Exploring Imaging Techniques for Detecting Tomato Spotted Wilt Virus (TSWV) Infection in Pepper (Capsicum spp.) Germplasms
<p>Line graph showing the progressive growth of plant accessions based on top-view area (cm<sup>2</sup>), disease area (cm<sup>2</sup>), and disease severity (%) of the accessions, species, and the disease severity status of the pepper infected with TSWV-YI. For the graph on accessions, the red lines represent accessions with high disease severity, the black lines represent accessions with moderate disease severity and the green lines represent accessions with low disease severity to TSWV-YI.</p> "> Figure 2
<p>RGB images showing infection trends among <span class="html-italic">low</span>, <span class="html-italic">moderate</span>, and <span class="html-italic">high</span> disease severity to TSWV-YI infection of three selected accessions (IT218962—low severity, IT136625—moderate severity, and IT158568—high severity). Infected—plants inoculated with the TSWV; non-infected—the non-inoculated plants (control). The values in white are the average total areas (in cm<sup>2</sup>) of the five plants per accession, measured by the top-view camera at a distance of 0.6 m from the plants, while the values in black are the average infected parts (in cm<sup>2</sup>) of the five plants per accession, based on the image segmentation.</p> "> Figure 3
<p>Hyperspectral analysis—hyperspectral images showing normalized difference vegetation index (NDVI) of selected accessions (IT218962—low severity, IT136625—moderate severity, IT158568—high severity, and IT284034—non-infected) based on TSWV symptoms assessments.</p> "> Figure 4
<p>Hyperspectral reflectance of five spots on the leaf surfaces of high, moderate, and low severities, and non-infected plants. (<b>A</b>,<b>B</b>,<b>E</b>,<b>F</b>) from 400.93 to 1004.5 nm and (<b>C</b>,<b>D</b>,<b>G</b>,<b>H</b>) from 430 to 470 nm wavelengths on the electromagnetic spectrum. The bands indicate the number of spots selected on the plants. The broken black arrows show the band spot at which the infected areas were separated from the normal areas, and where symptoms of TSWV were assumed to be detected.</p> "> Figure 5
<p>RGB and hyperspectral imaging for TSWV-YI common symptoms in pepper germplasm—mosaic, necrosis, ring spot, puckered leaf, and non-infected plant. NDVI—normalized difference vegetation index.</p> "> Figure 6
<p>RGB and hyperspectral imaging boxes used for the experiment. (<b>A</b>) The RGB imaging set up with a Sony<sup>®</sup> camera, plants, scale bar, and flashlights. (<b>B</b>) Imaging box containing an infra-red camera, RGB camera, hyperspectral camera, and flashlights. A conveyor moves the plant for imaging. A scale bar was included for image segmentation and unit conversion from pixels into mm.</p> "> Figure 7
<p>RGB image processing, segmentation, and measurement. (<b>A</b>) Raw image from the top view Sony<sup>®</sup> camera. (<b>B</b>) Scale bar to convert units from pixels into mm<sup>2</sup>. (<b>C</b>) Image background noise removed. (<b>D</b>) Total leaf area masked in red. (<b>E</b>) Disease leaf area segmented as a red mask. (<b>F</b>) Disease area selected for measurement.</p> "> Figure 8
<p>Hyperspectral image analysis process. (<b>A</b>,<b>B</b>)—band detection, (<b>C</b>,<b>D</b>)—intensity of TSWV infected parts of the plant, and (<b>E</b>)—NDVI plot showing areas affected by the virus based on a scale (green indicating low intensity and red indicating high intensity). The black arrow shows the band spot where the TSWV infection was assumed to be detected.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Response of Pepper Germplasms to TSWV Infection
2.2. RGB Imaging
2.3. Hyperspectral Analysis
2.4. Common TSWV Symptoms of Pepper
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Bioassay for TSWV Infection
4.3. Total RNA Extraction and Reverse Transcription-PCR
4.4. Red–Green–Blue (RGB) and Hyperspectral Image Acquisitions
4.5. RGB Image Processing
4.6. Hyperspectral Image Processing
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variations | Canopy Spread | Disease Area | Percentage Severity |
---|---|---|---|
Accessions | 0.0001 | 0.0001 | 0.0001 |
Time | 0.0001 | 0.0001 | 0.0001 |
Accessions × Time | 0.0001 | 0.0001 | 0.0001 |
Species | 0.0001 | 0.0001 | 0.0001 |
Time | 0.0001 | 0.0001 | 0.0009 |
Species × Time | 0.0001 | 0.0001 | 0.0472 |
Severity Status | 0.0024 | 0.0001 | 0.0001 |
Time | 0.0001 | 0.0001 | 0.0001 |
Severity Status × Time | 0.0072 | 0.0001 | 0.0001 |
References
- Food and Agricultural Organization (FAO). Plant Production and Protection. 2024. Available online: https://www.fao.org/plant-production-protection/about/en (accessed on 19 July 2024).
