Cw</span>), <span class="html-italic">C. suecicum</span> (<span class="html-italic">Cs</span>), and <span class="html-italic">C. quinoa</span> (<span class="html-italic">Cq</span>).</p> "> Figure 2
<p>Phylogenetic relationships, conserved motifs, and gene structure analysis of <span class="html-italic">CqAMT</span> genes: (<b>A</b>) Phylogenetic tree of the 12 CqAMT proteins. (<b>B</b>) The conserved protein motifs were identified using MEME; each color represents a motif. The lengths of the motifs are proportional. (<b>C</b>) The exon–intron distribution of <span class="html-italic">CqAMTs</span> with black lines indicated introns, while exons are indicated with yellow boxes (CDS) and blue boxes (UTR).</p> "> Figure 3
<p>Predicted cis-elements in 12 <span class="html-italic">CqAMTs</span> promoters, predicted using PlantCARE.</p> "> Figure 4
<p>Expression patterns of <span class="html-italic">CqAMT</span> genes: (<b>A</b>) W32 leaves and roots under 0, 8, and 21 mM NH<sub>4</sub><sup>+</sup> concentrations, respectively (L-0mM-21D—leaf samples were treated with 0 mM ammonium nitrogen for 21 d, with similar descriptions as those below for L-0mM-27D, L-21mM-21D, L-21mM-27D, L-8mM-21D, and L-8mM-27D; R-0mM-21D—root samples were treated with 0 mM ammonium nitrogen for 21 d, with similar descriptions as those below for R-0mM-27D, R-21mM-21D, R-21mM-27D, R-8mM-21D, and R-8mM-27D). (<b>B</b>) <span class="html-italic">CqAMTs</span> expressed in different developmental reproductive stages of both W19 and W25 planted in field (W19-FL—leaves of W19 at the flower development stage; W19-SL—leaves of W19 at the seed-filling stage; W19-FP—panicles of W19 at the flowering stage; W19-SP—panicles of W19 at the seed formation stage); W25 samples were labeled similarly as W19 samples.</p> "> Figure 5
<p>qRT-PCR analysis of the 10 <span class="html-italic">CqAMT</span>s in both leaves and roots under hydroponic cultivation of W32 after 21 d with 0, 8, and 21 mM NH<sub>4</sub><sup>+</sup> concentrations.</p> "> Figure 6
<p>Functional verification of 11 <span class="html-italic">CqAMTs</span> and <span class="html-italic">CqAMT1.2a</span> subcellular location detection: (<b>A</b>) Growth of the yeast mutants (31019b) was complemented via heterologous expression of <span class="html-italic">CqAMTs</span>. The yeast mutant strain (31019b) was transformed with the empty vector pYES2, or 11 <span class="html-italic">CqAMTs</span> expression vectors, namely CqAMT2.2a-pYES2, CqAMT1.3a-pYES2, CqaMT1.4a-pYES2, CqAMT3.1b-pYES2, CqAMT1.2c-pYES2, CqAMT1.2a-pYES2, CqAMT1.4b-pYES2, CqAMT1.2b-pYES2, CqAMT1.2d-pYES2, CqAMT3.1a-pYES2, and CqAMT1.3b-pYES2. The mutant 31019b transformed with pYES2 was used as a negative control. The transformants were grown on the SD medium at 30 °C for 2–3 days. (<b>B</b>) Subcellular localization detection of <span class="html-italic">CqAMT1.2a</span> was performed by fusing the expression with <span class="html-italic">GFP</span> in tobacco leaves.</p> "> Figure 7
<p>Co-expression network construction and identification of TFs: (<b>A</b>) The expression levels of screened TFs and genes related to nitrogen metabolism in different tissues and different nitrogen concentration samples in BGM. (<b>B</b>) The correlation between physiological traits and the expression level of screened TFs in the BGM. (<b>C</b>) The expression levels of screened TFs and genes related to nitrogen metabolism in different tissues and samples using different nitrogen concentrations in TGM. (<b>D</b>) The correlation between physiological traits and the expression level of screened TFs in TGM. (<b>E</b>) Co-expression network of top 15 TFs in BGM. (<b>F</b>) Co-expression network of top 21 TFs in TGM. (<b>G</b>) TF-TF co-expression network of BGM. (<b>H</b>) TF-TF co-expression network of TGM. The * symbol represents 0.01 < <span class="html-italic">p</span> < 0.05. The ** symbol represents <span class="html-italic">p</span> < 0.01.</p> "> Figure 8
