Salinity Stress Responses and Adaptation Mechanisms of Zygophyllum propinquum: A Comprehensive Study on Growth, Water Relations, Ion Balance, Photosynthesis, and Antioxidant Defense
<p>Comparison of <span class="html-italic">Zygophyllum propinquum</span> plants grown under different (mM) NaCl treatments for 15 days under a green net house.</p> "> Figure 2
<p>Morphological changes of <span class="html-italic">Zygophyllum propinquum</span> leaves in response to different NaCl treatments (0, 150, 300, 600, and 900 mM) (<b>A</b>) fresh weight (FW g<sup>−1</sup> plants); (<b>B</b>) dry weight (DW g<sup>−1</sup> plants); (<b>C</b>) leaf area (cm<sub>2</sub> plant<sup>−1</sup>). Bars represent the mean ± standard error (n = 3). Bars with different letters are significantly different from each other (<span class="html-italic">p</span> < 0.05; post-hoc test). <span class="html-italic">F</span>-values based on one-way ANOVA for the effect of salinity are given. Where, *** = <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>Effects of different NaCl treatments (0, 150, 300, 600, and 900 mM) on (<b>A</b>) succulence (g H<sub>2</sub>O g<sup>−1</sup> DW) and (<b>B</b>) relative water content (RWC %) of <span class="html-italic">Zygophyllum propinquum</span> leaves. Bars represent mean ± standard error (n = 3). Bars with different letters are significantly different from each other (<span class="html-italic">p</span> < 0.05; post-hoc test). <span class="html-italic">F</span>-values based on one-way ANOVA for the effect of salinity are given. Where, *** = <span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>Effect of different NaCl treatments (0, 150, 300, 600, and 900 mM) on Osmotic potential <span class="html-italic">Ψ<sub>s</sub></span> (MPa) and Percent osmotic contribution of Na<sup>+</sup> in <span class="html-italic">Zygophyllum propinquum</span> roots and leaves. Bars represent mean ± standard error (n = 3). The circles represent the osmotic potential of the irrigation solution. Bars with different letters are significantly different from each other (<span class="html-italic">p</span> < 0.05; post-hoc test).</p> "> Figure 5
<p>Effects of various levels of NaCl treatments (mM) on (<b>A</b>) Na<sup>+</sup> concentration in root and leaf; (<b>B</b>) K<sup>+</sup> concentration in root and leaf; (<b>C</b>,<b>E</b>) Na<sup>+</sup> content in root and leaf; (<b>D</b>,<b>F</b>) K<sup>+</sup> content in roots and leaves of <span class="html-italic">Zygophyllum propinquum</span>. Bars represent the mean ± standard error. Bars with different letters are significantly different from each other (<span class="html-italic">p</span> < 0.05; Bonferroni test).</p> "> Figure 6
<p>Effects of various levels of NaCl treatments (mM) on (<b>A</b>) Na<sup>+</sup> to K<sup>+</sup> ratio in root and leaf; (<b>B</b>) K<sup>+</sup> selective absorption over Na<sup>+</sup> (<b>C</b>) osmotic contribution of Na<sup>+</sup> in root and leaf; (<b>D</b>) osmotic contribution of K<sup>+</sup> in roots and leaves of Zygophyllum propinquum. Bars represent mean ± standard error. Bars with different alphabets are significantly different from each other (<span class="html-italic">p</span> < 0.05; Bonferroni test).</p> "> Figure 7
<p>The effects of different NaCl treatments (0, 150, 300, 600, and 900 mM) and range of irradiance on the light response curve of <span class="html-italic">Zygophyllum propinquum</span> indicating absolute electron transport rate (<span class="html-italic">ETR</span>*), non-photochemical quenching (<span class="html-italic">NPQ</span>), photochemical quenching (<span class="html-italic">qP</span>), and maximum quantum efficiency (<span class="html-italic">F<sub>v</sub></span>/<span class="html-italic">F<sub>m</sub></span>). Each symbol represents the mean values ± standard error of five replicates.</p> "> Figure 8
<p>The effects of different NaCl treatments (0, 150, 300, 600, and 900 mM) and range of irradiance on the light response curve of <span class="html-italic">Zygophyllum propinquum</span> indicating relative fluorescence yields Y(II), non-photochemical quenching (YNPQ) and non-regulated photochemical quenching (YNO). Values are the mean of five replicates with mean ± standard error.</p> "> Figure 9
<p>Effects of different NaCl treatments (0, 150, 300, 600, and 900 mM) on electrolyte leakage in <span class="html-italic">Zygophyllum propinquum</span> leaves. Bars represent mean ± standard error (n = 3). Bars with different alphabets are significantly different from each other (<span class="html-italic">p</span> < 0.05; post-hoc test). <span class="html-italic">F</span>-values based on one-way ANOVA for the effect of salinity are given. Where, *** = <span class="html-italic">p</span> < 0.001.</p> "> Figure 10