- Savary, S.; Willocquet, L.; Pathybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ojinaga, M.; Guirao, P.; Larregla, S. A survey of main pepper crop viruses in different cultivation systems for the selection of the most appropriate resistance genes in sensitive local cultivars in Northern Spain. Plants 2022, 11, 719. [Google Scholar] [CrossRef]
- Moury, B.; Verdin, E. Viruses of Pepper Crops in the Mediterranean Basin. A Remarkable Stasis. In Advances in Virus Research, 1st ed.; Loebenstein, G., Lecoc, H., Eds.; Elsevier: San Diego, CA, USA, 2012; pp. 127–162. [Google Scholar] [CrossRef]
- Pernezny, K.; Roberts, P.D.; Murphy, J.D.; Goldberg, N.P. (Eds.) Compendium of Pepper Diseases; APS Press: St. Paul, MN, USA, 2003; p. 88. [Google Scholar]
- Kenyon, L.; Kumar, S.; Tsai, W.S.; Hughes, J.A. Virus Diseases of Peppers (Capsicum spp.) and Their Control. In Control of Plant Virus Diseases Seed-Propagated Crops, 1st ed.; Loebenstein, G., Katis, N., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 297–354. [Google Scholar] [CrossRef]
- Minicka, J.; Taberska, A.; Borodynka-Filas, N.; Kazminska, K.; Bartoszewski, G.; Hasiow-Jaroszewska, B. Viruses infecting Capsicum crops in Polant and molecular characterization of newly detected bell pepper alphaendornarivus (BPEV). Crop Prot. 2024, 176, 106478. [Google Scholar] [CrossRef]
- Waweru, B.M.; Kilalo, D.C.; Miano, D.M.; Kimenju, J.W.; Rukundo, P. Diversity and economic importance of viral diseases of pepper (Capsicum spp.) in Eastern Africa. J. Appl. Hortic. 2019, 21, 70–76. [Google Scholar] [CrossRef]
- Choi, G.S.; Kim, J.H.; Lee, D.H.; Kim, J.S. Occurrence and distribution of viruses infecting pepper in Korea. Plant Pathol. J. 2005, 21, 258–261. [Google Scholar] [CrossRef]
- Kil, E.J.; Chung, Y.J.; Choi, H.S.; Lee, S.; Kim, C.S. Life cycle-based host range analysis for tomato spotted wilt virus in Korea. Plant Pathol. J. 2020, 36, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Brittlebank, C.C. Tomato diseases. J. Dep. Agric. Vict. 1919, 17, 213–235. [Google Scholar]
- Nilon, A.; Robinson, K.; Pappu, H.R.; Mitter, N. Current status and potential of RNA interference for the management of Tomato Spotted Wilt Virus and Thrips Vectors. Pathogens 2021, 10, 320. [Google Scholar] [CrossRef]
- Scholthof, K.-B.G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 2011, 12, 938–954. [Google Scholar] [CrossRef]
- Adkins, S. Tomato spotted wilt virus—Positive steps towards negative success. Mol. Plant Pathol. 2000, 1, 151–157. [Google Scholar] [CrossRef]
- Rotenberg, D.; Jacobson, A.L.; Schneweis, D.J.; Whitefield, A.E. Thrips transmission of topspoviruses. Curr. Opin. Virol. 2015, 15, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Salamon, P.; Mitykó, J.; Kalo, P.; Szabo, Z. Symptoms caused by Tomato spotted wilt virus (TSWV) in pepper (Capsicum spp.) and marker assisted selection of TSWV resistant pepper lines for hybrid constructions. In Proceedings of the XVI, Eucarpia Capsicum and Eggplant Meeting, Kecskemét, Hungary, 12–14 September 2016; Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20183245189 (accessed on 12 October 2024).