<p>Nitrogen uptake and utilization mechanism in <span class="html-italic">Chenopodium quinoa</span> [<a href="#B39-plants-13-03524" class="html-bibr">39</a>,<a href="#B40-plants-13-03524" class="html-bibr">40</a>,<a href="#B41-plants-13-03524" class="html-bibr">41</a>]. NO<sub>3</sub><sup>−</sup>—nitrate; NO<sub>2</sub><sup>−</sup>—nitrite ion; NH<sub>4</sub><sup>+</sup>—ammonium; NRT—nitrate transporter; NiR—nitrite reductase; NR—nitrate reductase; Gln—glutamine; Glu—glutamic acid; GS—glutamine synthase; GOGAT—glutamate synthetase; GDH—glutamate dehydrogenase; α-OG—α-ketoglutaric acid; NADP—nicotinamide adenine dinucleotide phosphate.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of AMT Genes from Chenopodium quinoa and Chromosome Localization
2.2. Phylogenetic and Evolution Analysis of CqAMTs
2.3. The Structural Features of CqAMTs
2.4. Prediction of Cis-Elements in the Promoters of CqAMTs
2.5. Expression Analysis of CqAMTs Under Different NH4+–Nitrogen Concentrations in Hydroponic Cultivated W32 and Different Tissues of Field-Planted W19 and W25
2.6. Confirmation of CqAMTs NH4+ Uptake Function and Subcellular Localization of CqAMT1.2a
2.7. Gene Regulatory Networks Are Related to Nitrogen Absorption and Assimilation
3. Discussion
4. Materials and Methods
4.1. Plant Growth and Experimental Design
4.2. Illumina RNAseq and Analysis
4.3. Identification of the AMT Genes in the Genome of Chenopodium quinoa
4.4. Characterization of CqAMTs
4.4.1. Phylogenetic Analysis of CqAMTs
4.4.2. Conserved Motifs, Gene Structure, and Chromosomal Locations
4.4.3. Cis-Element Analysis Considering CqAMT Promoters
4.4.4. Gene Duplication and Collinearity Analysis
4.5. Quantitative Real-Time PCR (qRT-PCR) Analysis
4.6. Subcellular Localization Analysis and Prediction of CqAMT1.2a
4.7. Cloning and Functional Complementation of CqAMTs in Yeast Triple mep1/2/3 Mutant
4.8. Enzymatic Assays and Phenotypic Measurements of Quinoa Roots
4.9. Prediction of Gene Regulatory Networks for Nitrogen Transportation and Assimilation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruales, J.; Nair, B.M. Nutritional quality of the protein in quinoa (Chenopodium quinoa, Willd) seeds. Plant Foods Hum. Nutr. 1992, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Krapp, A. Plant nitrogen assimilation and its regulation: A complex puzzle with missing pieces. Curr. Opin. Plant Biol. 2015, 25, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Gazzarrini, S.; Lejay, L.; Gojon, A.; Ninnemann, O.; Frommer, W.B.; von Wirén, N. Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 1999, 11, 937–947. [Google Scholar] [CrossRef]
- Hao, D.L.; Zhou, J.Y.; Yang, S.Y.; Qi, W.; Yang, K.J.; Su, Y.H. Function and Regulation of Ammonium Transporters in Plants. Int. J. Mol. Sci. 2020, 21, 3557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, Z.C.; Müller, C. Terrestrial N cycling associated with climate and plant-specific N preferences: A review. Eur. J. Soil. Sci. 2018, 69, 488–501. [Google Scholar] [CrossRef]
- Giehl, R.F.H.; Laginha, A.M.; Duan, F.; Rentsch, D.; Yuan, L.; von Wirén, N. A Critical Role of AMT2;1 in Root-To-Shoot Translocation of Ammonium in Arabidopsis. Mol. Plant 2017, 10, 1449–1460. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Graff, L.; Loqué, D.; Kojima, S.; Tsuchiya, Y.N.; Takahashi, H.; von Wirén, N. AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant Cell Physiol. 2009, 50, 13–25. [Google Scholar] [CrossRef]
