Fine-Tuning of Arabidopsis thaliana Response to Endophytic Colonization by Gluconacetobacter diazotrophicus PAL5 Revealed by Transcriptomic Analysis
<p>The growth-promoting effect of <span class="html-italic">Gluconacetobacter diazotrophicus</span> PAL5 on <span class="html-italic">Arabidopsis thaliana</span> at 50 dpi: (<b>a</b>) Morphological effect on rosette growth; (<b>b</b>) Morphological effects on root growth; (<b>c</b>) The fresh and dry weights of shoots (higher) and roots (bottom); (<b>d</b>) Total leaf area. Seven-day-old seedlings were inoculated with <span class="html-italic">G. diazotrophicus</span> strain GD-Kan (1 × 10<sup>6</sup> CFU/mL<sup>−1</sup>). Seedlings treated with water served as a control. The data shown represent the means of 20 biological replicates. Error bars represent the SD. “*” represents statistically significant differences between treatments (ANOVA, Tukey’s test; <span class="html-italic">p</span> < 0.05). Bar = 1 cm.</p> "> Figure 2
<p>Endophytic colonization of <span class="html-italic">A. thaliana</span> plants by <span class="html-italic">G. diazotrophicus</span> PAL5 at 50 dpi: (<b>a</b>) Counting values of <span class="html-italic">G. diazotrophicus</span> PAL5 strain GD-Kan in the leaves and roots of <span class="html-italic">A. thaliana</span> plants; (<b>b</b>) <span class="html-italic">A. thaliana</span> roots inoculated with <span class="html-italic">G. diazotrophicus</span> PAL5 strain GD-F expressing the <span class="html-italic">rfg</span> gene; (<b>c</b>) Control (without inoculation). Bars = 2 µm.</p> "> Figure 3
<p>Overview of <span class="html-italic">Arabidopsis thaliana</span> genes differentially regulated in shoots and roots in response to colonization by <span class="html-italic">Gluconacetobacter diazotrophicus</span> PAL5 at 50 dpi: (<b>a</b>) Venn diagram of genes differentially regulated in response to <span class="html-italic">G. diazotrophicus</span>. In total, 1189 genes were differentially regulated. Overlaps show the number of genes regulated in both tissues; (<b>b</b>) Proportion of genes at different fold change (FC) ranges. The log<sub>2</sub> FC intervals are positive for up-regulated genes and negative for down-regulated genes; (<b>c</b>) Heatmap of differentially expressed genes (DEGs) that were detected in both shoot and root tissues (overlapping group of Venn diagram). Up-regulated (red), down-regulated (blue).</p> "> Figure 4
<p>Identification of differentially expressed genes (DEGs) and its related functional classification of Gene Ontology (GO) terms in the shoot (<b>a</b>) and root (<b>b</b>) tissues of <span class="html-italic">Arabidopsis thaliana</span> inoculated with <span class="html-italic">Gluconacetobacter diazotrophicus</span> PAL5 at 50 dpi. GO terms less than 40 DEGs are shown in <a href="#app1-plants-13-01719" class="html-app">Supplementary Table S2</a>. BP = biological processes; CC = cellular components; MF = molecular functions.</p> "> Figure 5