- Riley, D.G.; Joseph, S.V.; Srinivasan, R.; Diffie, S. Thrips vectors of tospoviruses. J. Integr. Pest Manag. 2011, 1, 11–21. [Google Scholar] [CrossRef]
- Riley, D.G.; Pappu, H. Tactics for management of thrips (Thysanoptera: Thripidae) and tomato spotted wilt Tospovirus in tomato. J. Econ. Entomol. 2004, 97, 1648–1658. [Google Scholar] [CrossRef]
- Morsello, S.C.; Kennedy, G.G. Spring temperature and precipitation affect tobacco thrips, Frankliniella fusca, population growth and tomato spotted wilt virus spread within patches of the winter annual weed Stellaria media. Entomol. Exp. Appl. 2009, 130, 138–148. [Google Scholar] [CrossRef]
- Reitz, S.R. Comparative bionomics of Frankliniella occidentalis and Frankliniella tritici. Fla. Entomol. 2008, 91, 474–476. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Li, X.; Zhang, J.; Wang, Y.; Lu, Y. The plant virus tomato spotted wilt Orthotospovirus benefits its vector Flankliniella occidentalis by decreasing plant toxic alkaloids in host plant Datura stramonium. Int. J. Mol. Sci. 2023, 24, 14493. [Google Scholar] [CrossRef]
- Luan, J.B.; Yao, D.M.; Zhang, T.; Walling, L.L.; Yang, M.; Wang, Y.J.; Liu, S.S. Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecol. Lett. 2013, 16, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Cho, Y.E.; Kwon, Y.E.; Kang, H.G.; Seo, J.K. Resistance-breaking tomato spotted wilt virus variant that recently occurred in pepper in South Korea is genetic reassortant. Plant Dis. 2021, 105, 2771–2775. [Google Scholar] [CrossRef] [PubMed]
- Souiri, A.; Khataby, K.; Kasmi, Y.; Zemzami, M.; Amzazi, S.; Ennaji, M.M. Emerging and Reemerging Viral Diseases of Solanaceous Crops and Management Strategies for Detection and Eradication. In Emerging and Reemerging Viral Pathogens; Elsevier: Amsterdam, The Netherlands, 2020; pp. 847–877. [Google Scholar] [CrossRef]
- Chaisuekul, C.; Riley, D.G.; Pappu, H.R. Transmission of tomato spotted wilt virus to tomato plants of different ages. J. Entomol. Sci. 2003, 38, 127–136. [Google Scholar] [CrossRef]
- Wang, H.; Wu, X.; Hunag, X.; Wei, S.; Lu, Z.; Ye, J. Seed transmission of Tomato Spotted Wilt Orthotospovirus in pepper. Viruses 2022, 14, 1873. [Google Scholar] [CrossRef]
- Hoang, N.H.; Yang, H.B.; Kang, B.C. Identification and inheritance of a new source of resistance against Tomato Spotted Wilt Virus (TSWV) in Capsicum. Sci. Hortic. 2013, 161, 8–14. [Google Scholar] [CrossRef]
- Black, L.L.; Hobbs, J.M.; Gatti, J.M. Tomato spotted wilt resistance in Capsicum chinense PI 152225 and 159236. Plant Dis. 1991, 75, 865. [Google Scholar] [CrossRef]
- Himmel, P. Guidelines for the Identification of Tomato Spotted Wilt Virus Races Using Differential Pepper Hosts. Collaboration for Plant Pathogen Strain Identification. Available online: https://cppsi.ucdavis.edu/sites/g/files/dgvnsk8206/files/inline-files/Guidelines%20for%20the%20Identification%20of%20TSWV%20in%20Pepper.pdf (accessed on 12 October 2024).