- Ludewig, U.; Neuhäuser, B.; Dynowski, M. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett. 2007, 581, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Loqué, D.; Yuan, L.; Kojima, S.; Gojon, A.; Wirth, J.; Gazzarrini, S.; Ishiyama, K.; Takahashi, H.; Von Wirén, N. Additive contribution of AMT1; 1 and AMT1; 3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots. Plant J. 2006, 48, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Kiba, T.; Krapp, A. Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture. Plant Cell Physiol. 2016, 57, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, S.C.; Lal, M.A. Nitrogen Metabolism. In Plant Physiology, Development and Metabolism; Bhatla, S.C., Lal, M.A., Eds.; Springer Nature Singapore: Singapore, 2023; pp. 295–334. [Google Scholar]
- Pearson, J.N.; Finnemann, J.; Schjoerring, J.K. Regulation of the high-affinity ammonium transporter (BnAMT1;2) in the leaves of Brassica napus by nitrogen status. Plant Mol. Biol. 2002, 49, 483–490. [Google Scholar] [CrossRef]
- Ranathunge, K.; El-Kereamy, A.; Gidda, S.; Bi, Y.M.; Rothstein, S.J. AMT1;1 transgenic rice plants with enhanced NH4(+) permeability show superior growth and higher yield under optimal and suboptimal NH4(+) conditions. J. Exp. Bot. 2014, 65, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Sonoda, Y.; Ikeda, A.; Saiki, S.; von Wirén, N.; Yamaya, T.; Yamaguchi, J. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol. 2003, 44, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Ninnemann, O.; Jauniaux, J.C.; Frommer, W.B. Identification of a high affinity NH4+ transporter from plants. Embo J. 1994, 13, 3464–3471. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, J.L.; Chang, Y.H.; Lin, J.; Yang, Q.S. Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock (Pyrus betulaefolia). J. Plant Res. 2016, 129, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Di, D.W.; Li, G.; Li, Y.; Kronzucker, H.J.; Shi, W. Transcriptome analysis of rice (Oryza sativa L.) in response to ammonium resupply reveals the involvement of phytohormone signaling and the transcription factor OsJAZ9 in reprogramming of nitrogen uptake and metabolism. J. Plant Physiol. 2020, 246–247, 153137. [Google Scholar] [CrossRef]
- Lanquar, V.; Loqué, D.; Hörmann, F.; Yuan, L.; Bohner, A.; Engelsberger, W.R.; Lalonde, S.; Schulze, W.X.; von Wirén, N.; Frommer, W.B. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis. Plant Cell 2009, 21, 3610–3622. [Google Scholar] [CrossRef]
- Sohlenkamp, C.; Shelden, M.; Howitt, S.; Udvardi, M. Characterization of Arabidopsis AtAMT2, a novel ammonium transporter in plants. FEBS Lett. 2000, 467, 273–278. [Google Scholar] [CrossRef]
- Howitt, S.M.; Udvardi, M.K. Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta 2000, 1465, 152–170. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.L.; Einsle, O. The Amt/Mep/Rh family of ammonium transport proteins. Mol. Membr. Biol. 2007, 24, 357–365. [Google Scholar] [CrossRef]
- Yuan, L.; Loqué, D.; Kojima, S.; Rauch, S.; Ishiyama, K.; Inoue, E.; Takahashi, H.; von Wirén, N. The Organization of High-Affinity Ammonium Uptake in Arabidopsis Roots Depends on the Spatial Arrangement and Biochemical Properties of AMT1-Type Transporters. Plant Cell 2007, 19, 2636–2652. [Google Scholar] [CrossRef]
- Li, S.-M.; Li, B.-Z.; Shi, W.-M. Expression Patterns of Nine Ammonium Transporters in Rice in Response to N Status. Pedosphere 2012, 22, 860–869. [Google Scholar] [CrossRef]
- Li, C.; Tang, Z.; Wei, J.; Qu, H.; Xie, Y.; Xu, G. The OsAMT1.1 gene functions in ammonium uptake and ammonium-potassium homeostasis over low and high ammonium concentration ranges. J. Genet. Genom. 2016, 43, 639–649. [Google Scholar] [CrossRef]
- Husted, S.; Schjoerring, J.K. Ammonia Flux between Oilseed Rape Plants and the Atmosphere in Response to Changes in Leaf Temperature, Light Intensity, and Air Humidity (Interactions with Leaf Conductance and Apoplastic NH4+ and H+ Concentrations). Plant Physiol. 1996, 112, 67–74. [Google Scholar] [CrossRef]