<p>Differentially expressed genes in the shoots and roots of <span class="html-italic">Arabidopsis thaliana</span> plants inoculated with <span class="html-italic">Gluconacetobacter diazotrophicus</span> PAL5 (at 50 dpi). Each gene is represented as a box; red boxes indicate genes up-regulated, and blue boxes indicate those down-regulated. The regulation of genes is based on log<sub>2</sub> FC (<span class="html-italic">p</span> < 0.05). Squares with the same number indicate genes regulated in both plant tissues. The chart was compiled with the Adobe Illustrator program, using the MapMan functional categories. See <a href="#app1-plants-13-01719" class="html-app">Table S3</a> for details.</p> "> Figure 6
<p>Schematic illustration of the major transcriptional regulation in the shoots and roots of <span class="html-italic">G. diazotrophicus</span>-inoculated <span class="html-italic">A. thaliana</span>. The overlapping region corresponds to common DEGs in the shoots and roots. The upward red arrows show up-regulated DEGs, and the downward blue arrows show down-regulated DEGs.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effects of Gluconacetobacter diazotrophicus PAL5 on Plant Growth and Colonization
2.2. Transcriptomic Changes Induced by Gluconacetobacter diazotrophicus PAL5 in the Shoots and Roots of Arabidopsis thaliana
2.3. Analysis of Differentially Expressed Genes (DEGs)
2.4. Functional Annotation Analysis of DEGs
2.5. Main Regulated Pathways in Arabidopsis thaliana in Response to the Association with Gluconacetobacter diazotrophicus PAL5
2.5.1. Cell Wall Biosynthesis/Metabolism
2.5.2. ROS Detoxification
2.5.3. Kinase Receptors
2.5.4. Transcription Factors
2.5.5. Biosynthesis/Degradation of Secondary Metabolites
2.5.6. Pathogenesis-Related Proteins
2.5.7. Heat-Shock Proteins
2.5.8. Nitrogen Metabolism and Transport
3. Discussion
4. Materials and Methods
4.1. Biological Material Sources
4.2. Preparation of Bacterial Inoculum
4.3. Growth Promotion of A. thaliana Seedlings Inoculated with G. diazotrophicus PAL5
4.4. Bacterial Growth Estimation
4.5. Localization of G. diazotrophicus PAL5 in the Roots of A. thaliana
4.6. RNA Extraction and Sequencing
4.7. RNA-Seq Data Processing and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; Enshasy, H. El Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Bukhat, S.; Imran, A.; Javaid, S.; Shahid, M.; Majeed, A.; Naqqash, T. Communication of Plants with Microbial World: Exploring the Regulatory Networks for PGPR Mediated Defense Signaling. Microbiol. Res. 2020, 238, 126486. [Google Scholar] [CrossRef]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant Growth-Promoting Bacterial Endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, V.A.; Döbereiner, J. A New Acid-Tolerant Nitrogen-Fixing Bacterium Associated with Sugarcane. Plant Soil 1988, 108, 23–31. [Google Scholar] [CrossRef]
- Saravanan, V.S.; Madhaiyan, M.; Osborne, J.; Thangaraju, M.; Sa, T.M. Ecological Occurrence of Gluconacetobacter diazotrophicus and Nitrogen-Fixing Acetobacteraceae Members: Their Possible Role in Plant Growth Promotion. Microb. Ecol. 2008, 55, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.; Phour, M.; Suneja, S.; Sangwaan, S.; Goyal, S. Gluconacetobacter diazotrophicus: An Overview. Res. Environ. Life Sci. 2014, 7, 1–10. [Google Scholar]