- Roggero, P. Infection of Tospoviruses in Pepper and Control by Resistant Plants. Biologica 2002, 64, 179–181. Available online: http://www.biologico.agricultura.sp.gov.br/uploads/docs/bio/v64_2/roggero.pdf (accessed on 12 October 2024).
- Roggero, P.; Masenga, V.; Tavella, L. Field isolates of Tomato Spotted Wilt Virus overcoming resistance in pepper and their spread to other hosts in Italy. Plant Dis. 2002, 86, 950–954. [Google Scholar] [CrossRef]
- McDonald, S.C.; Buck, J.; Li, Z. Automated image-based disease measurement for phenotyping resistance to soybean frogeye leaf spot. Plant Methods 2022, 18, 103. [Google Scholar] [CrossRef]
- Bagga, M.; Goyal, S. Image-based detection and classification of plant diseases using deep learning: State-of-the-art review. Urban Agric. Reg. Food Syst. 2024, 9, e20053. [Google Scholar] [CrossRef]
- Stawarczyk, M.; Stawarczyk, K. Use of the imageJ program to assess the damage of plants by snails. Chem.-Didact.-Ecol.-Metrol. 2015, 20, 67–73. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant diseases detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef]
- Mutka, A.M.; Bart, S.R. Image based phenotyping of plant diseases symptoms. Front. Plant Sci. 2014, 5, 734. [Google Scholar] [CrossRef]
- Peng, Y.; Dallas, M.M.; Ascencio-Ibanez, J.T.; Hoyer, J.S.; Legg, J.; Bowdoin, B.G.; Yin, H. Early detection of plant virus infection using multispectral imaging and spatial-spectral machine learning. Sci. Rep. 2022, 12, 3113. [Google Scholar] [CrossRef]
- Xie, W.; Yu, K.; Pauls, K.P.; Navabi, A. Application of imaging analysis in studies of quantitative disease resistance, exemplified using common bacterial blight-common bean pathosystem. Phytopathology 2012, 102, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Berdugo, C.A.; Zito, R.; Paulus, S.; Mahlein, A.-K. Fusion of sensors data for the detection and differentiation of plant diseases in cucumber. Plant Pathol. 2014, 63, 1344–1356. [Google Scholar] [CrossRef]
- Thomas, S.; Wahabzada, M.; Kuska, M.; Rascher, U.; Mahlein, A.-K. Observation of plant-pathogen interaction by simultaneous hyperspectral imaging reflection and transmission measurements. Funct. Plant Biol. 2017, 44, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Sapoukhina, N.; Boureau, T.; Rousseau, D. Plant diseases symptoms segmentation in chlorophyll fluorescence imaging with synthetic dataset. Front. Plant Sci. 2022, 13, 969205. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef]
- Khan, R.U.; Khan, K.; Albattah, W.; Qamar, A.M. Image-based detection of plant diseases: From classification machine learning to deep learning journey. Wirel. Commun. Mob. Comput. 2021, 2021, 5541859. [Google Scholar] [CrossRef]
- Osuna-Caballero, S.; Olivoto, T.; Jimenez-Vaquero, M.A.; Rubiales, D.; Rispail, N. RGB image-based method for phenotyping rust disease progress in pea leaves using R. Plant Methods 2023, 19, 86. [Google Scholar] [CrossRef]