- von Wirén, N.; Gazzarrini, S.; Gojon, A.; Frommer, W.B. The molecular physiology of ammonium uptake and retrieval. Curr. Opin. Plant Biol. 2000, 3, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Ogungbenle, H.N. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int. J. Food Sci. Nutr. 2003, 54, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Liu, J.; Zheng, K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley. Ecotoxicol. Env. Saf. 2005, 62, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.-C.; Anderson, A.; Coker, J.; Ondrus, M. Characterization of lipid oxidation products in quinoa (Chenopodium quinoa). Food Chem. 2007, 101, 185–192. [Google Scholar] [CrossRef]
- Vergara-Diaz, O.; Velasco-Serrano, E.; Invernón-Garrido, A.; Katamadze, A.; Yoldi-Achalandabaso, A.; Serret, M.D.; Vicente, R. Quinoa panicles contribute to carbon assimilation and are more tolerant to salt stress than leaves. J. Plant Physiol. 2024, 292, 154161. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Castillo, J.E.; Delatorre-Herrera, J.; Bascuñán-Godoy, L.; Rodriguez, J.P. Quinoa (Chenopodium quinoa Wild.) Seed Yield and Efficiency in Soils Deficient of Nitrogen in the Bolivian Altiplano: An Analytical Review. Plants 2021, 10, 2479. [Google Scholar] [CrossRef]
- Zhai, F.Q.; Cai, Z.Q.; Lu, J.M. Effects of nitrogen application rate on the growth traits in seedlings of different quinoa cultivars. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2020, 31, 1139–1145. [Google Scholar] [CrossRef]
- Jerez, M.P.; Ortiz, J.; Castro, C.; Escobar, E.; Sanhueza, C.; Del-Saz, N.F.; Ribas-Carbo, M.; Coba de la Peña, T.; Ostria-Gallardo, E.; Fischer, S.; et al. Nitrogen sources differentially affect respiration, growth, and carbon allocation in Andean and Lowland ecotypes of Chenopodium quinoa Willd. Front. Plant Sci. 2023, 14, 1070472. [Google Scholar] [CrossRef]
- Jarvis, D.E.; Ho, Y.S.; Lightfoot, D.J.; Schmöckel, S.M.; Li, B.; Borm, T.J.; Ohyanagi, H.; Mineta, K.; Michell, C.T.; Saber, N.; et al. The genome of Chenopodium quinoa. Nature 2017, 542, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Young, L.A.; Maughan, P.J.; Jarvis, D.E.; Hunt, S.P.; Warner, H.C.; Durrant, K.K.; Kohlert, T.; Curti, R.N.; Bertero, D.; Filippi, G.A.; et al. A chromosome-scale reference of Chenopodium watsonii helps elucidate relationships within the North American A-genome Chenopodium species and with quinoa. Plant Genome 2023, 16, e20349. [Google Scholar] [CrossRef]
- Shaul, O. How introns enhance gene expression. Int. J. Biochem. Cell Biol. 2017, 91, 145–155. [Google Scholar] [CrossRef]
- Marini, A.M.; Soussi-Boudekou, S.; Vissers, S.; Andre, B. A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 1997, 17, 4282–4293. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Cui, F.; Han, X.; He, Y.; Zhao, L.; Zhang, N.; Zhang, H.; Zhu, H.; Liu, Z.; Ma, B.; et al. Comparative genomic and transcriptomic analyses uncover the molecular basis of high nitrogen-use efficiency in the wheat cultivar Kenong 9204. Mol Plant 2022, 15, 1440–1456. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Han, S.; Wang, L.; Li, W. Carbon and nitrogen metabolic regulation in freshwater plant Ottelia alismoides in response to carbon limitation: A metabolite perspective. Front. Plant Sci. 2022, 13, 962622. [Google Scholar] [CrossRef]
- Chow, F. Nitrate Assimilation: The Role of In Vitro Nitrate Reductase Assay as Nutritional Predictor; InTech Open: London, UK, 2012. [Google Scholar]
- Nowak, V.; Du, J.; Charrondière, U.R. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 2016, 193, 47–54. [Google Scholar] [CrossRef]