<p>Effects of different NaCl treatments (0, 150, 300, 600, and 900 mM) on (<b>A</b>) MDA (nmol g<sup>−1</sup> FW) and (<b>B</b>) H<sub>2</sub>O<sub>2</sub> (µmol g<sup>−1</sup> FW) content in the roots and leaves of <span class="html-italic">Zygophyllum propinquum</span>. Symbols represent the mean ± standard error (n = 3). Symbols with different letters are significantly different from each other (<span class="html-italic">p</span> < 0.05; post-hoc test). <span class="html-italic">F</span>-values based on one-way ANOVA for the effect of salinity are given. Where, * = <span class="html-italic">p</span> < 0.05 and *** = <span class="html-italic">p</span> < 0.001.</p> "> Figure 11
<p>Effects of different NaCl treatments (0, 150, 300, 600, and 900 mM) on activity (Unit mg<sup>−1</sup> protein) of (<b>A</b>) superoxide dismutase (<span class="html-italic">SOD</span>), (<b>B</b>) catalase (<span class="html-italic">CAT</span>), (<b>C</b>) guaiacol peroxidase (<span class="html-italic">GPX</span>), (<b>D</b>) ascorbate peroxidase (<span class="html-italic">APX</span>) and (<b>E</b>) glutathione reductase (<span class="html-italic">GR</span>) in roots and leaves of <span class="html-italic">Zygophyllum propinquum</span>. Symbols represent mean ± standard error (n = 3). Symbols with different alphabets are significantly different from each other (<span class="html-italic">p</span> < 0.05; post-hoc test). <span class="html-italic">F</span>-values based on one-way ANOVA for the effect of salinity are given. Where, ns = nonsignificant, ** = <span class="html-italic">p</span> < 0.01 and *** = <span class="html-italic">p</span> < 0.001.</p> "> Figure 12
<p>Effects of various NaCl treatments (0, 150, 300, 600, and 900 mM) on the contents of ascorbate (<span class="html-italic">AsA</span>) and glutathione (<span class="html-italic">GSH</span>) in root and leaf of <span class="html-italic">Zygophyllum propinquum</span>. Symbols represent mean ± standard error (n = 3). Symbols with different alphabets are significantly different from each other (<span class="html-italic">p</span> < 0.05; post-hoc test). <span class="html-italic">F</span>-values based on one-way ANOVA for the effect of salinity are given. Where, *** = <span class="html-italic">p</span> < 0.001.</p> "> Figure 13
<p>Summary of the physiological and biochemical responses of <span class="html-italic">Zygophyllum propinquum</span> during vegetative growth under various NaCl treatments (0, 150, 300, 600, and 900 mM). Green boxes represent leaf parameters and brown boxes represent roots.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Collection Site, Growth Conditions, and NaCl Treatment
2.2. Growth Parameters, Leaf Area, and Succulence
2.3. Relative Water Content (RWC)
2.4. Water Relations
2.5. Cation Contents
2.6. Determination of Photosynthetic Pigments
2.7. Chlorophyll Fluorescence Measurements
2.8. Electrolyte Leakage
2.9. Oxidative Stress Markers
2.10. Antioxidant Enzyme Activities
2.11. Antioxidant Substances
2.12. Statistical Analyses
3. Results
3.1. Effects of Salinity on Plant Growth
3.2. Effects of Salinity on Water-Related Parameters
3.3. Effect of Salinity on the Concentration, Content, and Tissue-Specific Distribution of Na+ and K+
3.4. Effects of Salinity on Photosynthetic Pigments
3.5. Effects of Salinity on Chlorophyll Fluorescence Parameters
3.6. Effects of Salinity on Electrolyte Leakage
3.7. Malondialdehyde (MDA) and Hydrogen Peroxide (H2O2) Contents
3.8. Antioxidant Enzyme Activities
3.9. Antioxidant Substrates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oustani, M.; Halilat, M.T.; Chenchouni, H. Effect of poultry manure on the yield and nutriments uptake of potato under saline conditions of arid regions. Emir. J. Food Agric. 2015, 27, 106. [Google Scholar] [CrossRef]
- Chenchouni, H. Edaphic factors control inland halophytes’ distribution in an ephemeral salt lake “Sabkha ecosystem” at North African semi-arid lands. Sci. Total Environ. 2017, 575, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Elshaikh, A.; Mabrouki, J. Impact of Agricultural Soil Degradation on Water and Food Security. In Artificial Intelligence Systems in Environmental Engineering; CRC Press: Boca Raton, FL, USA, 2024; pp. 13–24. [Google Scholar]