- Kumar, V.R.; Pradeepan, K.; Praveen, S.; Rohith, M.; Vasantha Kumar, V. Identification of Plant Diseases Using Image Processing and Image Recognition. In Proceedings of the 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India, 30–31 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Plant diseases and pests’ detection based on deep learning: A review. Plant Methods 2021, 17, 22. [Google Scholar] [CrossRef]
- Kuska, M.; Wahazada, M.; Leucker, M.; Dehne, H.W.; Kersting, K.; Oerke, E.C.; Steiner, U.; Mahlein, A.K. Hyperspectral phenotyping on microscopic scale—Towards automated characterization of plant-pathogen interactions. Plant Methods 2015, 11, 28. [Google Scholar] [CrossRef]
- Bauriegel, E.; Brabandt, H.; Garer, U.; Herppich, W.B. Chlorophyll fluorescence imaging to facilitate breeding of Bremia lactucae-resistant lettuce cultivars. Comput. Electron. Agric. 2014, 105, 74–82. [Google Scholar] [CrossRef]
- Fiorani, F.; Schurr, U. Future scenarios for plant phenotyping. Annu. Rev. Plant Biol. 2013, 64, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Pina, M.A.S.; Gomez-Aix, C.; Mendez-Lopez, E.; Bermal, B.G.; Aranda, M.A. Imaging techniques to study plant virus replication and vertical transmission. Viruses 2021, 13, 358. [Google Scholar] [CrossRef]
- Willocquet, L.; Savary, S.; Singh, K.P. Revisiting the use of disease index and of disease scores in plant pathology. Indian Phytopathol. 2023, 76, 909–914. [Google Scholar] [CrossRef]
- Yang, N.; Yuan, M.; Wang, P.; Zhang, R.; Sun, J.; Mao, H. Tea disease detection based on fast infrared thermal image processing technology. J. Sci. Food Agric. 2019, 99, 3459–3466. [Google Scholar] [CrossRef]
- Kwak, H.R.; Choi, H.Y.; Hong, S.B.; Hur, O.; Byun, H.S.; Choi, H.S.; Kim, M. Development of a bioassay for screening of resistance to Tomato spotted wilt virus isolate from Korea. Korean J. Environ. Biol. 2021, 39, 319–328. [Google Scholar] [CrossRef]
- Majundar, A.; Sharma, A.; Belludi, R. Natural engineered resistance mechanisms in plants against phytoviruses. Pathogens 2023, 12, 619. [Google Scholar] [CrossRef]
- Soosaar, J.L.; Burch-Smith, T.M.; Dinesh-Kumar, S.P. Mechanisms of plant resistance to viruses. Nat. Rev. Microbiol. 2005, 3, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Calil, I.P.; Fontes, E.P. Plant immunity against viruses: Antiviral immune receptors in focus. Ann. Bot. 2017, 119, 711–723. [Google Scholar] [CrossRef]
- Jahn, M.; Paran, I.; Hoffman, K.; Radwanski, E.R.; Livingstone, K.D.; Grube, R.C.; Aftergoot, E.; Lapidot, M.; Moyer, J. Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato spotted wilt virus in Capsicum spp. And its relationship to the Sw-5 gene resistance to the same pathogen in tomato. Mol. Plant Microbe Interact. 2000, 13, 673–682. [Google Scholar] [CrossRef]
- Gessesse, A.A.; Melesse, A.M. Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–92. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Her, N.H.; Cho, I.S.; Chung, B.N.; Choi, S.K. First report of a resistance-breaking strain of tomato spotted wilt orthotospovirus infecting Capsicum annuum carrying the Tsw resistance gene in South Korea. Plant Dis. 2021, 105, 2259. [Google Scholar] [CrossRef] [PubMed]