- Filho, A.M.; Pirozi, M.R.; Borges, J.T.; Pinheiro Sant’Ana, H.M.; Chaves, J.B.; Coimbra, J.S. Quinoa: Nutritional, functional, and antinutritional aspects. Crit. Rev. Food Sci. Nutr. 2017, 57, 1618–1630. [Google Scholar] [CrossRef] [PubMed]
- Abugoch James, L.E. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.; Siddiqui, R.A. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.J.; Sukrapanna, S.S.; Warner, R.L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 1992, 99, 1294–1301. [Google Scholar] [CrossRef]
- Glass, A.D.; Britto, D.T.; Kaiser, B.N.; Kinghorn, J.R.; Kronzucker, H.J.; Kumar, A.; Okamoto, M.; Rawat, S.; Siddiqi, M.Y.; Unkles, S.E.; et al. The regulation of nitrate and ammonium transport systems in plants. J. Exp. Bot. 2002, 53, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; von Wirén, N. Ammonium as a signal for physiological and morphological responses in plants. J. Exp. Bot. 2017, 68, 2581–2592. [Google Scholar] [CrossRef]
- Wirén, N.; Merrick, M. Regulation and function of ammonium carriers in bacteria, fungi, and plants. Mol. Mech. Control. Transmembrane Transp. 2004, 9, 95–120. [Google Scholar]
- Liu, Q.; Dang, H.; Chen, Z.; Wu, J.; Chen, Y.; Chen, S.; Luo, L. Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta). Int. J. Mol. Sci. 2018, 19, 987. [Google Scholar] [CrossRef]
- Gaur, V.S.; Singh, U.S.; Gupta, A.K.; Kumar, A. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. Mol. Biol. Rep. 2012, 39, 2233–2241. [Google Scholar] [CrossRef]
- Suenaga, A.; Moriya, K.; Sonoda, Y.; Ikeda, A.; von Wirén, N.; Hayakawa, T.; Yamaguchi, J.; Yamaya, T. Constitutive Expression of a Novel-Type Ammonium Transporter OsAMT2 in Rice Plants. Plant Cell Physiol. 2003, 44, 206–211. [Google Scholar] [CrossRef]
- Wang, Y.; Xuan, Y.-M.; Wang, S.-M.; Fan, D.-M.; Wang, X.-C.; Zheng, X.-Q. Genome-wide identification, characterization, and expression analysis of the ammonium transporter gene family in tea plants (Camellia sinensis L.). Physiol. Plant 2022, 174, e13646. [Google Scholar] [CrossRef]
- Heidari, P.; Puresmaeli, F.; Mora-Poblete, F. Genome-Wide Identification and Molecular Evolution of the Magnesium Transporter (MGT) Gene Family in Citrullus lanatus and Cucumis sativus. Agronomy 2022, 12, 2253. [Google Scholar] [CrossRef]
- Yaghobi, M.; Heidari, P. Genome-Wide Analysis of Aquaporin Gene Family in Triticum turgidum and Its Expression Profile in Response to Salt Stress. Genes. 2023, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, J.; Xu, P.; Zhang, R.; Li, L. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species. Plant Physiol. 2014, 164, 765–776. [Google Scholar] [CrossRef]
- Jo, B.S.; Choi, S.S. Introns: The Functional Benefits of Introns in Genomes. Genom. Inf. 2015, 13, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Sieg, A.G.; Trotter, P.J. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase. Microbiol. Res. 2014, 169, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Vendramini, C.; Beltran, G.; Nadai, C.; Giacomini, A.; Mas, A.; Corich, V. The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 2017, 258, 1–11. [Google Scholar] [CrossRef]
- Pezeshki, S.R.; Delaune, R.D.; Lindau, C.W. Interaction among sediment anaerobiosis, nitrogen uptake and photosynthesis of Spartina alterniflora. Physiol. Plant. 2010, 74, 561–565. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Wang, L.; Bai, P.; Ruan, L.; Zhang, C.; Wei, K.; Cheng, H. Molecular cloning and expression analysis of ammonium transporters in tea plants (Camellia sinensis (L.) O. Kuntze) under different nitrogen treatments. Gene 2018, 658, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Bao, A.; Liang, Z.; Zhao, Z.; Cai, H. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status. Int. J. Mol. Sci. 2015, 16, 9037–9063. [Google Scholar] [CrossRef]
