Rupture Test: A New Method for Evaluating Maize (Zea mays) Seed Vigour
<p>Rupture test for <span class="html-italic">Zea mays</span>. (<b>a</b>) Schematic diagram of the rupture test. (<b>b</b>) Pericarp–testa rupture and coleorhiza rupture. (<b>c</b>) Field seedling emergence test.</p> "> Figure 2
<p>Comparative analysis of the germination first count (GFC) and germination percentage (GP) of different maize cultivars. (<b>a</b>) GFC of samples in 2023. (<b>b</b>) GP of samples in 2023. (<b>c</b>) GFC of samples in 2022. (<b>d</b>) GP of samples in 2022. (<b>e</b>) GFC of samples in 2021. (<b>f</b>) GP of samples in 2021. Different lowercase letters mean a significant difference (<span class="html-italic">p</span> < 0.05), and different capital letters mean an extremely significant difference (<span class="html-italic">p</span> < 0.01). The red dashed boxes represent the representative Chinese hybrid maize cultivar ZD958 and the representative American hybrid maize cultivar XY335.</p> "> Figure 3
<p>Selection and determination of the evaluation indices for the rupture test. (<b>a</b>) The principle of selecting indices for evaluating seed vigour by rupture test. (<b>b</b>) Relationships between the seed lot vigour indices in the rupture test and FSEs (FSE–J, FSE–L, and FSE–S). For the complete list of abbreviations, go to “<a href="#app1-plants-13-01847" class="html-app">Figure S1</a>”. ** indicates significance at <span class="html-italic">p</span> < 0.01.</p> "> Figure 4
<p>The physical features of seeds from ZD958 (ZhengDan958) and XY335 (XianYu335) are compared. The seed morphology is compared in (<b>a</b>); the pericarp–testa water absorption characteristics are compared in (<b>b</b>); the pericarp–testa covering embryo (PCE) thickness is compared in (<b>c</b>); the PCE puncture force is compared in (<b>d</b>); and the puncture force measurement characteristic curve is compared in (<b>e</b>).</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Seed Length (SL), Seed Width (SW), 1000–Seed Weight (TSW), and Seed Water Content (SWC)
2.2. Germination Test and Seedling Growth Test
2.3. Cold Test, Accelerated Aging Test, and Primary–Root Emergence Test
2.4. Field Seedling Emergence
2.5. Comparative Analysis of PRP, CRP, and PRCRP
2.6. Selection of the Evaluation Indices for the Rupture Test
- (i)
- At 15 ± 0.5 °C, the recommended indices are “CRP, 120 h ± 1 h” and “PRCRP, 120 h ± 1 h”. For example, if the test is set up at 10:00 a.m., the count will occur at 10:00 a.m. five days later (count at 5 days ± 1 h).
- (ii)
- At 20 ± 0.5 °C, the recommended indices are “CRP, 72 h ± 15 min” and “PRCRP, 72 h ± 15 min”. For example, if the test is set up at 10:00 a.m., the count will occur at 10:00 a.m. three days later (count at 3 days ± 15 min).
2.7. Relationship between Maize Seed Vigour Indices
2.8. The Pericarp-Testa Limits Maize Seed Germination
3. Discussion
4. Materials and Methods
4.1. Seed Lots
4.2. Seed Size, Seed Weight, and Seed Water Content
4.3. Light Microscopy
4.4. Germination
4.5. Cold Test (CT), Accelerated Ageing Test (AAT), and Primary Root Emergence Test (PRET)
4.6. Rupture Test
4.7. Field Seedling Emergence
4.8. Pericarp–Testa Characteristic Measurements
4.9. Data Analysis
5. Conclusions
- (i)
- At 15 ± 0.5 °C, the recommended indices are ‘CRP, 120 h ± 1 h’ and ‘PRCRP, 120 h ± 1 h’. For example, if the test is set up at 10:00 a.m., the count will occur at 10:00 a.m. five days later (count at 5 days ± 1 h).