- Dent, D. Non-Nodular Endophytic Bacterial Symbiosis and the Nitrogen Fixation of Gluconacetobacter diazotrophicus. In Symbiosis; Rigobelo, E., Ed.; InTech: London, UK, 2018; pp. 53–61. [Google Scholar]
- Bertalan, M.; Albano, R.; de Pádua, V.; Rouws, L.; Rojas, C.; Hemerly, A.; Teixeira, K.; Schwab, S.; Araujo, J.; Oliveira, A.; et al. Complete Genome Sequence of the Sugarcane Nitrogen-Fixing Endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genom. 2009, 10, 450. [Google Scholar] [CrossRef]
- Lery, L.M.S.; Hemerly, A.S.; Nogueira, E.M.; Von Krüger, W.M.A.; Bisch, P.M. Quantitative Proteomic Analysis of the Interaction between the Endophytic Plant-Growth-Promoting Bacterium Gluconacetobacter diazotrophicus and Sugarcane. Mol. Plant-Microbe Interact. 2011, 24, 562–576. [Google Scholar] [CrossRef]
- Ballesteros, H.G.F.; Rosman, A.C.; Carvalho, T.L.G.; Grativol, C.; Hemerly, A.S. Cell Wall Formation Pathways Are Differentially Regulated in Sugarcane Contrasting Genotypes Associated with Endophytic Diazotrophic Bacteria. Planta 2021, 254, 119. [Google Scholar] [CrossRef]
- Carvalho, T.L.G.; Rosman, A.C.; Grativol, C.; de M Nogueira, E.; Baldani, J.I.; Hemerly, A.S. Sugarcane Genotypes with Contrasting Biological Nitrogen Fixation Efficiencies Differentially Modulate Nitrogen Metabolism, Auxin Signaling, and Microorganism Perception Pathways. Plants 2022, 11, 1971. [Google Scholar] [CrossRef]
- Vargas, C.; Muniz De Pádua, V.L.; De Matos Nogueira, E.; Vinagre, F.; Masuda, H.P.; Rodrigues Da Silva, F.; Baldani, J.I.; Cavalcanti Gomes Ferreira, P.; Silva Hemerly, A. Signaling Pathways Mediating the Association between Sugarcane and Endophytic Diazotrophic Bacteria: A Genomic Approach. Symbiosis 2003, 35, 159–180. [Google Scholar]
- Rodriguez, M.V.; Tano, J.; Ansaldi, N.; Carrau, A.; Srebot, M.S.; Ferreira, V.; Martínez, M.L.; Cortadi, A.A.; Siri, M.I.; Orellano, E.G. Anatomical and Biochemical Changes Induced by Gluconacetobacter diazotrophicus Stand up for Arabidopsis thaliana Seedlings from Ralstonia Solanacearum Infection. Front. Plant Sci. 2019, 10, 484836. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.K.; Jez, J.M. Arabidopsis: The Original Plant Chassis Organism. Plant Cell Rep. 2018, 37, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Provart, N.J.; Alonso, J.; Assmann, S.M.; Bergmann, D.; Brady, S.M.; Brkljacic, J.; Browse, J.; Chapple, C.; Colot, V.; Cutler, S.; et al. 50 Years of Arabidopsis Research: Highlights and Future Directions. New Phytol. 2016, 209, 921–944. [Google Scholar] [CrossRef] [PubMed]
- Leandro, M.R.; Rangel, P.L.; dos Santos, T.C.; Andrade, L.F.; de Souza Vespoli, L.; Rangel, A.L.S.; de Souza, S.A.; Barbosa, R.R.; Passamani, L.Z.; Silveira, V.; et al. Colonization of Arabidopsis thaliana by Herbaspirillum Seropedicae Promotes Its Growth and Changes Its Proteomic Profile. Plant Soil 2019, 443, 429–447. [Google Scholar] [CrossRef]
- Plucani do Amaral, F.; Wang, J.; Williams, J.; Tuleski, T.R.; Joshi, T.; Ferreira, M.A.R.; Stacey, G. Mapping Genetic Variation in Arabidopsis in Response to Plant Growth-Promoting Bacterium Azoarcus Olearius DQS-4T. Microorganisms 2023, 11, 331. [Google Scholar] [CrossRef] [PubMed]