- Mandadi, K.K.; Scholthof, K.B.G. Plant immune response aginst viruses: How does a virus cause disease? Plant Cell 2013, 25, 1489–1505. [Google Scholar] [CrossRef] [PubMed]
- Alazen, M.; Lin, N.S. Roles of plant hormones in the regulation of host-virus interactions. Mol. Plant Pathol. 2015, 16, 529–540. [Google Scholar] [CrossRef]
- Bano, C.; Amist, N.; Singh, N.B. Morphological and Anatomical Modifications of Plants for Environmental Stresses. In Molecular Plant Abiotic Stress; Wiley: Hoboken, NJ, USA, 2019; pp. 29–44. ISBN 978-1-119-46366-5. [Google Scholar] [CrossRef]
- Verslues, P.E.; Agarwal, M.; Katiyar-Agarwal, S.; Zhu, J.; Zhu, J.K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 2006, 45, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.F.; Blauth, J.R.; Livingstone, K.D.; Lackney, V.K.; Jahn, M.K. Genetic mapping of the pvr1 locus in Capsicum spp. And evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels. Mol. Plant Microbe Interact. 1998, 11, 943–951. [Google Scholar] [CrossRef]
- Fang, M.; Yu, J.; Kim, K.H. Pepper virus and its host interactions: Current state of knowledge. Viruses 2021, 13, 1930. [Google Scholar] [CrossRef]
- Guerini, M.M.; Murphy, J.F. Resistance of Capsicum annuum ‘Avelar’ to pepper mottle potyvirus and alleviation of this resistance by co-infection with cucumber mosaic cucumovirus are associated virus movement. J. Gen. Virol. 1999, 80, 2785–2792. [Google Scholar] [CrossRef]
- Ro, N.; Lee, G.A.; Ko, H.C.; Oh, H.; Lee, S.; Haile, M.; Lee, J. Exploring disease resistance in pepper (Capsicum spp.) germplasm collection using fluidigm SNP genotyping. Plants 2024, 13, 1344. [Google Scholar] [CrossRef]
- Silvar, C.; Garcia-Gonzalez, C.A. Screening old peppers (Capsicum spp.) for disease resistance and pungency-related traits. Sci. Hortic. 2017, 218, 249–257. [Google Scholar] [CrossRef]
- Tran, P.T.; Choi, H.; Kim, K.H. Molecular characterization of Pvr9 that confers a hypersensitive response to pepper mottle virus (a potyvirus) in Nicotiana benthamiana. Virology 2015, 481, 113–123. [Google Scholar] [CrossRef]
- Kang, B.C.; Yeam, I.; Jahn, M.M. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 2005, 43, 581–621. [Google Scholar] [CrossRef] [PubMed]
- Pavan, S.; Jacobsen, E.; Vissr, R.G.; Bai, Y. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 2010, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Whitham, S.A.; Yang, C.; Goodin, M.M. Global impact: Elucidating plant responses to viral infection. Mol. Plant Microbe Interact. 2006, 19, 1207–1215. [Google Scholar] [CrossRef]
- Farias, G.D.; Bremm, C.; Bredemeier, C.; Menezes, J.L.; Alves, L.A.; Tiecher, T.; Martins, A.P.; Fioravanco, G.P.; da Silva, G.P.; Carvalho, P.C.F. Normalized difference vegetation index (NDVI) for soybean biomass and nutrient uptake estimation in response to production systems and fertilization strategies. Front. Sustain. Food Syst. 2023, 6, 959681. [Google Scholar] [CrossRef]