- Pieterse, C.M.; van Loon, L.C. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 1999, 4, 52–58. [Google Scholar] [CrossRef]
- Traw, M.B.; Bergelson, J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 2003, 133, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Ward, D. Shade affects fine-root morphology in range-encroaching eastern redcedars (Juniperus virginiana) more than competition, soil fertility and pH. Pedobiologia 2021, 84, 150708. [Google Scholar] [CrossRef]
- Li, D.-D.; Nan, H.-W.; Zhao, C.-Z.; Yin, C.-Y.; Liu, Q. Effects of warming and fertilization interacting with intraspecific competition on fine root traits of Picea asperata. J. Plant Ecol. 2021, 14, 147–159. [Google Scholar] [CrossRef]
- Akhtar, K.; Ain, N.U.; Prasad, P.V.V.; Naz, M.; Aslam, M.M.; Djalovic, I.; Riaz, M.; Ahmad, S.; Varshney, R.K.; He, B.; et al. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. Plant Genome 2024, 17, e20461. [Google Scholar] [CrossRef]
- Zhang, Z.; Diao, R.; Sun, J.; Liu, Y.; Zhao, M.; Wang, Q.; Xu, Z.; Zhong, B. Diversified molecular adaptations of inorganic nitrogen assimilation and signaling machineries in plants. New Phytol. 2024, 241, 2108–2123. [Google Scholar] [CrossRef]
- Chen, Y.; Murchie, E.H.; Hubbart, S.; Horton, P.; Peng, S. Effects of season-dependent irradiance levels and nitrogen-deficiency on photosynthesis and photoinhibition in field-grown rice (Oryza sativa). Physiol. Plant. 2003, 117, 343–351. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; GK, S.; Vadivel, R.; TK, D.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, Y.; Ma, Q.; Li, F.; Tao, R.; Li, T.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; et al. Comparative transcriptomic and metabolomic analysis revealed molecular mechanism of two wheat near-isogenic lines response to nitrogen application. Plant Physiol. Biochem. 2023, 195, 47–57. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, Y.; Ma, Y.; Liu, D.; Shi, H. Single-cell transcriptome analyses reveal cellular and molecular responses to low nitrogen in burley tobacco leaves. Physiol. Plant 2023, 175, e14118. [Google Scholar] [CrossRef]
- Effah, Z.; Li, L.; Xie, J.; Karikari, B.; Liu, C.; Xu, A.; Zeng, M. Transcriptome profiling reveals major structural genes, transcription factors and biosynthetic pathways involved in leaf senescence and nitrogen remobilization in rainfed spring wheat under different nitrogen fertilization rates. Genomics 2022, 114, 110271. [Google Scholar] [CrossRef]
- Wang, D.; Xu, T.; Yin, Z.; Wu, W.; Geng, H.; Li, L.; Yang, M.; Cai, H.; Lian, X. Overexpression of OsMYB305 in Rice Enhances the Nitrogen Uptake Under Low-Nitrogen Condition. Front. Plant Sci. 2020, 11, 369. [Google Scholar] [CrossRef]
- Jiang, L.; Ball, G.; Hodgman, C.; Coules, A.; Zhao, H.; Lu, C. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen. Genes 2018, 9, 151. [Google Scholar] [CrossRef]
- Li, P.; Du, R.; Li, Z.; Chen, Z.; Li, J.; Du, H. An integrated nitrogen utilization gene network and transcriptome analysis reveal candidate genes in response to nitrogen deficiency in Brassica napus. Front. Plant Sci. 2023, 14, 1187552. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Z.S.; Xia, J.Q.; Alfatih, A.; Song, Y.; Huang, Y.J.; Wan, G.Y.; Sun, L.Q.; Tang, H.; Liu, Y.; et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnol. J. 2021, 19, 448–461. [Google Scholar] [CrossRef]
- Liu, Z.; Ge, X.-X.; Qiu, W.-M.; Long, J.-M.; Jia, H.-H.; Yang, W.; Dutt, M.; Wu, X.-M.; Guo, W.-W. Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus. Plant Sci. 2018, 277, 121–131. [Google Scholar] [CrossRef]