- Nordgaard, M.; Blake, C.; Maróti, G.; Hu, G.; Wang, Y.; Strube, M.L.; Kovács, Á.T. Experimental Evolution of Bacillus Subtilis on Arabidopsis thaliana Roots Reveals Fast Adaptation and Improved Root Colonization. iScience 2022, 25, 104406. [Google Scholar] [CrossRef] [PubMed]
- Rangel de Souza, A.L.S.; De Souza, S.A.; De Oliveira, M.V.V.; Ferraz, T.M.; Figueiredo, F.A.M.M.A.; Da Silva, N.D.; Rangel, P.L.; Panisset, C.R.S.; Olivares, F.L.; Campostrini, E.; et al. Endophytic Colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and Its Effect on Plant Growth Promotion, Plant Physiology, and Activation of Plant Defense. Plant Soil 2016, 399, 257–270. [Google Scholar] [CrossRef]
- Srebot, M.S.; Ripa, M.B.; Gallozo, J.A.; Bettucci, G.R.; Ferretti, M.D.; D’Attilio, L.D.; Martínez, M.L.; Orellano, E.G.; Rodriguez, M.V. Gluconacetobacter diazotrophicus Triggers ISR Involving SA and JA/Et Defense-Related Pathways to Respond against Ralstonia Solanacearum in Arabidopsis and Optimizes the Cellular Redox State Maintaining Reduced FITNESS Levels. Plant Soil 2024. [Google Scholar] [CrossRef]
- dos Santos, T.C.; Leandro, M.R.; Maia, C.Y.; Rangel, P.; Soares, F.S.; Reis, R.; Passamani, L.; Silveira, V.; de Souza Filho, G.A. Arabidopsis thaliana Exudates Induce Growth and Proteomic Changes in Gluconacetobacter diazotrophicus. PeerJ 2020, 8, e9600. [Google Scholar] [CrossRef]
- Thiebaut, F.; Urquiaga, M.C.d.O.; Rosman, A.C.; da Silva, M.L.; Hemerly, A.S. The Impact of Non-Nodulating Diazotrophic Bacteria in Agriculture: Understanding the Molecular Mechanisms That Benefit Crops. Int. J. Mol. Sci. 2022, 23, 11301. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, V.; Castaneda, R.; Rudrappa, T.; Bais, H.P. Root Transcriptome Analysis of Arabidopsis thaliana Exposed to Beneficial Bacillus Subtilis FB17 Rhizobacteria Revealed Genes for Bacterial Recruitment and Plant Defense Independent of Malate Efflux. Planta 2013, 238, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Jatan, R.; Chauhan, P.S.; Lata, C. High-Throughput Sequencing and Expression Analysis Suggest the Involvement of Pseudomonas Putida RA-Responsive MicroRNAs in Growth and Development of Arabidopsis. Int. J. Mol. Sci. 2020, 21, e5468. [Google Scholar] [CrossRef] [PubMed]
- Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talon, M.; Dopazo, J.; Conesa, A. High-Throughput Functional Annotation and Data Mining with the Blast2GO Suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef] [PubMed]
- Thimm, O.; Bläsing, O.; Gibon, Y.; Nagel, A.; Meyer, S.; Krüger, P.; Selbig, J.; Müller, L.A.; Rhee, S.Y.; Stitt, M. MAPMAN: A User-Driven Tool to Display Genomics Data Sets onto Diagrams of Metabolic Pathways and Other Biological Processes. Plant J. 2004, 37, 914–939. [Google Scholar] [CrossRef] [PubMed]
- Suman, A.; Gaur, A.; Shrivastava, A.; Yadav, R. Improving Sugarcane Growth and Nutrient Uptake by Inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul. 2005, 47, 155–162. [Google Scholar] [CrossRef]