- Nicolas, H. Using remote sensing to determine the date of a fungicide application on winter wheat. Crop Prot. 2004, 23, 853–863. [Google Scholar] [CrossRef]
- Lorensen, B.; Jensen, A. Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sens. Environ. 1989, 27, 201–209. [Google Scholar] [CrossRef]
- Gu, Q.; Sheng, L.; Zhang, T.; Lu, Y.; Zhang, Z.; Zheng, K.; Hu, H.; Zhou, H. Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms. Comput. Electron. Agric. 2019, 167, 105066. [Google Scholar] [CrossRef]
- Wang, D.; Vinson, R.; Holmes, M.; Seibel, G.; Bechar, A.; Nof, S.; Tao, Y. Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN). Sci. Rep. 2019, 9, 4377. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.S.; Ampatzidis, Y.; Rahnama, K. Early detection and spectral signature identification of tomato fungal diseases (Alternaria alternata, Alternaria solani, Botrytis cinerea and Fusarium oxysporum) by RGB and hyperspectral image analysis and machine learning. Heliyon 2024, 10, e38017. [Google Scholar] [CrossRef]
- Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral classification of plants: A review of waveband selection generalisability. Remote Sens. 2020, 12, 113. [Google Scholar] [CrossRef]
- Gazala, I.F.S.; Sahoo, R.N.; Pandey, R.; Mandal, B.; Gupta, V.K.; Singh, R.; Sinha, P. Spectral reflectance pattern in soybean for assessing yellow mosaic disease. Indian J. Virol. 2013, 24, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Chavez, P.; Zorogastua, P.; Chuquillanqui, C.; Salazar, L.F.; Mares, V.; Quiroz, R. Assessing potato yellow vein virus (PYVV) infection using remotely sensed data. Int. J. Pest Manag. 2011, 55, 251–256. [Google Scholar] [CrossRef]
- Wan, L.; Hu, L.; Li, C.; Wang, A.; Yang, Y.; Wang, P. Hyperspectral sensing of plant disease: Principle and methods. Agronomy 2022, 12, 1451. [Google Scholar] [CrossRef]
- Kim, M.; Kang, H.J.; Kwak, H.R.; Kim, J.E.; Kim, J.; Seo, J.K.; Choi, H.S. First report of impatiens necrotic spot virus in Hoya carnosa in Korea. Res. Plant Dis. 2017, 23, 383–387. [Google Scholar] [CrossRef]
- Baek, J.; Lee, E.; Kim, N.; Kim, S.L.; Choi, I.; Ji, H.; Chung, Y.S.; Choi, M.S.; Moon, J.K.; Kim, K.H. High throughput phenotyping for various traits on soybean seeds using image analysis. Sensors 2019, 20, 248. [Google Scholar] [CrossRef]
Accession Number | Scientific Name | Accession Name | Origin a | Status | Common Symptoms b | RT-PCR c | Disease Incidence d (%) |
---|---|---|---|---|---|---|---|
IT308738 | C. chinense | Chi 16/1026-1 | HUN | Breeding line | - | − | 0 |
IT308753 | C. chinense | Chi 39/1055 | HUN | Breeding line | - | − | 0 |
IT284050 | C. chinense | Grif 9273 | CRI | - e | m, pl | ++ | 40 |
IT136625 | Capsicum sp. | Pathari Local | NPL | Landrace | m | ++ | 40 |
IT284034 | C. baccatum | PI 633753 | PRY | Landrace | n, pl | ++++ | 80 |
IT284059 | C. chinense | PI 260524 | PER | - | n | ++++ | 80 |