- Al-Hawija, B.N.; Partzsch, M.; Hensen, I. Effects of temperature, salinity and cold stratification on seed germination in halophytes. Nord. J. Bot. 2012, 30, 627–634. [Google Scholar] [CrossRef]
- Estrelles, E.; Biondi, E.; Galiè, M.; Mainardi, F.; Hurtado, A.; Soriano, P. Aridity level, rainfall pattern and soil features are key factors in germination strategies in salt-affected plant communities. J. Arid Environ. 2015, 117, 1–9. [Google Scholar] [CrossRef]
- Gul, B.; Hameed, A.; Weber, D.J.; Khan, M.A. Assessing seed germination responses of great basin halophytes to various exogenous chemical treatments under saline conditions. In Sabkha Ecosystems; Khan, M.A., Boër, B., Ȫzturk, M., Clüsener-Godt, M., Gul, B., Breckle, S.W., Eds.; Springer: New York, NY, USA, 2016; Volume V, pp. 85–104. [Google Scholar]
- González-Alcaraz, M.N.; Jiménez-Cárceles, F.J.; Álvarez, Y.; Álvarez-Rogel, J. Gradients of soil salinity, moisture, and plant distribution in a Mediterranean semiarid saline watershed: A model of soil–plant relationships for contributing to the management. Catena 2014, 115, 150–158. [Google Scholar] [CrossRef]
- Ribeiro, J.P.N.; Matsumoto, R.S.; Takao, L.K.; Lima, M.I.S. Plant zonation in a tropical irregular estuary: Can large occurrence zones be explained by a tradeoff model? Braz. J. Biol. 2015, 75, 511–516. [Google Scholar] [CrossRef]
- Pennings, S.C.; Grant, M.B.; Bertness, M.D. Plant zonation in low-latitude salt marshes: Disentangling the roles of flooding, salinity and competition. J. Ecol. 2005, 93, 159–167. [Google Scholar] [CrossRef]
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Sobhanian, H.; Aghaei, K.; Komatsu, S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteom. 2011, 74, 1323–1337. [Google Scholar] [CrossRef] [PubMed]
- Koyro, H.W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ. Exp. Bot. 2006, 56, 136–146. [Google Scholar] [CrossRef]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2013, 65, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Flowers, T.J.; Munns, R.; Colmer, T.D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 2015, 115, 419–431. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 2015, 115, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Qadir, M.; Qureshi, A.S.; Cheraghi, S.A.M. Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad. Dev. 2008, 19, 214–227. [Google Scholar] [CrossRef]
- Toderich, K.; Tsukatani, T.; Shoaib, I.; Massino, I.; Wilhelm, M.; Yusupov, S.; Kuliev, T.; Ruziev, S. Extent of salt affected land in Central Asia: Biosaline agriculture and utilization of the salt-affected resources. KIER Discuss. Pap. 2008, 648, 129560. [Google Scholar]
- Wang, S.M.; Wan, C.G.; Wang, Y.R.; Chen, H.; Zhou, Z.Y.; Fu, H.; Sosebeeb, R.E. The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J. Arid Environ. 2004, 56, 525–539. [Google Scholar] [CrossRef]
- Song, J.; Feng, G.; Tian, C.Y.; Zhang, F.S. Osmotic adjustment traits of Suaeda physophora, Haloxylon ammodendron and Haloxylon persicum in field or controlled conditions. Plant Sci. 2006, 170, 113–119. [Google Scholar] [CrossRef]
- Ruan, C.J.; Li, H.; Guo, Y.Q.; Qin, P.; Gallagher, J.L.; Seliskar, D.M.; Lutts, S.; Mahy, G. Kosteletzkya virginica, an agroecoengineering halophytic species for alternative agricultural production in China’s east coast: Ecological adaptation and benefits, seed yield, oil content, fatty acid and biodiesel properties. Ecol. Eng. 2008, 32, 320–328. [Google Scholar] [CrossRef]
- Khedr, A.H.A.; Serag, M.S.; Nemat-Alla, M.M.; El-Naga, A.Z.A.; Nada, R.M.; Quick, W.P.; Abogadallah, G.M. Growth stimulation and inhibition by salt about Na+ manipulating genes in xero-halophyte Atriplex halimus L. Acta Physiol. Plant. 2011, 33, 1769–1784. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, W.; Zhao, M.; Zheng, Y.; Yang, F. NaCl and Na2SiO3 coexistence strengthens the growth of the succulent xerophyte Nitraria tangutorum under drought. Plant Growth Regul. 2015, 77, 223–232. [Google Scholar] [CrossRef]
- Ruan, C.J.; Teixeira da Silva, J.A. Metabolomics: Creating new potentials for unraveling the mechanisms in response to salt and drought stress and for the biotechnological improvement of xero-halophytes. Crit. Rev. Biotechnol. 2011, 31, 153–169. [Google Scholar] [CrossRef]
- Shabala, S. Learning from halophytes: Physiological basis and strategies to improve abiotic stress tolerance in crops. Ann. Bot. 2013, 112, 1209–1221. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Martìnez, J.P.; Lutts, S.; Schanck, A.; Bajji, M.; Kinet, J.M. Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.? J. Plant Physiol. 2004, 161, 1041–1051. [Google Scholar] [CrossRef]