- Govindarajan, M.; Balandreau, J.; Kwon, S.-W.; Weon, H.-Y.; Lakshminarasimhan, C. Effects of the Inoculation of Burkholderia Vietnamensis and Related Endophytic Diazotrophic Bacteria on Grain Yield of Rice. Microb. Ecol. 2008, 55, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Luna, M.F.; Galar, M.L.; Aprea, J.; Molinari, M.L.; Boiardi, J.L. Colonization of Sorghum and Wheat by Seed Inoculation with Gluconacetobacter diazotrophicus. Biotechnol. Lett. 2010, 32, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Luna, M.F.; Aprea, J.; Crespo, J.M.; Boiardi, J.L. Colonization and Yield Promotion of Tomato by Gluconacetobacter diazotrophicus. Appl. Soil Ecol. 2012, 61, 225–229. [Google Scholar] [CrossRef]
- de Oliveira, T.R.A.; Gravina, G.A.; da Cruz, D.P.; Silva, N.D.; de Oliveira, G.H.F.; de Sant’Anna, C.Q.S.S.; Magalhães, M.M.; Berbert-Molina, M.A.; Alcantara Neto, F. The Performance of Bean Pod Lineage Inoculated with Gluconacetobacter diazotrophicus PAL5. Sci. Hortic. 2019, 249, 65–70. [Google Scholar] [CrossRef]
- Cartieaux, F.; Thibaud, M.C.; Zimmerli, L.; Lessard, P.; Sarrobert, C.; David, P.; Gerbaud, A.; Robaglia, C.; Somerville, S.; Nussaume, L. Transcriptome Analysis of Arabidopsis Colonized by a Plant-Growth Promoting Rhizobacterium Reveals a General Effect on Disease Resistance. Plant J. 2003, 36, 177–188. [Google Scholar] [CrossRef] [PubMed]
- van de Mortel, J.E.; de Vos, R.C.H.; Dekkers, E.; Pineda, A.; Guillod, L.; Bouwmeester, K.; van Loon, J.J.A.; Dicke, M.; Raaijmakers, J.M. Metabolic and Transcriptomic Changes Induced in Arabidopsis by the Rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol. 2012, 160, 2173–2188. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Lee, D.Y.; Rakwal, R.; Baek, S.-B.; Lee, J.H.; Kwak, Y.-S.; Seo, J.-S.; Chung, W.S.; Bae, D.-W.; Kim, S.G. Proteomic Analyses of the Interaction between the Plant-Growth Promoting Rhizobacterium Paenibacillus Polymyxa E681 and Arabidopsis thaliana. Proteomics 2016, 16, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Vaahtera, L.; Schulz, J.; Hamann, T. Cell Wall Integrity Maintenance during Plant Development and Interaction with the Environment. Nat. Plants 2019, 5, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Malinovsky, F.G.; Fangel, J.U.; Willats, W.G.T. The Role of the Cell Wall in Plant Immunity. Front. Plant Sci. 2014, 5, 86833. [Google Scholar] [CrossRef] [PubMed]
- Kesten, C.; Menna, A.; Sánchez-Rodríguez, C. Regulation of Cellulose Synthesis in Response to Stress. Curr. Opin. Plant Biol. 2017, 40, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Castilleux, R.; Plancot, B.; Ropitaux, M.; Carreras, A.; Leprince, J.; Boulogne, I.; Follet-Gueye, M.L.; Popper, Z.A.; Driouich, A.; Vicré, M. Cell Wall Extensins in Root-Microbe Interactions and Root Secretions. J. Exp. Bot. 2018, 69, 4235–4247. [Google Scholar] [CrossRef] [PubMed]
- Bethke, G.; Grundman, R.E.; Sreekanta, S.; Truman, W.; Katagiri, F.; Glazebrook, J. Arabidopsis Pectin Methylesterases Contribute to Immunity against Pseudomonas Syringae. Plant Physiol. 2014, 164, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Adriano-Anaya, M.L.; Salvador-Figueroa, M.; Ocampo, J.A.; García-Romera, I. Plant Cell-Wall Degrading Hydrolytic Enzymes of Gluconacetobacter diazotrophicus. Symbiosis 2005, 40, 151–156. [Google Scholar]
- Schopfer, P. Biomechanics of Plant Growth. Am. J. Bot. 2006, 93, 1415–1425. [Google Scholar] [CrossRef]