IT284069 | C. chinense | PI 653674 | COL | - | m, pl | ++++ | 80 |
IT270672 | C. baccatum | AC12-175 | BRA | Landrace | n, pl | ++++ | 80 |
IT136615 | Capsicum sp. | Chatar Local | NPL | Landrace | n, pl | ++++ | 80 |
IT158568 | C. frutescens | C02424 | - | - | n | ++++ | 80 |
IT136626 | Capsicum sp. | Pakhribas 2 Local | NPL | Landrace | n | ++++ | 80 |
IT218962 | C. frutescens | TC05779 | MEX | - | n | ++++ | 80 |
IT32436 | C. annuum | Jindo Jaerae | KOR | Landrace | n, pl | +++++ | 100 |
IT164927 | C. frutescens | Legon 18 | - | - | n | +++++ | 100 |
IT103079 | C. annuum | Dwaeji gochu | KOR | Landrace | rs, pl | +++++ | 100 |
Accession Number | Scientific Name | Accession Name | Disease Severity a (%) | SE b | Df c | Lower. CL d | Upper. CL | Disease Severity Status e |
---|---|---|---|---|---|---|---|---|
IT308738 | C. chinense | Chi 16/1026-1 | 0.00 | 0.00 | 4 | 0.00 | 0.00 | Low |
IT308753 | C. chinense | Chi 39/1055 | 0.00 | 0.00 | 4 | 0.00 | 0.00 | Low |
IT218962 | C. frutescens | TC05779 | 0.14 | 0.29 | 4 | −0.66 | 0.94 | Low |
IT284034 | C. baccatum | PI 633753 | 0.56 | 0.39 | 4 | −0.54 | 1.66 | Moderate |
IT284050 | C. chinense | Grif 9273 | 0.67 | 0.42 | 4 | −0.50 | 1.85 | Moderate |
IT136626 | Capsicum sp. | Pakhribas-2 Local | 0.72 | 0.44 | 4 | −0.49 | 1.93 | Moderate |
IT136615 | Capsicum sp. | Chatar Local | 0.75 | 0.44 | 4 | −0.48 | 1.98 | Moderate |
IT136625 | Capsicum sp. | Pathari Local | 0.75 | 0.44 | 4 | −0.48 | 1.99 | Moderate |
IT103079 | C. annuum | Dwaeji gochu | 1.03 | 0.51 | 4 | −0.40 | 2.46 | High |
IT284069 | C. chinense | PI 653674 | 1.32 | 0.54 | 4 | −0.17 | 2.82 | High |
IT32436 | C. annuum | Jindo Jaerae | 1.35 | 0.59 | 4 | −0.30 | 3.00 | High |
IT164927 | C. frutescens | Legon 18 | 1.45 | 0.62 | 4 | −0.27 | 3.17 | High |
IT270672 | C. baccatum | AC12-175 | 1.82 | 0.71 | 4 | −0.16 | 3.80 | High |
IT284059 | C. chinense | PI 260524 | 1.82 | 0.71 | 4 | −0.16 | 3.80 | High |
IT158568 | C. frutescens | C02424 | 5.68 | 1.69 | 4 | 0.99 | 10.38 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mensah, E.O.; Oh, H.; Song, J.; Baek, J. Exploring Imaging Techniques for Detecting Tomato Spotted Wilt Virus (TSWV) Infection in Pepper (Capsicum spp.) Germplasms. Plants 2024, 13, 3447. https://doi.org/10.3390/plants13233447
Mensah EO, Oh H, Song J, Baek J. Exploring Imaging Techniques for Detecting Tomato Spotted Wilt Virus (TSWV) Infection in Pepper (Capsicum spp.) Germplasms. Plants. 2024; 13(23):3447. https://doi.org/10.3390/plants13233447
Chicago/Turabian StyleMensah, Eric Opoku, Hyeonseok Oh, Jiseon Song, and Jeongho Baek. 2024. "Exploring Imaging Techniques for Detecting Tomato Spotted Wilt Virus (TSWV) Infection in Pepper (Capsicum spp.) Germplasms" Plants 13, no. 23: 3447. https://doi.org/10.3390/plants13233447
APA StyleMensah, E. O., Oh, H., Song, J., & Baek, J. (2024). Exploring Imaging Techniques for Detecting Tomato Spotted Wilt Virus (TSWV) Infection in Pepper (Capsicum spp.) Germplasms. Plants, 13(23), 3447. https://doi.org/10.3390/plants13233447