- Martínez, J.P.; Kinet, J.M.; Bajji, M.; Lutts, S. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J. Exp. Bot. 2005, 56, 2421–2431. [Google Scholar] [CrossRef] [PubMed]
- Slama, I.; Ghnaya, T.; Messedi, D.; Hessini, K.; Labidi, N.; Savoure, A.; Abdelly, C. Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. J. Plant Res. 2007, 120, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.J.; Li, S.X.; Ma, Q.; Zhou, X.R.; Wu, G.Q.; Bao, A.K.; Zhang, J.L.; Wang, S.M. NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. J. Arid Environ. 2012, 87, 153–160. [Google Scholar] [CrossRef]
- Ma, Q.; Bao, A.K.; Chai, W.W.; Wang, W.Y.; Zhang, J.L.; Li, Y.X.; Wang, S.M. Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress. Plant Soil 2016, 402, 343–361. [Google Scholar] [CrossRef]
- Glenn, E.; Brown, J. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am. J. Bot. 1998, 85, 10. [Google Scholar] [CrossRef] [PubMed]
- Reef, R.; Lovelock, C.E. Regulation of water balance in mangroves. Ann. Bot. 2015, 115, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Yue, L.J.; Zhang, J.L.; Wu, G.Q.; Bao, A.K.; Wang, S.M. Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol. 2012, 32, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Borawska-Jarmułowicz, B.; Mastalerczuk, G.; Kalaji, H.M.; Carpentier, R.; Pietkiewicz, S.; Allakhverdiev, S.I. Following low temperature stress, photosynthetic efficiency and survival of Dactylis glomerata and Lolium perenne. Russ. J. Plant Physiol. 2014, 61, 281–288. [Google Scholar] [CrossRef]
- Dąbrowski, P.; Baczewska, A.H.; Pawluśkiewicz, B.; Paunov, M.; Alexantrov, V.; Goltsev, V.; Kalaji, M.H. Prompt chlorophyll fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J. Photochem. Photobiol. B Biol. 2016, 157, 22–31. [Google Scholar] [CrossRef]
- Qiu, N.; Lu, Q.; Lu, C. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol. 2003, 159, 479–486. [Google Scholar] [CrossRef]
- Adams, W.W.; Demmig-Adams, B. Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 1992, 186, 390–398. [Google Scholar] [CrossRef]
- Takahashi, S.; Badger, M.R. Photo-protection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011, 16, 53–60. [Google Scholar] [CrossRef]
- Eskling, M.; Arvidsson, P.O.; Åkerlund, H.E. The xanthophyll cycle, its regulation and components. Physiol. Plant. 1997, 100, 806–816. [Google Scholar] [CrossRef]
- Müller, P.; Li, X.P.; Niyogi, K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Mehler, A.H. Studies on reactions of illuminated chloroplasts. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 1957, 33, 65–72. [Google Scholar] [CrossRef]
- Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef]
- Asada, K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006, 141, 391–396. [Google Scholar] [CrossRef]
- Miyake, C. Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular mechanisms and physiological functions. Plant Cell Physiol. 2010, 51, 1951–1963. [Google Scholar] [CrossRef] [PubMed]
- Driever, S.M.; Baker, N.R. The water–water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted. Plant Cell Environ. 2011, 34, 837–846. [Google Scholar] [CrossRef]
- García-Plazaola, J.I.; Esteban, R.; Fernández-Marín, B.; Kranner, I.; Porcar-Castell, A. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynth. Res. 2012, 113, 89–103. [Google Scholar] [CrossRef]
- Moinuddin, M.; Gulzar, S.; Hameed, A.; Gul, B.; Khan, M.A.; Edwards, G.E. Differences in photosynthetic syndromes of four halophytic marsh grasses in Pakistan. Photosynth. Res. 2017, 131, 51–64. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta (BBA) Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Han, W.; Xu, X.W.; Li, L.; Lei, J.Q.; Li, S.Y. Chlorophyll fluorescence responses of Haloxylon ammodendron seedlings subjected to progressive saline stress in the Tarim desert highway ecological shelterbelt. Photosynthetica 2010, 48, 635–640. [Google Scholar] [CrossRef]
- Koyro, H.W.; Hussain, T.; Huchzermeyer, B.; Khan, M.A. Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ. Exp. Bot. 2013, 91, 22–29. [Google Scholar] [CrossRef]
- Leakey, A.D. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. Lond. B Biol. Sci. 2009, 276, 2333–2343. [Google Scholar]
- Naidoo, G.; Naidoo, Y.; Achar, P. Ecophysiological responses of the salt marsh grass Spartina maritima to salinity. Afr. J. Aquat. Sci. 2012, 37, 81–88. [Google Scholar] [CrossRef]