- (ii)
- At 20 ± 0.5 °C, the recommended indices are ‘CRP, 72 h ± 15 min’ and ‘PRCRP, 72 h ± 15 min’. For example, if the test is set up at 10:00 a.m., the count will occur at 10:00 a.m. three days later (count at 3 days ± 15 min).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AOSA. Seed Vigour Testing Handbook; Association of Official Seed Analysts: Ithaca, NY, USA, 1983. [Google Scholar]
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef]
- Bewley, J.D. Seed germination and dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef]
- Steinbrecher, T.; Leubner-Metzger, G. The biomechanics of seed germination. J. Exp. Bot. 2017, 68, 765–783. [Google Scholar] [CrossRef] [PubMed]
- Walters, C.; Ballesteros, D.; Vertucci, V.A. Structural mechanics of seed deterioration: Standing the test of time. Plant Sci. 2010, 179, 565–573. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, M.; Bentsink, L.; Hilhorst, H. Seed dormancy and germination. Curr. Opin. Plant Biol. 2002, 5, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Reed, R.C.; Bradford, K.J.; Khanday, I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef] [PubMed]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Bassersdorf, Switzerland, 2019. [Google Scholar]
- Jiang, X.W.; Li, H.Q.; Wei, Y.J.; Song, X.Y.; Wang, J.H. Seed biomechanical monitoring: A new method to test maize (Zea mays) seed vigour. Seed Sci. Technol. 2016, 44, 382–392. [Google Scholar] [CrossRef]
- Marcos-Filho, J. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef]
- Chen, Y.L.; Xiao, C.X.; Wu, D.L.; Xia, T.T.; Chen, Q.W.; Chen, F.J.; Yuan, L.X.; Mi, G.H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur. J. Agron. 2015, 62, 79–89. [Google Scholar] [CrossRef]
- Scanlon, M.J.; Takacs, E.M. Kernel biology. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer-Verlag: New York, NY, USA, 2009; pp. 121–129. [Google Scholar]
- Jiang, X.W.; Tian, B.H.; Zhang, W.M.; Wang, G.Y.; Wang, J.H. QTL mapping of coleorhiza length in maize (Zea mays L.) under two germination environmental conditions. Plant Breed. 2011, 130, 625–632. [Google Scholar] [CrossRef]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef]
- Speck, T.; Burgert, I. Plant stems: Functional design and mechanics. Annu. Rev. Mater. Res. 2011, 41, 169–193. [Google Scholar] [CrossRef]
- Brett, C.T.; Waldron, K. Physiology and Biochemistry of Plant Cell Walls; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Cosgrove, D.J. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 2005, 6, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Coen, E.; Cosgrove, D.J. The mechanics of plant morphogenesis. Science 2023, 379, 6631. [Google Scholar] [CrossRef]
- Khajeh-Hosseini, M.; Lomholt, A.; Matthews, S. Mean germination time in the laboratory estimates the relative vigour and field performance of commercial seed lots of maize (Zea mays L.). Seed Sci. Technol. 2009, 37, 446–456. [Google Scholar] [CrossRef]
- Linkies, A.; Graeber, K.; Knight, C.; Leubner-Metzger, G. The evolution of seeds. New Phytol. 2010, 186, 817–831. [Google Scholar] [CrossRef] [PubMed]
- Buckeridge, M.S. Seed cell wall storage polysaccharides: Models to understand cell wall biosynthesis and degradation. Plant Physiol. 2010, 154, 1017–1023. [Google Scholar] [CrossRef]
- Weitbrecht, K.; Müller, K.; Leubner-Metzger, G. First off the mark: Early seed germination. J. Exp. Bot. 2011, 62, 3289–3309. [Google Scholar] [CrossRef]