- Mittler, R. ROS Are Good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Nanda, A.K.; Andrio, E.; Marino, D.; Pauly, N.; Dunand, C. Reactive Oxygen Species during Plant-Microorganism Early Interactions. J. Integr. Plant Biol. 2010, 52, 195–204. [Google Scholar] [CrossRef]
- Fukami, J.; Ollero, F.J.; Megías, M.; Hungria, M. Phytohormones and Induction of Plant-Stress Tolerance and Defense Genes by Seed and Foliar Inoculation with Azospirillum Brasilense Cells and Metabolites Promote Maize Growth. AMB Express 2017, 7, 153. [Google Scholar] [CrossRef]
- Brusamarello-Santos, L.C.C.; Alberton, D.; Valdameri, G.; Camilios-Neto, D.; Covre, R.; Lopes, K.d.P.; Zibetti Tadra-Sfeir, M.; Faoro, H.; Adele Monteiro, R.; Barbosa-Silva, A.; et al. Modulation of Defence and Iron Homeostasis Genes in Rice Roots by the Diazotrophic Endophyte Herbaspirillum Seropedicae. Sci. Rep. 2019, 9, 10573. [Google Scholar] [CrossRef]
- Thomas, J.; Kim, H.R.; Rahmatallah, Y.; Wiggins, G.; Yang, Q.; Singh, R.; Glazko, G.; Mukherjee, A. RNA-Seq Reveals Differentially Expressed Genes in Rice (Oryza sativa) Roots during Interactions with Plant-Growth Promoting Bacteria, Azospirillum Brasilense. PLoS ONE 2019, 14, e0217309. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J.; Eugui, D.; Velasco, P. Natural Control of Plant Pathogens through Glucosinolates: An Effective Strategy against Fungi and Oomycetes. Phytochem. Rev. 2020, 19, 1045–1059. [Google Scholar] [CrossRef]
- Hopkins, R.J.; Van Dam, N.M.; Van Loon, J.J.A. Role of Glucosinolates in Insect-Plant Relationships and Multitrophic Interactions. Annu. Rev. Entomol. 2008, 54, 57–83. [Google Scholar] [CrossRef]
- Schreiner, M.; Krumbein, A.; Ruppel, S. Interaction between Plants and Bacteria: Glucosinolates and Phyllospheric Colonization of Cruciferous Vegetables by Enterobacter Radicincitans DSM 16656. Microb. Physiol. 2009, 17, 124–135. [Google Scholar] [CrossRef]
- Witzel, K.; Strehmel, N.; Baldermann, S.; Neugart, S.; Becker, Y.; Becker, M.; Berger, B.; Scheel, D.; Grosch, R.; Schreiner, M.; et al. Arabidopsis thaliana Root and Root Exudate Metabolism Is Altered by the Growth-Promoting Bacterium Kosakonia Radicincitans DSM 16656T. Plant Soil 2017, 419, 557–573. [Google Scholar] [CrossRef]
- Shah, A.; Smith, D.L. Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy 2020, 10, 1209. [Google Scholar] [CrossRef]
- Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root Exudates: From Plant to Rhizosphere and Beyond. Plant Cell. Rep. 2019, 39, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, E.M.; Vinagre, F.; Masuda, H.P.; Vargas, C.; Pádua, V.L.M.; Silva, F.R.; Santos, R.V.; Baldani, J.I.; Ferreira, P.C.G.; Hemerly, A.S. Expression of Sugarcane Genes Induced by Inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum Rubrisubalbicans. Genet. Mol. Biol. 2001, 24, 199–206. [Google Scholar] [CrossRef]