- Bromham, L.; Bennett, T. Salt tolerance evolves more frequently in C4 grass lineages. J. Evol. Biol. 2014, 27, 653–659. [Google Scholar] [CrossRef]
- Sage, R.F.; Sage, T.L.; Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 2012, 63, 19–47. [Google Scholar] [CrossRef]
- Yildiztugay, E.; Ozfidan-Konakci, C.; Kucukoduk, M. Sphaerophysa kotschyana, an endemic species from Central Anatolia: Antioxidant system responses under salt stress. J. Plant Res. 2013, 126, 729–742. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Ozgur, R.; Uzilday, B.; Sekmen, A.H.; Turkan, I. Reactive oxygen species regulation and antioxidant defence in halophytes. Funct. Plant Biol. 2013, 40, 832–847. [Google Scholar] [CrossRef] [PubMed]
- Sekmen, H.A.; Türkan, I.; Takio, S. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol. Plant. 2007, 131, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Sekmen, A.H.; Turkan, I.; Tanyolac, Z.O.; Ozfidan, C.; Dinc, A. Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata BARK. Environ. Exp. Bot. 2012, 77, 63–76. [Google Scholar] [CrossRef]
- Qiu-Fang, Z.; Yuan-Yuan, L.; Cai-Hong, P.; Cong-Ming, L.; Bao-Shan, W. NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci. 2005, 168, 423–430. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
- Jithesh, M.N.; Prashanth, S.R.; Sivaprakash, K.R.; Parida, A.K. Antioxidative response mechanisms in halophytes: Their role in stress defense. J. Genet. 2006, 85, 237–254. [Google Scholar] [CrossRef]
- Hameed, A.; Gulzar, S.; Aziz, I.; Hussain, T.; Gul, B.; Khan, M.A. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 2015, 7, plv004. [Google Scholar] [CrossRef] [PubMed]
- Landor, S.R.; Landor, P.D.; Fomum, Z.T.; Mpango, G.W.B. Imidazoles, Benzimidazoles and Hexahydro-benzimidazoles from 1, 2-Diamines and Allenic or Acetylenic Nitriles. J. Chem. Soc. Perkin Trans. 1979, 1, 2289–2293. [Google Scholar] [CrossRef]
- Khan, M.A.; Qaiser, M. Halophytes of Pakistan: Characteristics, distribution and potential economic usages. In Sabkha Ecosystems; Khan, M.A., Kust, G.S., Barth, H.J., Böer, B., Eds.; Springer: Dordrecht, The Netherlands, 2006; Chapter 11; Volume II, pp. 129–153. [Google Scholar]
- Ghafoor, A. Flora of Pakistan, Zygophyllaceae; Nasir, E., Ali, S.I., Eds.; Department of Botany, University of Karachi: Karachi, Pakistan, 1974; p. 76. [Google Scholar]
- Gibbons, S.; Oriowo, M.A. Antihypertensive effect of an aqueous extract of Zygophyllum coccineum L. in rats. Phytother. Res. 2001, 15, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, F.; Bhawana, M.; Ahmad, S. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu (II) complex. Eur. J. Med. Chem. 2005, 40, 1103. [Google Scholar] [CrossRef]
- Tiwaria, A.K.; Mishrab, A.K.; Bajpai, A.; Mishra, P.; Singh, S.; Sinha, D.; Singh, V.K. Synthesis and evaluation of Novel Benzimidazole derivative [Bz-Im] and its radio/biological studies. Bioorganic Med. Chem. Lett. 2007, 17, 2749. [Google Scholar] [CrossRef]
- Ahmad, V.U.; Uddin, G.; Uddin, S. A triterpenoid from Zygophyllum propinquum. Phytochemistry 1992, 31, 1051–1054. [Google Scholar] [CrossRef]
- Pollmann, K.; Hani, M.A.; Elgamal, H.; Kamel, S.; Seifer, K. Triterpenoid saponins from Zygophyllum species. Phytochemistry 1995, 40, 1233–1236. [Google Scholar] [CrossRef]
- Qaisar, M.; Uddin, G.; Ahmad, V.U.; Rauf, A. Mass Fragmentation Pattern of New Zygophyllosides from Zygophyllum propinquum Decne. Middle-East J. Sci. Res. 2011, 8, 526–529. [Google Scholar]
- Shaukat, S.S.; Khan, M.A.; Mett, M.; Siddiqui, M.F. Structure, composition and diversity of the vegetation of Hub Dam catchment area, Pakistan. Pak. J. Bot. 2014, 46, 65–80. [Google Scholar]
- Epstein, E. Physiological Genetics of Plant Nutrition, Mineral Nutrition of Plants: Principles and Perspectives; John Wiley: New York, NY, USA, 1972; pp. 325–344. [Google Scholar]
- Kramer, P.J.; Boyer, J.S. Water Relations of Plants and Soils; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidation by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Van Kooten, O.; Snel, J.F. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 1990, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continous recording of photochemical and non- photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef]
- Laisk, A.; Oja, V.; Rasulov, B.; Eichelmann, H.; Sumberg, A. Quantum yields and rate constants of photochemical and non-photochemical excitation quenching (experiment and model). Plant Physiol. 1997, 115, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Harbinson, J.; Cailly, A.L.; Rizza, F. Fate of excitation at PS II in leaves: The non-photochemical side. In Proceedings of the Third BBSRC Robert Hill Symposium on Photosynthesis, Sheffield, UK, 31 March–3 April 1996; Department of Molecular Biology and Biotechnology, University of Sheffield: Western Bank, Sheffield, UK, 1996. Abstract no. P28. [Google Scholar]