- Yan, D.; Duermeyer, L.; Leoveanu, C.; Nambara, E. The functions of the endosperm during seed germination. Plant Cell Physiol. 2014, 55, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H. Seed dormancy and germination—Emerging mechanisms and new hypotheses. Front. Plant Sci. 2014, 5, 233. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecher, T.; Leubner-Metzger, G. Tissue and cellular mechanics of seeds. Curr. Opin. Genet. Dev. 2018, 51, 1–10. [Google Scholar] [CrossRef]
- Bradford, K.J. Applications of hydrothermal time to quantifying and modelling seed germination and dormancy. Weed Sci. 2002, 50, 248–260. [Google Scholar] [CrossRef]
- Bewley, J.D.; Black, M. Seeds—Physiology of Development and Germination; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- Debeaujon, I.; Léon-Kloosterziel, K.M.; Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.M.; van Staden, J.; Bell, W.E. Seed coat structure and dormancy. Plant Growth Regul. 1992, 11, 201–209. [Google Scholar] [CrossRef]
- Müller, K.; Tintelnot, S.; Leubner-Metzger, G. Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol. 2006, 47, 864–877. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.S.B.; Pereira, M.F.A. Restrictions of the tegument to the germination of Beta vulgaris L. seeds. Seed Sci. Technol. 1989, 17, 601–612. [Google Scholar]
- He, Y.H. The Status Quo and Enlightenment of Intellectual Property Protection in American Seed Enterprises. China Seed Ind. 2015, 12–16. (In Chinese) [Google Scholar] [CrossRef]
- Lu, M.M.; Xin, T.T.; Jia, R.; Zhang, J.X.; Li, H.Q.; Zhao, Y.M.; Zhang, H.Y.; Li, Z.X.; Pei, Y.H.; Zhao, M.A.; et al. Maize Seed Quality in China: Changes in Ten Years and Prospects for the Future. China Seed Ind. 2023, 6–10. (In Chinese) [Google Scholar] [CrossRef]
- Wen, K.X.; Xie, Z.M.; Yang, L.M.; Sun, B.Q.; Wang, J.H.; Sun, Q. Computer vision technology determines optimal physical parameters for sorting JinDan 73 maize seeds. Seed Sci. Technol. 2015, 43, 62–70. [Google Scholar] [CrossRef]
- ISTA. ISTA Handbook on Moisture Determination, 1st ed.; International Seed Testing Association: Bassersdorf, Switzerland, 2007. [Google Scholar]
- Li, H.Q.; Yue, H.W.; Li, L.; Liu, Y.; Zhang, H.Y.; Wang, J.H.; Jiang, X.W. A comparative analysis of the hybrid maize (Zea mays L.) seed quality in China from 2013 to 2018. Agronomy 2019, 9, 625. [Google Scholar] [CrossRef]
- Li, H.Q.; Yue, H.W.; Li, L.; Liu, Y.; Zhang, H.Y.; Wang, J.H.; Jiang, X.W. Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Sheteiwy, M.S.; Guan, Y.J.; Cao, D.D.; Li, J.; Nawaz, A.; Hu, Q.J.; Hu, W.M.; Ning, M.Y.; Hu, J. Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci. Rep. 2015, 5, 14278. [Google Scholar]
- Wang, J.H. Seed Quality Testing and Evaluation Manual of Corn (Zea mays); China Agricultural University Press: Beijing, China, 2016. [Google Scholar]
- SAS Institute Inc. SAS/STAT 9.3 User’s Guide; SAS Institute Inc: Cary, NC, USA, 2011. [Google Scholar]
Seed Lots | CT (%) | AAT (%) | PRET–13 °C, 144 h (%) | PRET–20 °C, 66 h (%) |
---|---|---|---|---|
DH605–2023 | 93 aA | 85.33 aA | 75.67 aA | 89.67 aA |
DH605–2022 | 90 bAB | 80.33 bA | 72 bB | 88 bA |
DH605–2021 | 87 cB | 72 cB | 65.33 cC | 85.67 cB |
LD818–2023 | 92 aA | 85 aA | 76.67 aA | 88.33 aA |
LD818–2022 | 88 bB | 79 bB | 72.33 bB | 86.67 aAB |
LD818–2021 | 85.33 cB | 74 cC | 69.67 cB | 84.33 bB |
LP206–2023 | 91.67 aA | 83.67 aA | 73.67 aA | 88.33 aA |
LP206–2022 | 88 bAB | 77.33 bAB | 70.67 bAB | 85 bAB |
LP206–2021 | 84 cB | 70.33 cB | 67.33 cB | 81.33 cB |
ZD958–2023 | 93.67 aA | 85.67 aA | 71.33 aA | 89.33 aA |
ZD958–2022 | 88.67 bB | 75.67 bB | 68.33 abAB | 85.67 bB |