- Trinh, C.S.; Jeong, C.Y.; Lee, W.J.; Truong, H.A.; Chung, N.; Han, J.; Hong, S.W.; Lee, H. Paenibacillus Pabuli Strain P7S Promotes Plant Growth and Induces Anthocyanin Accumulation in Arabidopsis thaliana. Plant Physiol. Biochem. 2018, 129, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Sun, Y.; Shi, M.; Han, X.; Jing, Y.; Li, Y.; Li, H.; Lai, H. Pseudomonas Koreensis Promotes Tomato Growth and Shows Potential to Induce Stress Tolerance via Auxin and Polyphenol-related Pathways. Plant Soil 2021, 462, 141–158. [Google Scholar] [CrossRef]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P.; et al. Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance. Microbiol. Res. 2018, 212–213, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Sels, J.; Mathys, J.; De Coninck, B.M.A.; Cammue, B.P.A.; De Bolle, M.F.C. Plant Pathogenesis-Related (PR) Proteins: A Focus on PR Peptides. Plant Physiol. Biochem. 2008, 46, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-J.; Seo, Y.-S. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. Plant Pathol. J. 2015, 31, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Ul Haq, S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.X.; Zhang, H.X.; Wei, A.M.; Gong, Z.H. Heat Shock Proteins: Dynamic Biomolecules to Counter Plant Biotic and Abiotic Stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef] [PubMed]
- Eskin, N.; Vessey, K.; Tian, L. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants. Int. J. Agron. 2014, 2014, 208383. [Google Scholar] [CrossRef]
- Urquiaga, S.; Xavier, R.P.; de Morais, R.F.; Batista, R.B.; Schultz, N.; Leite, J.M.; Maia e Sá, J.; Barbosa, K.P.; de Resende, A.S.; Alves, B.J.R.; et al. Evidence from Field Nitrogen Balance and 15N Natural Abundance Data for the Contribution of Biological N2 Fixation to Brazilian Sugarcane Varieties. Plant Soil 2012, 356, 5–21. [Google Scholar] [CrossRef]
- Vinagre, F.; Vargas, C.; Schwarcz, K.; Cavalcante, J.; Nogueira, E.M.; Baldani, J.I.; Ferreira, P.C.G.; Hemerly, A.S. SHR5: A Novel Plant Receptor Kinase Involved in Plant–N2-Fixing Endophytic Bacteria Association. J. Exp. Bot. 2006, 57, 559–569. [Google Scholar] [CrossRef]
- Cavalcante, J.; Vargas, C.; Nogueira, E.d.M.; Vinagre, F.; Schwarcz, K.; Baldani, J.I.; Ferreira, P.C.G.; Hemerly, A.S. Members of the Ethylene Signalling Pathway Are Regulated in Sugarcane during the Association with Nitrogen-Fixing Endophytic Bacteria. J. Exp. Bot. 2006, 58, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Alquéres, S.; Meneses, C.; Rouws, L.; Rothballer, M.; Baldani, I.; Schmid, M.; Hartmann, A. The Bacterial Superoxide Dismutase and Glutathione Reductase Are Crucial for Endophytic Colonization of Rice Roots by Gluconacetobacter diazotrophicus PAL5. Mol. Plant-Microbe Interact. 2013, 26, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, L.; Silva, R.; Almeida, I.; Vidal, M.; Baldani, J.I.; Meneses, C.H.S.G. Gluconacetobacter diazotrophicus Mitigates Drought Stress in Oryza sativa L. Plant Soil 2020, 451, 57–73. [Google Scholar] [CrossRef]
- Yang, X.; Hill, K.A.; Austin, R.S.; Tian, L. Differential Gene Expression of Brachypodium Distachyon Roots Colonized by Gluconacetobacter diazotrophicus and the Role of BdCESA8 in the Colonization. Mol. Plant-Microbe Interact. 2021, 34, 1143–1156. [Google Scholar] [CrossRef] [PubMed]