- Dionisio-Sese, M.L.; Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 1998, 135, 1–9. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Polle, A.; Otter, T.; Seifert, F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 1994, 106, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assay and an assay applicable to acrylamide gel. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Abey, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Tatian, Z.; Yamashita, K.; Matsumoto, H. Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol. 1999, 40, 273–280. [Google Scholar]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Foyer, C.H.; Halliwell, B. The presence of glutathione and glutathione reductase in chloroplasts, a proposed role in ascorbic acid metabolism. Planta 1976, 133, 21–25. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein–Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Law, M.Y.; Charles, S.A.; Halliwell, B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem. J. 1983, 210, 899–903. [Google Scholar] [CrossRef]
- Anderson, M.E. Determination of glutathione and glutathione disulphide in biological samples. Methods Enzymol. 1985, 113, 548–555. [Google Scholar]
- SPSS. SPSS 16.0 for Windows, Mac OSX and UNIX; SPSS Inc.: Chicago, IL, USA, 2007. [Google Scholar]
- Hussain, T.; Koyro, H.W.; Huchzermeyer, B.; Khan, M.A. Eco-physiological adaptations of Panicum antidotale to hyperosmotic salinity: Water and ion relations and anti-oxidant feedback. Flora-Morphol. Distrib. Funct. Ecol. Plants 2015, 212, 30–37. [Google Scholar] [CrossRef]
- Yan, K.; Shao, H.B.; Shao, C.Y.; Chen, P.; Zhao, S.J.; Brestic, M.; Chen, X.B. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol. Plant. 2013, 35, 2867–2878. [Google Scholar] [CrossRef]
- Hameed, A.; Hussain, T.; Gulzar, S.; Aziz, I.; Gul, B.; Khan, M.A. Salt tolerance of a cash crop halophyte Suaeda fruticosa: Biochemical responses to salt and exogenous chemical treatments. Acta Physiol. Plant. 2012, 34, 2331–2340. [Google Scholar] [CrossRef]
- Katschnig, D.; Broekman, R.; Rozema, J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environ. Exp. Bot. 2013, 92, 32–42. [Google Scholar] [CrossRef]
- Zouhaier, B.; Najla, T.; Abdallah, A.; Wahbi, D.; Wided, C.; Chedly, A.; Abderrazak, S. Salt stress response in the halophyte Limoniastrum guyonianum Boiss. Flora-Morphol. Distrib. Funct. Ecol. Plants 2015, 217, 1–9. [Google Scholar] [CrossRef]
- Rangani, J.; Parida, A.K.; Panda, A.; Kumari, A. Coordinated changes in antioxidative enzymes protect the photosynthetic machinery from salinity induced oxidative damage and confers tolerance in an extreme halophyte Salvadora persica L. Front. Plant Sci. 2016, 7, 50. [Google Scholar] [CrossRef]
- Silveira, J.A.; Carvalho, F.E. Proteomics, photosynthesis and salt resistance in crops: An integrative view. J. Proteom. 2016, 143, 24–35. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Flowers, T.; Yeo, A.R. Ion relations of plants under drought and salinity. Funct. Plant Biol. 1986, 13, 75–91. [Google Scholar] [CrossRef]
- Sanchez, D.H.; Siahpoosh, M.R.; Roessner, U.; Udvardi, M.; Kopka, J. Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol. Plant. 2008, 132, 209–219. [Google Scholar] [CrossRef]
- Türkan, I.; Demiral, T. Recent developments in understanding salinity tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Shabala, S.N.; Mackay, A.S. Ion transport in halophytes. Adv. Bot. Res. 2011, 57, 151–187. [Google Scholar]
- Takagi, H.; Yamada, S. Roles of enzymes in anti-oxidative response system on three species of chenopodiaceous halophytes under NaCl-stress condition. Soil Sci. Plant Nutr. 2013, 59, 603–611. [Google Scholar] [CrossRef]
- Silveira, J.A.G.; Araújo, S.A.M.; Lima, J.P.M.S.; Viégas, R.A. Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environ. Exp. Bot. 2009, 66, 1–8. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Mateos-Naranjo, E.; Figueroa, M.E.; Davy, A.J. Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol. 2010, 12, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Jeong, E.M.; Ki, A.Y.; Oh, K.S.; Kwon, J.; Jeong, J.H.; Chung, N.J. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea. J. Plant Physiol. 2016, 206, 133–142. [Google Scholar] [CrossRef]