- Wang, F.; Perry, S.E. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol. 2013, 161, 1251–1264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Dai, X.; Li, J.; Liu, N.; Liu, X.; Li, S.; Xiang, F. The Type-B Cytokinin Response Regulator ARR1 Inhibits Shoot Regeneration in an ARR12-Dependent Manner in Arabidopsis[OPEN]. Plant Cell 2020, 32, 2271–2291. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [CrossRef] [PubMed]
- Lauter, F.R.; Ninnemann, O.; Bucher, M.; Riesmeier, J.W.; Frommer, W.B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc. Natl. Acad. Sci. USA 1996, 93, 8139–8144. [Google Scholar] [CrossRef]
- von Wiren, N.; Lauter, F.R.; Ninnemann, O.; Gillissen, B.; Walch-Liu, P.; Engels, C.; Jost, W.; Frommer, W.B. Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J. 2000, 21, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Couturier, J.; Montanini, B.; Martin, F.; Brun, A.; Blaudez, D.; Chalot, M. The expanded family of ammonium transporters in the perennial poplar plant. New Phytol. 2007, 174, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Paterson, A.H. MCScanX-transposed: Detecting transposed gene duplications based on multiple colinearity scans. Bioinformatics 2013, 29, 1458–1460. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nakai, K.; Horton, P. PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 1999, 24, 34–36. [Google Scholar] [CrossRef]
- Savojardo, C.; Martelli, P.L.; Fariselli, P.; Profiti, G.; Casadio, R. BUSCA: An integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018, 46, W459–W466. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zeng, L.; Wen, H.; Brown, S.E.; Wu, H.; Li, X.; Lin, C.; Liu, Z.; Mao, Z. Steroidal saponin profiles and their key genes for synthesis and regulation in Asparagus officinalis L. by joint analysis of metabolomics and transcriptomics. BMC Plant Biol. 2023, 23, 207. [Google Scholar] [CrossRef]
Gene Name | Gene ID | Chr | CDS (bp) | AA | MW (kDa) | pI | TMD | Predicted Subcellular Localization |
---|---|---|---|---|---|---|---|---|
CqAMT1.2a | AUR62006987 | 5 | 1500 | 499 | 53.38 | 7.1 | 11 | Plasma membrane |
CqAMT1.2b | AUR62000634 | 12 | 1497 | 498 | 53.31 | 7.1 | 11 | Plasma membrane |
CqAMT1.2c | AUR62006988 | 5 | 1485 | 494 | 46.52 | 7.03 | 10 | Plasma membrane |
CqAMT1.2d | AUR62000635 | 12 | 1488 | 495 | 53.06 | 7.03 | 11 | Plasma membrane |
CqAMT1.3a | AUR62001658 | 7 | 1389 | 462 | 44.02 | 5.47 | 7 | Plasma membrane |
CqAMT1.3b | AUR62020119 | 18 | 1389 | 462 | 47.84 | 5.47 | 9 | Plasma membrane |
CqAMT1.4a | AUR62008822 | 17 | 1500 | 499 | 53.47 | 6.04 | 11 | Plasma membrane |
CqAMT1.4b | AUR62025419 | 7 | 1500 | 499 | 53.45 | 5.78 | 11 | Plasma membrane |
CqAMT2.2a | AUR62035890 | 7 | 1518 | 505 | 54.12 | 6.3 | 9 | Plasma membrane |
CqAMT2.2b | AUR62035356 | 11 | 1302 | 433 | 50.54 | 6.58 | 9 | Plasma membrane |
CqAMT3.1a | AUR62039048 | 12 | 933 | 310 | 33.79 | 9.52 | 7 | Plasma membrane |
CqAMT3.1b | AUR62004789 | 5 | 1461 | 486 | 52.71 | 8.87 | 11 | Plasma membrane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, H.; Manzoor, N.; Dongcheng, W.; Su, Y.; Liu, Z.; Lin, C.; Mao, Z. The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa. Plants 2024, 13, 3524. https://doi.org/10.3390/plants13243524
Wang X, Wu H, Manzoor N, Dongcheng W, Su Y, Liu Z, Lin C, Mao Z. The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa. Plants. 2024; 13(24):3524. https://doi.org/10.3390/plants13243524
Chicago/Turabian StyleWang, Xiangxiang, He Wu, Nazer Manzoor, Wenhua Dongcheng, Youbo Su, Zhengjie Liu, Chun Lin, and Zichao Mao. 2024. "The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa" Plants 13, no. 24: 3524. https://doi.org/10.3390/plants13243524
APA StyleWang, X., Wu, H., Manzoor, N., Dongcheng, W., Su, Y., Liu, Z., Lin, C., & Mao, Z. (2024). The Identification of AMT Family Genes and Their Expression, Function, and Regulation in Chenopodium quinoa. Plants, 13(24), 3524. https://doi.org/10.3390/plants13243524