- Intorne, A.C.; De Oliveira, M.V.V.; Lima, M.L.; Da Silva, J.F.; Olivares, F.L.; De Souza Filho, G.A. Identification and Characterization of Gluconacetobacter diazotrophicus Mutants Defective in the Solubilization of Phosphorus and Zinc. Arch. Microbiol. 2009, 191, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Döbereiner, J.; Andrade, V.d.O.; Baldani, V.L.D. Protocolos Para Preparação de Meios de Cultura Da Embrapa Agrobiologia, 1st ed.; Embrapa Agrobiologia: Seropédica, Brazil, 1999; Volume 1. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Reis, V.M.; Olivares, F.L.; Döbereiner, J. Improved Methodology for Isolation of Acetobacter diazotrophicus and Confirmation of Its Endophytic Habitat. World J. Microbiol. Biotechnol. 1994, 10, 401–405. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential Gene and Transcript Expression Analysis of RNA-Seq Experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
Sample | Raw Reads | Q30% | Reads | Multiple Alignments | ||
---|---|---|---|---|---|---|
Mapped | Percentage | Sequenced | Percentage | |||
SC1 | 37,610,360 | 94.88 | 35,427,962 | 94.20 | 1,209,120 | 3.41 |
SC2 | 33,674,915 | 94.52 | 31,333,299 | 93.05 | 1,017,031 | 3.25 |
SC3 | 37,112,472 | 94.82 | 34,892,662 | 94.02 | 1,067,210 | 3.06 |
SI1 | 33,813,467 | 94.80 | 28,484,558 | 84.24 | 866,647 | 3.04 |
SI2 | 26,400,110 | 94.88 | 24,901,074 | 94.32 | 734,767 | 2.95 |
SI3 | 22,157,011 | 94.99 | 21,062,186 | 95.06 | 664,485 | 3.15 |
RC1 | 19,549,295 | 90.53 | 17,201,743 | 87.99 | 1,432,636 | 8.33 |
RC2 | 22,796,113 | 94.20 | 20,908,142 | 91.72 | 1,157,000 | 5.53 |
RC3 | 22,040,564 | 93.32 | 19,805,611 | 89.86 | 1,533,504 | 7.74 |
RI1 | 29,443,587 | 92.14 | 26,091,673 | 88.62 | 1,990,799 | 7.63 |
RI2 | 27,813,151 | 91.92 | 24,497,311 | 88.08 | 1,635,077 | 6.67 |
RI3 | 29,150,837 | 94.51 | 26,255,356 | 90.07 | 1,624,656 | 6.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, F.S.; Rangel de Souza, A.L.S.; de Souza, S.A.; de Souza Vespoli, L.; Pinto, V.B.; Matiello, L.; da Silva, F.R.; Menossi, M.; de Souza Filho, G.A. Fine-Tuning of Arabidopsis thaliana Response to Endophytic Colonization by Gluconacetobacter diazotrophicus PAL5 Revealed by Transcriptomic Analysis. Plants 2024, 13, 1719. https://doi.org/10.3390/plants13131719
Soares FS, Rangel de Souza ALS, de Souza SA, de Souza Vespoli L, Pinto VB, Matiello L, da Silva FR, Menossi M, de Souza Filho GA. Fine-Tuning of Arabidopsis thaliana Response to Endophytic Colonization by Gluconacetobacter diazotrophicus PAL5 Revealed by Transcriptomic Analysis. Plants. 2024; 13(13):1719. https://doi.org/10.3390/plants13131719
Chicago/Turabian StyleSoares, Fabiano Silva, Ana Lídia Soares Rangel de Souza, Suzane Ariádina de Souza, Luciano de Souza Vespoli, Vitor Batista Pinto, Lucia Matiello, Felipe Rodrigues da Silva, Marcelo Menossi, and Gonçalo Apolinário de Souza Filho. 2024. "Fine-Tuning of Arabidopsis thaliana Response to Endophytic Colonization by Gluconacetobacter diazotrophicus PAL5 Revealed by Transcriptomic Analysis" Plants 13, no. 13: 1719. https://doi.org/10.3390/plants13131719
APA StyleSoares, F. S., Rangel de Souza, A. L. S., de Souza, S. A., de Souza Vespoli, L., Pinto, V. B., Matiello, L., da Silva, F. R., Menossi, M., & de Souza Filho, G. A. (2024). Fine-Tuning of Arabidopsis thaliana Response to Endophytic Colonization by Gluconacetobacter diazotrophicus PAL5 Revealed by Transcriptomic Analysis. Plants, 13(13), 1719. https://doi.org/10.3390/plants13131719