ZD958–2021 | 84 cC | 70.33 cB | 65.33 bB | 80.67 cC |
DK517–2023 | 90.67 aA | 83.33 aA | 75.67 aA | 88.33 aA |
DK517–2022 | 87 bB | 74.67 bAB | 72 bB | 86.67 abA |
DK517–2021 | 84.67 cB | 67.67 cB | 67.67 cC | 85.67 bA |
XY508–2023 | 91.67 aA | 86.67 aA | 78 aA | 90.67 aA |
XY508–2022 | 88.67 bAB | 77 bB | 74 bAB | 88 bB |
XY508–2021 | 85.33 cB | 71.67 cB | 71 cB | 86.33 cB |
XY047–2023 | 91.67 aA | 86 aA | 79.33 aA | 92 aA |
XY047–2022 | 88 bB | 78 bB | 75 bAB | 89 bB |
XY047–2021 | 85.67 cC | 70 cC | 72.33 bB | 86.67 cB |
XY335–2023 | 93.33 aA | 87.67 aA | 79 aA | 93 aA |
XY335–2022 | 91 bAB | 81.67 bA | 75 bAB | 90.67 bAB |
XY335–2021 | 88 cB | 71 cB | 72.67 cB | 88.33 cB |
Seed Lots | FSE–J | FSE–L | FSE–S |
---|---|---|---|
DH605–2023 | 91.33 aA | 89.67 aA | 90 aA |
DH605–2022 | 87 bB | 86.67 bAB | 86 bAB |
DH605–2021 | 83.33 cC | 82 cB | 81.67 cB |
LD818–2023 | 90.33 aA | 88.33 aA | 90 aA |
LD818–2022 | 86.33 bAB | 85.67 bA | 86.33 bB |
LD818–2021 | 82.33 cB | 79.33 cB | 83.33 cC |
LP206–2023 | 87.67 aA | 87 aA | 89.67 aA |
LP206–2022 | 84.33 aAB | 85.67 aA | 85.67 bB |
LP206–2021 | 80.33 bB | 74.33 bB | 81.67 cC |
ZD958–2023 | 87.67 aA | 90 aA | 89.67 aA |
ZD958–2022 | 85.33 bA | 86 bA | 87 bB |
ZD958–2021 | 78 cB | 79.33 cB | 79.67 cC |
DK517–2023 | 90.33 aA | 91 aA | 92.33 aA |
DK517–2022 | 88 aAB | 86.67 bAB | 88 bAB |
DK517–2021 | 84 bB | 80.33 cB | 85 bB |
XY508–2023 | 91 aA | 90.67 aA | 90.67 aA |
XY508–2022 | 87 bB | 86.67 bB | 87.33 bAB |
XY508–2021 | 83.33 cC | 82 cC | 84 cB |
XY047–2023 | 92 aA | 92 aA | 91 aA |
XY047–2022 | 87.67 bB | 89.67 bB | 86.67 bAB |
XY047–2021 | 85.33 cC | 83.67 cC | 82.67 cB |
XY335–2023 | 93.33 aA | 92 aA | 92.67 aA |
XY335–2022 | 89.67 bAB | 88 bAB | 90 bAB |
XY335–2021 | 86 cB | 84.33 cB | 86.33 cB |
Indices | A | B | C | D | E | F | G | H | I | J | K |
---|---|---|---|---|---|---|---|---|---|---|---|
B | 0.994 ** | ||||||||||
C | 0.913 ** | 0.883 ** | |||||||||
D | 0.919 ** | 0.890 ** | 0.988 ** | ||||||||
E | 0.927 ** | 0.898 ** | 0.932 ** | 0.941 ** | |||||||
F | 0.910 ** | 0.918 ** | 0.801 ** | 0.829 ** | 0.817 ** | ||||||
G | 0.901 ** | 0.916 ** | 0.733 ** | 0.764 ** | 0.776 ** | 0.946 ** | |||||
H | 0.879 ** | 0.859 ** | 0.853 ** | 0.866 ** | 0.918 ** | 0.754 ** | 0.799 ** | ||||
I | 0.905 ** | 0.877 ** | 0.916 ** | 0.927 ** | 0.948 ** | 0.839 ** | 0.777 ** | 0.879 ** | |||
J | 0.956 ** | 0.928 ** | 0.935 ** | 0.938 ** | 0.958 ** | 0.873 ** | 0.847 ** | 0.917 ** | 0.940 ** | ||
K | 0.921 ** | 0.898 ** | 0.912 ** | 0.934 ** | 0.887 ** | 0.879 ** | 0.857 ** | 0.837 ** | 0.888 ** | 0.917 ** | |
L | 0.933 ** | 0.917 ** | 0.909 ** | 0.909 ** | 0.879 ** | 0.890 ** | 0.875 ** | 0.855 ** | 0.862 ** | 0.940 ** | 0.891 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yue, H.; Lu, M.; Jia, R.; Jiang, X. Rupture Test: A New Method for Evaluating Maize (Zea mays) Seed Vigour. Plants 2024, 13, 1847. https://doi.org/10.3390/plants13131847
Li H, Yue H, Lu M, Jia R, Jiang X. Rupture Test: A New Method for Evaluating Maize (Zea mays) Seed Vigour. Plants. 2024; 13(13):1847. https://doi.org/10.3390/plants13131847
Chicago/Turabian StyleLi, Heqin, Haiwang Yue, Miaomiao Lu, Ru Jia, and Xuwen Jiang. 2024. "Rupture Test: A New Method for Evaluating Maize (Zea mays) Seed Vigour" Plants 13, no. 13: 1847. https://doi.org/10.3390/plants13131847
APA StyleLi, H., Yue, H., Lu, M., Jia, R., & Jiang, X. (2024). Rupture Test: A New Method for Evaluating Maize (Zea mays) Seed Vigour. Plants, 13(13), 1847. https://doi.org/10.3390/plants13131847