- Parida, A.K.; Jha, B. Physiological and biochemical responses reveal the drought tolerance efficacy of the halophyte Salicornia brachiata. J. Plant Growth Regul. 2013, 32, 342–352. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Wharmby, C.; Castillo, J.M.; Mateos-Naranjo, E.; Luque, C.J.; De Cires, A.; Luque, T.; Davy, A.J.; Enrique Figueroa, M. Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol. Plant. 2006, 128, 116–124. [Google Scholar] [CrossRef]
- Fan, P.; Feng, J.; Jiang, P.; Chen, X.; Bao, H.; Nie, L.; Jiang, D.; Lv, S.; Kuang, T.; Li, Y. Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins. Proteomics 2011, 11, 4346–4367. [Google Scholar] [CrossRef]
- Amjad, M.; Akhtar, S.S.; Yang, A.; Akhtar, J.; Jacobsen, S.E. Antioxidative Response of Quinoa Exposed to Iso-Osmotic, Ionic and Non-Ionic Salt Stress. J. Agron. Crop Sci. 2015, 201, 452–460. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B.; Mittra, B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 2004, 18, 167–174. [Google Scholar] [CrossRef]
- Yao, S.; Chen, S.; Xu, D.; Lan, H. Plant growth and responses of antioxidants of Chenopodium album to long-term NaCl and KCl stress. Plant Growth Regul. 2010, 60, 115–125. [Google Scholar] [CrossRef]
- Benzarti, M.; Rejeb, K.B.; Debez, A.; Messedi, D.; Abdelly, C. Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol. Plant. 2012, 34, 1679–1688. [Google Scholar] [CrossRef]
- Lu, Y.; Lei, J.; Zeng, F. NaCl salinity-induced changes in growth, photosynthetic properties, water status and enzymatic antioxidant system of Nitraria roborowskii Kom. Pak. J. Bot. 2016, 48, 843–851. [Google Scholar]
- Taiz, L.; Zeiger, E. Photosynthesis: Carbon reactions. In Plant Physiology, 5th ed.; Sinauer Associates: Sunderland, MA, USA, 2010. [Google Scholar]
- Balnokin, Y.V.; Kurkova, E.B.; Myasoedov, N.A.; Lun’kov, R.V.; Shamsutdinov, N.Z.; Egorova, E.A.; Bukhov, N.G. Structural and functional state of thylakoids in a halophyte Suaeda altissima before and after disturbance of salt–water balance by extremely high concentrations of NaCl. Russ. J. Plant Physiol. 2004, 51, 815–821. [Google Scholar] [CrossRef]
- Zhou, F.; Hua, C.; Qiu, N.; Zheng, C.; Wang, R. Promotion of growth and upregulation of thylakoid membrane proteins in the halophyte Salicornia bigelovii Torr. under saline conditions. Acta Physiol. Plant. 2015, 37, 1–7. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, X.; Tao, H.; Wang, P. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann. Appl. Biol. 2006, 149, 263–269. [Google Scholar] [CrossRef]
- Maricle, B.R.; Lee, R.W.; Hellquist, C.E.; Kiirats, O.; Edwards, G.E. Effects of salinity on chlorophyll fluorescence and CO2 fixation in C4 estuarine grasses. Photosynthetica 2007, 45, 433–440. [Google Scholar] [CrossRef]
- Stepien, P.; Johnson, G.N. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 2009, 149, 1154–1165. [Google Scholar] [CrossRef]
- Duarte, B.; Santos, D.; Marques, J.C.; Caçador, I. Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiol. Biochem. 2013, 67, 178–188. [Google Scholar] [CrossRef]
- Lutts, S.; Kinet, J.M.; Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 1996, 78, 389–398. [Google Scholar] [CrossRef]
- Mazliak, P. Plant membrane lipids: Changes and alterations during aging and senescence. In Post-Harvest Physiology and Crop Preservation; Springer: New York, NY, USA, 1983; pp. 123–140. [Google Scholar]
- Sairam, R.K.; Srivastava, G.C.; Agarwal, S.; Meena, R.C. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol. Plant. 2005, 49, 85–91. [Google Scholar] [CrossRef]
- Muchate, N.S.; Nikalje, G.C.; Rajurkar, N.S.; Suprasanna, P.; Nikam, T.D. Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora-Morphol. Distrib. Funct. Ecol. Plants 2016, 224, 96–105. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Ji, C.; Wei, L.; Zhao, J.; Yu, J. An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS ONE 2013, 8, e64041. [Google Scholar] [CrossRef]
- Liu, J.; Xia, J.; Fang, Y.; Li, T.; Liu, J. Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings. Sci. World J. 2014, 2014, 765840. [Google Scholar] [CrossRef]
- Li, Y. Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Plant Soil Environ. 2008, 54, 493–497. [Google Scholar] [CrossRef]
- Mittova, V.; Theodoulou, F.L.; Kiddle, G.; Volokita, M.; Tal, M.; Foyer, C.H.; Guy, M. Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii—A role for matrix isoforms in protection against oxidative damage. Plant Cell Environ. 2004, 27, 237–250. [Google Scholar] [CrossRef]
- Hamed, K.B.; Castagna, A.; Salem, E.; Ranieri, A.; Abdelly, C. Sea fennel (Crithmum maritimum L.) under salinity conditions: A comparison of leaf and root antioxidant responses. Plant Growth Regul. 2007, 53, 185–194. [Google Scholar] [CrossRef]
- Ellouzi, H.; Ben Hamed, K.; Cela, J.; Munné-Bosch, S.; Abdelly, C. Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol. Plant. 2011, 142, 128–143. [Google Scholar] [CrossRef]
- Noctor, G.; Veljovic-Jovanovic, S.; Driscoll, S.; Novitskaya, L.; Foyer, C.H. Drought and Oxidative Load in the Leaves of C3 Plants: A Predominant Role for Photorespiration. Ann. Bot. 2002, 89, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. 1998, 49, 249–279. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.A.; Umar, S.; Ahmad, A.; Iqbal, M.; Khan, N.A. Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione. Plant Growth Regul. 2008, 54, 271–279. [Google Scholar] [CrossRef]
Tissue | Parameters | 0 | 150 | 300 | 600 | 900 | F-Value |
---|---|---|---|---|---|---|---|
mM (NaCl) | |||||||
Root | Length (cm) | 14.56 ± 0.74 a | 15.58 ± 1.25 a | 15.16 ± 0.99 a | 13.29 ± 0.25 a | 12.55 ± 1.17 a | 1.78 ns |
FW (g plant−1) | 1.88 ± 0.09 a | 1.18 ± 0.11 b | 1.11 ± 0.06 b | 1.03 ± 0.04 b | 1.01 ± 0.05 b | 23.38 *** | |
DW (g plant−1) | 0.69 ± 0.02 a | 0.62 ± 0.04 a | 0.77 ± 0.04 a | 0.56 ± 0.04 ab | 0.46 ± 0.04 b | 7.82 ** | |
Suc. (gH2Og−1DW) | 1.73 ± 0.05 a | 1.84 ± 0.08 a | 0.44 ± 0.08 c | 0.85 ± 0.01 b | 0.64 ± 0.12 bc | 22.22 *** | |
Shoot | Length (cm) | 22.86 ± 0.82 a | 21.33 ± 0.44 a | 20.74 ± 0.99 a | 17.86 ± 0.93 b | 16.59 ± 0.75 b | 10.08 ** |
FW (g plant−1) | 36.82 ± 1.33 a | 27.75 ± 0.22 b | 19.09 ± 0.88 c | 14.38 ± 0.74 d | 8.69 ± 0.33 e | 188.90 *** | |
DW (g plant−1) | 3.66 ± 0.38 a | 3.90 ± 0.25 a | 3.45 ± 0.04 a | 2.93 ± 0.06 b | 2.86 ± 0.09 b | 12.95 ** | |
Suc. (gH2Og−1DW) | 9.21 ± 0.68 a | 6.18 ± 0.44 b | 4.53 ± 0.25 b | 4.06 ± 0.14 c | 2.04 ± 0.18 c | 34.18 *** |
Parmeters | 0 | 150 | 300 | 600 | 900 | F-Value |
---|---|---|---|---|---|---|
NaCl (mM) | ||||||
Chlorophyll a | 0.63 ± 0.02 b | 1.31 ± 0.07 a | 0.98 ± 0.06 ab | 1.19 ± 0.14 a | 0.87 ± 0.01 ab | 13.42 ** |
Chlorophyll b | 0.43 ± 0.01 b | 0.69 ± 0.01 ab | 0.85 ± 0.12 a | 0.82 ± 0.08 a | 0.48 ± 0.01 b | 8.96 * |
Total chlorophyll | 1.06 ± 0.02 b | 2.01 ± 0.06 a | 1.83 ± 0.12 a | 2.00 ± 0.12 a | 1.35 ± 0.01 b | 27.84 *** |
Carotenoids | 0.16 ± 0.00 a | 0.17 ± 0.02 a | 0.22 ± 0.02 a | 0.19 ± 0.02 a | 0.20 ± 0.01 a | 2.17 ns |
a/b ratio | 1.47 ± 0.05 a | 1.89 ± 0.10 a | 1.21 ± 0.23 a | 1.51 ± 0.26 a | 1.81 ± 0.04 a | 2.86 ns |
ch/car ratio | 6.64 ± 0.25 c | 11.86 ± 0.85 a | 8.69 ± 1.60 b | 11.48 ± 1.56 a | 6.91 ± 0.15 c | 5.20 ** |
Parameters | 0 | 150 | 300 | 600 | 900 | F-Value |
---|---|---|---|---|---|---|
NaCl (mM) | ||||||
ETRmax | 43.33 ± 2.20 a | 44.95 ± 1.25 a | 47.07 ± 1.09 a | 16.43 ± 1.35 b | 13.23 ± 0.61 b | 140.43 *** |
Fv/Fm×ETR/2 | 0.31 ± 0.00 b | 0.32 ± 0.00 a | 0.32 ± 0.00 b | 0.30 ± 0.00 c | 0.18 ± 0.00 c | 481.46 *** |
IK | 184.07 ± 8.43 a | 230.78 ± 7.27 a | 170.30 ± 2.50 a | 98.43 ± 0.86 a | 91.83 ± 1.52 b | 116.87 *** |
Alpha | 0.23 ± 0.00 a | 0.21 ± 0.01 a | 0.17 ± 0.00 b | 0.17 ± 0.01 b | 0.09 ± 0.00 c | 114.12 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, B.; Manzoor, S.; Rasheed, A.; Hameed, A.; Ahmed, M.Z.; Koyro, H.-W. Salinity Stress Responses and Adaptation Mechanisms of Zygophyllum propinquum: A Comprehensive Study on Growth, Water Relations, Ion Balance, Photosynthesis, and Antioxidant Defense. Plants 2024, 13, 3332. https://doi.org/10.3390/plants13233332
Gul B, Manzoor S, Rasheed A, Hameed A, Ahmed MZ, Koyro H-W. Salinity Stress Responses and Adaptation Mechanisms of Zygophyllum propinquum: A Comprehensive Study on Growth, Water Relations, Ion Balance, Photosynthesis, and Antioxidant Defense. Plants. 2024; 13(23):3332. https://doi.org/10.3390/plants13233332
Chicago/Turabian StyleGul, Bilquees, Sumaira Manzoor, Aysha Rasheed, Abdul Hameed, Muhammad Zaheer Ahmed, and Hans-Werner Koyro. 2024. "Salinity Stress Responses and Adaptation Mechanisms of Zygophyllum propinquum: A Comprehensive Study on Growth, Water Relations, Ion Balance, Photosynthesis, and Antioxidant Defense" Plants 13, no. 23: 3332. https://doi.org/10.3390/plants13233332
APA StyleGul, B., Manzoor, S., Rasheed, A., Hameed, A., Ahmed, M. Z., & Koyro, H. -W. (2024). Salinity Stress Responses and Adaptation Mechanisms of Zygophyllum propinquum: A Comprehensive Study on Growth, Water Relations, Ion Balance, Photosynthesis, and Antioxidant Defense. Plants, 13(23), 3332. https://doi.org/10.3390/plants13233332